• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大湾区珠江口海上高密度电法探测

    陈斌 汪耀 胡祥云 李倩婕

    陈斌, 汪耀, 胡祥云, 李倩婕, 2020. 大湾区珠江口海上高密度电法探测. 地球科学, 45(12): 4550-4562. doi: 10.3799/dqkx.2020.289
    引用本文: 陈斌, 汪耀, 胡祥云, 李倩婕, 2020. 大湾区珠江口海上高密度电法探测. 地球科学, 45(12): 4550-4562. doi: 10.3799/dqkx.2020.289
    Chen Bin, Wang Yao, Hu Xiangyun, Li Qianjie, 2020. Marine Electrical Resistivity Tomography Research in Pearl River Estuary of Greater Bay Area. Earth Science, 45(12): 4550-4562. doi: 10.3799/dqkx.2020.289
    Citation: Chen Bin, Wang Yao, Hu Xiangyun, Li Qianjie, 2020. Marine Electrical Resistivity Tomography Research in Pearl River Estuary of Greater Bay Area. Earth Science, 45(12): 4550-4562. doi: 10.3799/dqkx.2020.289

    大湾区珠江口海上高密度电法探测

    doi: 10.3799/dqkx.2020.289
    基金项目: 

    国家自然科学基金项目 41804122

    珠江口伶仃洋地区综合地质调查项目 DD20190289

    地质探测与评估教育部重点实验室主任基金和中央高校基本科研业务费项目 GLAB2020ZR10

    详细信息
      作者简介:

      陈斌(1988-), 男, 助理研究员, 主要从事地球物理电磁法在水工环等领域的方法与应用研究.ORCID:0000-0002-3113-3100.E-mail:chenbinde0794@126.com

    • 中图分类号: P319.2

    Marine Electrical Resistivity Tomography Research in Pearl River Estuary of Greater Bay Area

    • 摘要: 海域环境对高密度电阻率法在仪器设备、测量技术和反演解译等方面提出了更高要求,开展海上高密度电法的数值模拟和实测研究将进一步丰富近岸海域地质、资源和环境等问题的勘查手段.基于数值模拟和野外实测,深入研究了偶极-偶极、温纳、斯贝等不同装置对近岸海域典型地电模型的分辨能力和空间定位效果,并详细分析了海水导电性的影响,最后在珠江口伶仃洋海域开展了国内首次2条长剖面的实际测量.结果表明海水电导率对不同测量装置在探测深度和精度方面存在差异化影响,井中电缆利用浮力材料固定后,进行水面拖缆式偶极-偶极测量能大幅降低海底沉缆式测量的施工风险,实现复杂海域环境下高密度电法探测效果、深度与效率的优化折中.

       

    • 图  1  高密度电阻率法工作示意图(据Loke et al., 2013)

      Fig.  1.  Schematic diagram of a multi-electrode system, and a possible sequence of measurements to create a 2-D pseudosection(after Loke et al., 2013)

      图  2  高密度电法常用的电极排列

      a.温纳α装置;b.温纳β装置;c.温纳γ装置;d.偶极-偶极装置;e.三极装置;f.温纳-斯伦贝谢装置

      Fig.  2.  Some commonly used electrode arrays

      图  3  水面拖缆式测量工作示意图(据AGI,2009)

      Fig.  3.  Measurement schematic diagram of towing cable above water(after AGI, 2009)

      图  4  AGI仪器(a)及水下/井中电缆(b)

      Fig.  4.  AGI SuperSting equipment (a) and borehole cable (b)

      图  5  基岩界面正演理论模型

      Fig.  5.  The synthetic model of bedrock interface

      图  6  基岩界面模型不同装置反演结果

      a.偶极-偶极装置;b.温纳装置;c.施伦贝谢装置;d.倒转施伦贝谢装置

      Fig.  6.  The inversion result of bedrock interface model using different electrode arrays

      图  7  层状地层理论模型

      Fig.  7.  The synthetic model of layered earth

      图  8  不同导电性上覆水层层状模型的反演结果

      a.咸水;b.咸淡混合水c.淡水

      Fig.  8.  The inversion result of layered earth model with different resistive water layers

      图  9  研究区范围

      Fig.  9.  Research region and survey line distribution

      图  10  井中电缆水面拖缆式测量示意图

      Fig.  10.  Measurement schematic diagram of borehole cable towed above water

      图  11  L1和L2测线反演解译图

      a.为L1-1测线靠岸部分的视电阻率剖面及反演解译图; b.为L1-2测线远离岸边部分的视电阻率剖面及反演解译图; c.为L2测线的视电阻率剖面及反演解译图

      Fig.  11.  The inversion result of profiles of L1 and L2

      表  1  基岩界面模型参数

      Table  1.   The parameters of bedrock interface model

      介质层 厚度(m) 电阻率值(Ω.m)
      上覆水层 5(0~5) 20
      淤泥层 10(5~15) 10
      砂层 54(15~69) 20
      风化基岩层 41(28~69) 100
      下载: 导出CSV

