Sedimentary Processes of Weijia Guyot and Implications for Western Pacific Seamount Evolution
-
摘要:
海山沉积过程与全球气候变化和古海洋演化有着紧密联系,维嘉海山保留了西太平洋晚中生代以来的完整沉积记录,是探索西太平洋海山构造演化的理想场所. 基于浅地层剖面、大洋钻探和最新相关研究成果,通过研究海山的沉积特征、火山活动和沉降速率等,探索西太平洋维嘉海山晚中生代以来的沉积过程. 结果显示维嘉海山顶部发育3个沉积单元,并发现了始新世第二次火山活动的可能证据,推算出维嘉海山中中新世(~11.6 Ma)以来的沉积速率约为6.03 mm/ka. 首次建立了维嘉海山的演化模型,认为维嘉海山演化主要经历了7个阶段,在渐新世之前处于缓慢沉降状态,其顶部水深一直保持在数百米之间,之后出现拐点,早中新世(~20 Ma)之后开始加速沉降,可能与该时期太平洋板块运动方向的迅速转换有关.
Abstract:Sedimentary processes of seamounts are closely related to global paleoclimate change and paleoceanography evolution. The Weijia Guyot retained the complete sedimentary records since the Late Mesozoic, which made Weijia Guyot an ideal area for tectonic evolution studies of seamounts in the western Pacific Ocean. Based on the results from sub-bottom profiling, ocean drilling, and the latest research, in this paper it explores the sedimentary process of Weijia Guyot since Late Mesozoic by studying the sedimentary characteristics, volcanic activity and subsidence rate of the seamount. There are three sedimentary units on the summit of Weijia Guyot. Direct evidence of rejuvenated volcanism during Eocene is found in this paper, and deposition rate of Weijia Guyot is determined as approximately 6.03 mm/ka since Middle Miocene (~11.6 Ma). The evolution model of Weijia Guyot is established for the first time, which is being divided into seven main phases. New perspective about the subsidence rate of Weijia Guyot is revealed: the subsidence rate was low before Oligocene, and the water depth at the summit ranged within hundreds of meters; subsequently, the subsidence speeded up during Early Miocene (~20 Ma) after an inflection point, and it may be related to the rapid change of the direction of the Pacific plate movement during this period.
-
Key words:
- sedimentary process /
- subsidence rate /
- tectonic evolution /
- Weijia Guyot /
- western Pacific Ocean
-
-
[1] Abrams, L. J., Larson, R. L., Shipley, T. H., et al., 1992. The Seismic Stratigraphy and Sedimentary History of the East Mariana and Pigafetta Basins of the Western Pacific. Proceedings of the Ocean Drilling Program, 129: 551-569. https://doi.org/10.2973/odp.proc.sr.129.143.1992 [2] Asavin, A. M., Kubrakova, I. V., Mel'nikov, M. E., et al., 2010. Geochemical Zoning in Ferromanganese Crusts of Ita-Mai Tai Guyot. Geochemistry International, 48(5): 423-445. https://doi.org/10.1134/s0016702910050010 [3] Barrett, P., 2003. Cooling a Continent. Nature, 421(6920): 221-223. https://doi.org/10.1038/421221a [4] Coxall, H. K., Wilson, P. A., Pälike, H., et al., 2005. Rapid Stepwise Onset of Antarctic Glaciation and Deeper Calcite Compensation in the Pacific Ocean. Nature, 433(7021): 53-57. https://doi.org/10.1038/nature03135 [5] Du, D. W., Ren, X. W., Yan, S. J., et al., 2017. An Integrated Method for the Quantitative Evaluation of Mineral Resources of Cobalt-Rich Crusts on Seamounts. Ore Geology Reviews, 84: 174-184. https://doi.org/10.1016/j.oregeorev.2017.01.011 [6] Galeotti, S., DeConto, R., Naish, T., et al., 2016. Antarctic Ice Sheet Variability across the Eocene-Oligocene Boundary Climate Transition. Science, 352(6281): 76-80. https://doi.org/10.1126/science.aab0669 [7] Hassan, R., Müller, R. D., Gurnis, M., et al., 2016. A Rapid Burst in Hotspot Motion through the Interaction of Tectonics and Deep