      表  2  层状地层模型参数

      Table  2.   The parameters of layered earth model

      介质层 厚度(m) 电阻率值(Ω.m)
      上覆水层 5(0~5) 0.3/20/50
      淤泥层 9(5~14) 1
      低阻砂层 12(14~26) 20
      高阻砂层 17(26~43) 50
      风化基岩层 14(43~57) 100
      下载: 导出CSV
    • [1] AGI, 2009.Instruction Manual for EarthImager 2D Version 2.4.0.Advanced Geosciences, Inc., Austin, Texas, 139.
      [2] Amidu, S.A., Dunbar, J.A., 2008.An Evaluation of the Electrical-Resistivity Method for Water-Reservoir Salinity Studies.Geophysics, 73(4):G39-G49. https://doi.org/10.1190/1.2938994
      [3] Baumgartner, F., 1996.A New Method for Geoelectrical Investigations Underwater.Geophysical Prospecting, 44(1):71-98. doi: 10.1111/j.1365-2478.1996.tb00140.x
      [4] Carretero, S., Rapaglia, J., Perdomo, S., et al., 2019.A Multi-Parameter Study of Groundwater-Seawater Interactions along Partido de La Costa, Buenos Aires Province, Argentina.Environmental Earth Sciences, 78(16):513. https://doi.org/10.1007/s12665-019-8532-5
      [5] Day-Lewis, F.D., White, E.A., Johnson, C.D., et al., 2006.Continuous Resistivity Profiling to Delineate Submarine Groundwater Discharge:Examples and Limitations.The Leading Edge, 25(6):724-728. https://doi.org/10.1190/1.2210056
      [6] Fu, L.K., 1959.Several Theory Problems of Underwater DC Resistivity Method.Earth Science, 3(3):12-25(in Chinese with English abstract).
      [7] Ge, W.Z., 1994.The Forward Solution of the Electrical Field Due to a Point Source in Layered Media and Its Applications.Chinese Journal of Geophysics, 37(Suppl.2):534-541(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX4S2.059.htm
      [8] Giampaolo, V., Capozzoli, L., Grimaldi, S., et al., 2016.Sinkhole Risk Assessment by ERT:The Case Study of Sirino Lake (Basilicata, Italy).Geomorphology, 253:1-9. https://doi.org/10.1016/j.geomorph.2015.09.028
      [9] He, Z.X., Yu, G., 2008.Marine EM Survey Technology and Its New Advances.Progress in Exploration Geophysics, 31(1):2-9(in Chinese with English abstract).
      [10] Henderson, R.D., Day-Lewis, F.D., Abarca, E., et al., 2010.Marine Electrical Resistivity Imaging of Submarine Groundwater Discharge:Sensitivity Analysis and Application in Waquoit Bay, Massachusetts, USA.Hydrogeology Journal, 18(1):173-185. https://doi.org/10.1007/s10040-009-0498-z
      [11] Hu, X.Y., Kim, K., 2018.A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application.Earth Science, 43(10):3399-3406(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.317
      [12] Huang, J.G., Ruan, B.Y., Bao, G.X., 2004.DC Resistivity Numerical Modeling Underwater.Computing Techniques for Geophysical and Geochemical Exploration, 26(2):136-140(in Chinese with English abstract).
      [13] Kwon, H.S., Kim, J.H., Ahn, H.Y., et al., 2005.Delineation of a Fault Zone beneath a Riverbed by an Electrical Resistivity Survey Using a Floating Streamer Cable.Exploration Geophysics, 36(1):50-58. https://doi.org/10.1071/eg05050
      [14] Loke, M.H., Chambers, J.E., Rucker, D.F., et al., 2013.Recent Developments in the Direct-Current Geoelectrical Imaging Method.Journal of Applied Geophysics, 95:135-156. https://doi.org/10.1016/j.jappgeo.2013.02.017
      [15] Liu, C., Dai, G.Q., Wang, J., 2017.Reservoir Deposition Exploration Based on Electrical Resistivity Imaging over Water.Western Resources, (6):94-95(in Chinese).
      [16] Mao, Y.H., Zhao, Z.X., Sun, Z., 2020.Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin.Earth Science, 45(5):1622-1635(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.160
      [17] Ni, L., Chen, D.H., Xu, H.W., et al., 2012.Electrical Exploration on Water Region Used in the Geophysical Prospecting Cross the River and Lake.Progress in Geophysics, 27(6):2710-2715(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201206051.htm
      [18] O'Connell, Y., Daly, E., Henry, T., et al., 2018.Terrestrial and Marine Electrical Resistivity to Identify Groundwater Pathways in Coastal Karst Aquifers.Near Surface Geophysics, 16(2):164-175. https://doi.org/10.3997/1873-0604.2017062
      [19] Redhaounia, B., Ilondo, B.O., Gabtni, H., et al., 2016.Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers:Case Study from Amdoun, Northwestern Tunisia.Pure and Applied Geophysics, 173(4):1289-1303. https://doi.org/10.1007/s00024-015-1173-z