Mantle Flow. Nature, 533(7602): 239-242. https://doi.org/10.1038/nature17422 [8] He, G.W., Liang, D.H., Song, C.B., et al., 2005. Determining the Distribution Boundary of Cobalt-Rich Crusts of Guyot by Synchronous Application of Sub-Bottom Profiling and Deep-Sea Video Recording. Earth Science, 30(4): 509-512 (in Chinese with English abstract). [9] He, G. W., Ma, W. L., Song, C. B., et al., 2011. Distribution Characteristics of Seamount Cobalt-Rich Ferromanganese Crusts and the Determination of the Size of Areas for Exploration and Exploitation. Acta Oceanologica Sinica, 30(3): 63-75. https://doi.org/10.1007/s13131-011-0120-9 [10] Hesse, R., 1973. Diagenesis of a Seamount Oolite from the West Pacific, Leg 20, DSDP. Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, D.C. . https://doi.org/10.2973/dsdp.proc.20.119.1973 [11] Hirano, N., Ogawa, Y., Saito, K., 2002. Long-Lived Early Cretaceous Seamount Volcanism in the Mariana Trench, Western Pacific Ocean. Marine Geology, 189(3-4): 371-379. https://doi.org/10.1016/s0025-3227(02)00445-0 [12] Koppers, A. A. P., Staudigel, H., Wijbrans, J. R., et al., 1998. The Magellan Seamount Trail: Implications for Cretaceous Hotspot Volcanism and Absolute Pacific Plate Motion. Earth and Planetary Science Letters, 163(1-4): 53-68. https://doi.org/10.1016/s0012-821x(98)00175-7 [13] Lee, T. G., Hein, J. R., Lee, K., et al., 2005. Sub-Seafloor Acoustic Characterization of Seamounts near the Ogasawara Fracture Zone in the Western Pacific Using Chirp (3-7 kHz) Subbottom Profiles. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 52(10): 1932-1956. https://doi.org/10.1016/j.dsr.2005.04.009 [14] Lee, T. G., Lee, K., Hein, J. R., et al., 2009. Geophysical Investigation of Seamounts near the Ogasawara Fracture Zone, Western Pacific. Earth, Planets and Space, 61(3): 319-331. https://doi.org/10.1186/bf03352914 [15] Lee, T. G., Lee, S. M., Moon, J. W., et al., 2003. Paleomagnetic Investigation of Seamounts in the Vicinity of Ogasawara Fracture Zone Northwest of the Marshall Islands, Western Pacific. Earth, Planets and Space, 55(6): 355-360. https://doi.org/10.1186/bf03351769 [16] Li, S.Z., Cao, X.Z., Wang, G.Z., et al., 2019. Meso- Cenozoic Tectonic Evolution and Plate Reconstruction of the Pacific Plate. Journal of Geomechanics, 25(5): 642-677 (in Chinese with English abstract). [17] Liu, Z., Alain, T., Steven, C.C., et al., 2003. Quaternary Clay Mineralogy in the Northern South China Sea (ODP Site 1146)-Implications for Oceanic Current Transport and East Asian Monsoon Evolution. Science China Earth Sciences, 46(12): 1223. https://doi.org/10.1360/02yd0107 [18] Mel'nikov, M. E., Pletnev, S. P., Sedysheva, T. E., et al., 2012. New Data on the Structure of the Sedimentary Section on the Ita Mai Tai Guyot (Magellan Seamounts, Pacific Ocean). Russian Journal of Pacific Geology, 6(3): 217-229. https://doi.org/10.1134/s1819714012030037 [19] Mel'nikov, M. E., Tugolesov, D. D., Pletnev, S. P., 2010. The Structure of the Incoherent Sediments in the Ita Mai Tai Guyot (Pacific Ocean) Based on Geoacoustic Profiling Data. Oceanology, 50(4): 582-590. https://doi.org/10.1134/s0001437010040144 [20] Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 [21] Müller, R. D., Zahirovic, S., Williams, S. E., et al., 2019. A Global Plate Model Including Lithospheric Deformation along Major