      [20] Ren, G.X., Guo, X.J., Jiang, F.W., et al., 2015.A Navigated Underwater DC Resistivity Survey System Developed and Used in Detecting.Progress in Geophysics, 30(3):1430-1436(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201503058.htm
      [21] Rucker, D.F., Noonan, G.E., Greenwood, W.J., 2011.Electrical Resistivity in Support of Geological Mapping along the Panama Canal.Engineering Geology, 117(1-2):121-133. https://doi.org/10.1016/j.enggeo.2010.10.012
      [22] Song, S.H., Cho, I.K., 2009.Application of a Streamer Resistivity Survey in a Shallow Brackish-Water Reservoir. Exploration Geophysics, 40(2):206-213. http://www.cabdirect.org/abstracts/20093199689.html
      [23] Tao, Z., Wang, Y.X., Wang, J.L., 1998.The Experiment and Research of the Axial Even Permutation Electrical Sounding in Marine.China Offshore Oil and Gas(Geology), 12(5):346-348(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD199805016.htm
      [24] Wang, J., Zhang, S.M., Ma, X.C., 2012.Application of Water Multi-Electrode Resistivity Method in Oil-Gas Pipeline Projects.Jilin Geology, 31(2):76-79(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ201202022.htm
      [25] Xia, Z., 2015.Comprehensive Research of Marine Geological Environment in the Nearshore of Pearl River Mouth.Science Press, Beijing, 17(in Chinese).
      [26] Xu, D., Hu, X.Y., Shan, C.L., et al., 2016.Landslide Monitoring in Southwestern China via Time-Lapse Electrical Resistivity Tomography.Applied Geophysics, 13(1):1-12. http://d.wanfangdata.com.cn/Periodical/yydqwl201601001
      [27] Yang, C.H., You, J.I., Lin, C.P., 2002.Delineating Lake Bottom Structure by Resistivity Image Profiling on Water Surface. Terrestrial Atmospheric and Oceanic Sciences, 13(1):39-52. doi: 10.3319/TAO.2002.13.1.39(T)
      [28] Yang, Z.L., Yin, C.C., Zhang, B., et al., 2018.3-D Arbitrarily Anisotropic Modeling for Towed Marine DC Resistivity Method in Deep Ocean.Journal of Jilin University(Earth Science Edition), 48(6):1845-1853(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201806022.htm
      [29] Zhu, D.B., Yang, Y.C., Tian, Z.H., 2014.Underway Electrical Rapid Prospecting Technology.Progress in Geophysics, 29(3):1377-1383(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201403052.htm
      [30] 傅良魁, 1959.水下电法勘探方法的几个理论问题.地球科学, 3(3):12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX195903002.htm
      [31] 葛为中, 1994.层状介质点源电场正演解析及其应用.地球物理学报, 37(增刊2):534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S2.059.htm
      [32] 何展翔, 余刚, 2008.海洋电磁勘探技术及新进展.勘探地球物理进展, 31(1):2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200801003.htm
      [33] 胡祥云, 金钢燮, 2018.大地电磁六元素张量阻抗理论及其应用.地球科学, 43(10):3399-3406. doi: 10.3799/dqkx.2018.317
      [34] 黄俊革, 阮百尧, 鲍光淑, 2004.水下直流电阻率法数值模拟.物探化探计算技术, 26(2):136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT200402011.htm
      [35] 刘成, 戴国强, 王俊, 2017.基于水上高密度的水库淤积勘查应用.西部资源, (6):94-95. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201706038.htm
      [36] 毛云华, 赵中贤, 孙珍, 2020.珠江口盆地西部陆缘伸展-减薄机制.地球科学, 45(5):1622-1635. doi: 10.3799/dqkx.2019.160
      [37] 倪亮, 陈大红, 徐华文, 等, 2012.水域电法在江、湖穿越工程中应用.地球物理学进展, 27(6):2710-2715. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201206051.htm
      [38] 任广欣, 郭秀军, 蒋甫伟, 等, 2015.走航式水下多道电阻率探测系统研制与应用.地球物理学进展, 30(3):1430-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503058.htm
      [39] 陶忠, 王一新, 王家林, 1998.海洋轴向偶极电测深法的试验研究.中国海上油气(地质), 12(5):346-348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199805016.htm
      [40] 王剑, 张赛民, 马晓成, 2012.水上高密度电法在油气管道工程中应用.吉林地质, 31(2):76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201202022.htm
      [41] 夏真, 2015.珠江口近岸海洋地质环境综合研究.北京:科学出版社, 17.
      [42] 杨志龙, 殷长春, 张博, 等, 2018.全拖曳式深海直流电阻率法三维任意各向异性正演模拟.吉林大学学报(地球科学版), 48(6):1845-1853. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201806022.htm
      [43] 朱德兵, 杨益成, 田忠涵, 2014.走航式电法快速探测技术.地球物理学进展, 29(3):1377-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201403052.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  586
    • HTML全文浏览量:  162
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-18
    • 刊出日期:  2020-12-15

    目录

      /

      返回文章
      返回