Rifts and Orogens since the Triassic. Tectonics, 38(6): 1884-1907. https://doi.org/10.1029/2018tc005462 [22] Nakanishi, M., Tamaki, K., Kobayashi, K., 1989. Mesozoic Magnetic Anomaly Lineations and Seafloor Spreading History of the Northwestern Pacific. Journal of Geophysical Research: Solid Earth, 94(B11): 15437-15462. https://doi.org/10.1029/jb094ib11p15437 [23] Pan, J.H., Liu, S.Q., Zhong, S.L., 2002. Rasearch on the Age of Cobalt-Rich Crusts in Western Pacific. Geological Review, 48(5): 463-467 (in Chinese with English abstract). [24] Pearson, P. N., van Dongen, B. E., Nicholas, C. J., et al., 2007. Stable Warm Tropical Climate through the Eocene Epoch. Geology, 35(3): 211-214. https://doi.org/10.1130/g23175a.1 [25] Qi, J.H., Wu, Z.Q., Zhang, X.H., et al., 2020. Deep Seismic Evidence of Cenozoic Tectonic Migration in the Western Pacific Back-Arc Area. Earth Science, 45(7): 2495-2507 (in Chinese with English abstract). [26] Ren, J.B., He, G.W., Yao, H.Q., et al., 2016. Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts. Earth Science, 41(10): 1745-1757 (in Chinese with English abstract). [27] Roberts, A. P., Lehman, B., Weeks, R. J., et al., 1997. Relative Paleointensity of the Geomagnetic Field over the Last 200 000 Years from ODP Sites 883 and 884, North Pacific Ocean. Earth and Planetary Science Letters, 152(1-4): 11-23. https://doi.org/10.1016/S0012-821x(97)00132-5 [28] Staudigel, H., Clague, D.A., 2010. The Geological History of Deep-Sea Volcanoes: Biosphere, Hydrosphere, and Lithosphere Interactions. Oceanography, 23(1): 58-71. https://doi.org/10.5670/oceanog.2010.62 [29] Staudigel, H., Koppers, A. A. P., 2015. Seamounts and Island Building. The Encyclopedia of Volcanoes. Elsevier, Amsterdam, 405-421. https://doi.org/10.1016/b978-0-12-385938-9.00022-5 [30] Staudigel, H., Park, K. H., Pringle, M., et al., 1991. The Longevity of the South Pacific Isotopic and Thermal Anomaly. Earth and Planetary Science Letters, 102(1): 24-44. https://doi.org/10.1016/0012-821x(91)90015-a [31] Suo, Y.H., Li, S.Z., Cao, X.Z., et al., 2017. Mesozoic- Cenozoic Inversion Tectonics of East China and Its Implications for the Subduction Process of the Oceanic Plate. Earth Science Frontiers, 24(4): 249-267 (in Chinese with English abstract). [32] Tang, L. M., Dong, Y. H., Chu, F. Y., et al., 2019. Geochemistry and Age of Seamounts in the West Pacific: Mantle Processes and Petrogenetic Implications. Acta Oceanologica Sinica, 38(1): 71-77. https://doi.org/10.1007/s13131-019-1371-0 [33] Tripati, A., Backman, J., Elderfield, H., et al., 2005. Eocene Bipolar Glaciation Associated with Global Carbon Cycle Changes. Nature, 436(7049): 341-346. https://doi.org/10.1038/nature03874 [34] Wedgeworth, B., Kellogg, J., 1987. A 3-D Gravity-Tectonic Study of Ita Mai Tai Guyot: An Uncompensated Seamount in the East Mariana Basin. Seamounts, Islands, and Atolls. American Geophysical Union, Washington, D. C., 43: 73-84. https://doi.org/10.1029/gm043p0073 [35] Xu, Z., Zheng, Y.F., 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143 (in Chinese with English abstract). [36] Yang, Y., He, G.W., Liu, F.L., et al., 2016. Gravity and Magnetic Anomalies of Jiaxie Guyots and Their Structural and Sedimentary Characteristics. Marine Geology & Quaternary Geology, 36(1): 107-113 (in Chinese with English abstract). [37] Zhang, H.S., Han, Z.B., Lei, J.J., et al., 2014. Calcareous Nannofossil Biostratigraphy and Growth Periods of Co-Rich Crusts from Pacific Seamounts. Earth Science, 39(7): 775-783 (in Chinese with English abstract). [38] Zhang, H. S., Hu, J., Zhao, J., et al., 2015. Variations of Calcareous Nannofossils of Cobalt-Rich Crusts and Geological Records at the Eocene-Oligocene Transition in Western Pacific Seamounts. Scientia Sinica Terrae, 45(4): 508-519 (in Chinese). doi: 10.1360/zd-2015-45-4-508 [39] Zhao, B., Lü, W.C., Zhang, X.Y., et al., 2020. Sedimentary Characteristics and Cobalt-Rich Crust Resource Potential of Weijia Guyot in the Western Pacific Ocean. Geological Bulletin of China, 39(1): 18-26 (in Chinese with English abstract). http://www.researchgate.net/publication/339746124_Sedimentary_characteristics_and_cobalt-rich_crust_resource_potential_of_Weijia_Guyot_in_the_Western_Pacific_Ocean [40] Zhao, B., Wei, Z. Q., Yang, Y., et al., 2019. Sedimentary Characteristics and the Implications of Cobalt-Rich Crusts Resources at Caiwei Guyot in the Western Pacific Ocean. Marine Georesources & Geotechnology, 38(9): 1037-1045. https://doi.org/10.1080/1064119x.2019.1648615 [41] Zhao, B., Yang, Y., Zhang, X. Y., et al., 2020. Sedimentary Characteristics Based on Sub-Bottom Profiling and the Implications for Mineralization of Cobalt-Rich Ferromanganese Crusts at Weijia Guyot, Western Pacific Ocean. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 158: 103223. https://doi.org/10.1016/j.dsr.2020.103223 [42] Zhao, L.H., Jin, X.L., Gao, J.Y., et al., 2010. The Effective Elastic Thickness of Lithosphere in the Mid-West Pacific and Its Geological Significance. Earth Science, 35(4): 637-644 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201004016.htm [43] 何高文, 梁东红, 宋成兵, 等, 2005. 浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线. 地球科学, 30(4): 509-512. doi: 10.3321/j.issn:1000-2383.2005.04.017 [44] 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中‒新生代构造演化及板块重建. 地质力学学报, 25(5): 642-677. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905005.htm [45] 潘家华, 刘淑琴, 钟石兰, 2002. 西太平洋富钴结壳形成年代的探讨. 地质论评, 48(5): 463-467. doi: 10.3321/j.issn:0371-5736.2002.05.003 [46] 祁江豪, 吴志强, 张训华, 等, 2020. 西太平洋弧后地区新生代构造迁移的深部地震证据. 地球科学, 45(7): 2495-2507. doi: 10.3799/dqkx.2020.031 [47] 任江波, 何高文, 姚会强, 等, 2016. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义. 地球科学, 41(10): 1745-1757. doi: 10.3799/dqkx.2016.503 [48] 索艳慧, 李三忠, 曹现志, 等, 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程. 地学前缘, 24(4): 249-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704031.htm [49] 徐峥, 郑永飞, 2019. 中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用. 地球科学, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273 [50] 杨永, 何高文, 刘方兰, 等, 2016. 嘉偕平顶山群重磁异常及其构造和沉积特征. 海洋地质与第四纪地质, 36(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201601013.htm [51] 张海生, 韩正兵, 雷吉江, 等, 2014. 太平洋海山富钴结壳钙质超微化石生物地层学及生长过程. 地球科学, 39(7): 775-783. doi: 10.3799/dqkx.2014.073 [52] 张海生, 胡佶, 赵军, 等, 2015. 西太平洋海山富钴结壳钙质超微化石变化与E/O界限的地质记录. 中国科学: 地球科学, 45(4): 508-519. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201504011.htm [53] 赵斌, 吕文超, 张向宇, 等, 2020. 西太平洋维嘉平顶山沉积特征及富钴结壳资源意义. 地质通报, 39(1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202001004.htm [54] 赵俐红, 金翔龙, 高金耀, 等, 2010. 中西太平洋海山区的岩石圈有效弹性厚度及其地质意义. 地球科学, 35(4): 637-644. doi: 10.3799/dqkx.2010.078