Genesis of Neoproterozoic Amphibolite in Diancangshan, West Yunnan: Evidence from Zircon U-Pb Age and Whole-Rock Geochemistry
-
摘要: 目前关于扬子地块西南缘新元古代岩浆作用的研究仍显薄弱,制约了对华南板块新元古代构造演化的完整认识.对滇西点苍山地区出露的变基性岩(斜长角闪岩)进行了详细的锆石U-Pb年·代学和全岩地球化学分析.根据Nb/La比值,将斜长角闪岩样品分为2组,第1组样品的Nb/La比值为0.75~0.76,均大于0.5,类似富铌玄武岩;第2组样品的Nb/La比值为0.20~0.21,强烈亏损Nb、Ta,类似岛弧玄武岩.第1组样品的SiO2含量为52.4%~52.6%,MgO含量为4.1%~4.2%,FeOt含量为8.7%~8.8%,Mg#为53;第2组样品相对第1组具有较低的SiO2含量(47.4%~47.5%)和较高的MgO含量(5.4%~5.5%)、FeOt含量(9.8%~9.9%)、Mg#(57).样品的轻、重稀土元素分馏程度较强,第1组样品的(La/Yb)cn值为3.0~3.2,(Gd/Yb)cn为1.42~1.51,具有轻微的Eu负异常(δEu=0.75~0.76);第2组样品具有相对较高的(La/Yb)cn(14.0~14.3)和(Gd/Yb)cn(1.85~1.93)比值,Eu异常不明显(δEu=0.99~1.13).LA-ICP-MS锆石U-Pb定年结果表明,2个代表性的斜长角闪岩样品给出了764±6 Ma和779±9 Ma的形成年龄,暗示点苍山地区存在新元古代时期基性岩浆活动.综合研究认为斜长角闪岩的形成与新元古代俯冲体制下的弧后拉张作用有关.Abstract: The current research on Neoproterozoic magmatism on the southwestern Yangtze Block is still weak, which restricts the complete understanding of the Neoproterozoic tectonic evolution of the South China Plate. Detailed zircon U-Pb geochronological and whole-rock geochemical analyses of amphibolite in the Diancangshan area in western Yunnan were carried out in this study. The amphibolite samples can be divided into two groups based on their Nb/La ratios. Group 1 has Nb/La ratios of 0.75-0.76, greater than 0.5, resembling those of Nb-enriched basalt, while Group 2 has Nb/La ratios of 0.20-0.21, and shows obvious negative Nb and Ta anomalies, and thus are similar to those of arc basalt. The group 1 samples have SiO2 contents of 52.4%-52.6%, MgO of 4.1%-4.2%, FeOt of 8.7%-8.8%, and Mg# of 53. The group 2 samples are characterized by lower SiO2 contents (47.4%-47.5%), and higher MgO (5.4%-5.5%), FeOt (9.8%-9.9%) contents, and Mg# (57). Both of the two group samples show slightly high degree of fractionation. The group 1 samples have (La/Yb)cn ratios of 3.0-3.2, and (Gd/Yb)cn ratios of 1.42-1.51, and show negative Eu anomalies (δEu=0.75-0.76). The group 2 samples have (La/Yb)cn ratios of 14.0-14.3, and (Gd/Yb)cn ratios of 1.85-1.93, and show unobvious Eu anomalies (δEu=0.99-1.13). LA-ICP-MS zircon U-Pb dating results show that two representative amphibolite samples yield ages of 764±6 Ma and 779±9 Ma, suggesting that there is mafic magmatic activity in the Diancangshan area during the Neoproterozoic. Integrated with regional data, the amphibolite was likely to be produced in a back-arc basin which was caused by oceanic crustal subduction along the southwestern Yangtze Block in the Neoproterozoic.
-
Key words:
- zircon U-Pb dating /
- amphibolite /
- back-arc basin /
- Neoproterozoic /
- Diancangshan /
- geochronology /
- geochemistry
-
图 1 滇西点苍山-哀牢山构造带及其邻区地质简图
Fig. 1. Simplified geological map showing the Diancangshan-Ailaoshan tectonic belt and surrounding areas
图 3 点苍山-哀牢山构造带元古界地层柱状图
Fig. 3. Simplified stratigraphic column of Proterozoic stratum in the Diancangshan-Ailaoshan tectonic belt
图 7 点苍山地区斜长角闪岩Nb/Y-Zr/TiO2 (a)和MgO-Nb/La (b) 图解(底图据Sajona et al., 1994)
Fig. 7. Plots of Nb/Y vs. Zr/TiO2 (a) and MgO vs. Nb/La (b) for the amphibolites in the Diancangshan area (after Sajona et al., 1994)
图 8 点苍山地区斜长角闪岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石和原始地幔标准化值据Sun and McDonough(1989),云开富Nb玄武岩据Zhang et al.(2012)
Fig. 8. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spidergram (b) of the amphibolites in the Diancangshan area
图 9 点苍山地区斜长角闪岩Hf/3-Th-Ta (a)和Y/15-La/10-Nb/8 (b)图解
底图据Campbell and Griffiths(1990). A.N-MORB;B.E-MORB-板内拉斑玄武岩;C.板内碱性玄武岩;D.钙碱性弧火山岩.1区为火山弧玄武岩,2区为大陆玄武岩,3区为大洋玄武岩;1A.钙碱性玄武岩,1B.板内火山弧拉斑玄武岩,1C.板内碱性火山弧玄武岩,2A.大陆玄武岩,2B.弧后盆地大陆玄武岩,3A.大陆裂谷碱性玄武岩,3B、3C.富集型洋脊玄武岩,3D.正常洋脊玄武岩
Fig. 9. Plots of Hf/3-Th-Ta (a) and Y/15-La/10-Nb/8 (b) for the amphibolites in the Diancangshan area
图 10 点苍山地区斜长角闪岩Ba/Yb-Nb/Yb (a)及Ba/Nb-Th/Yb (b)图解(据Pearce et al., 2005)
Fig. 10. Plots of Ba/Yb vs. Nb/Yb (a) and Ba/Nb vs. Th/Yb (b) for the amphibolites in the Diancangshan area (after Pearce et al., 2005)
-
[1] Béguelin, P., Bizimis, M., Beier, C., et al., 2017. Rift-Plume Interaction Reveals Multiple Generations of Recycled Oceanic Crust in Azores Lavas. Geochimica et Cosmochimica Acta, 218: 132-152. https://doi.org/10.1016/j.gca.2017.09.015 [2] Cai, Y. F., Wang, Y. J., Cawood, P. A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China: Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245: 13-28. https://doi.org/10.1016/j.precamres.2014.01.009 [3] Cai, Y. F., Wang, Y. J., Cawood, P. A., et al., 2015. Neoproterozoic Crustal Growth of the Southern Yangtze Block: Geochemical and Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence of Neoproterozoic Diorite from the Ailaoshan Zone. Precambrian Research, 266: 137-149. https://doi.org/10.1016/j.precamres.2015.05.008 [4] Cai, Y.F., Wang, Y.J., Liu, H.C., et al., 2014. Geochronological and Geochemical Characteristics of the Neoproterozoic Amphibolite from Ailaoshan Zone, Western Yunnan and Its Tectonic Implications. Geotectonica et Metallogenia, 38(1): 168-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201401015.htm [5] Campbell, I. H., Griffiths, R. W., 1990. Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99(1-2): 79-93. https://doi.org/10.1016/0012-821x(90)90072-6 [6] Dai, Z.W., Li, G.M., Ding, J., et al., 2018. Late Cretaceous Adakite in Nuri Area, Tibet: Products of Ridge Subduction. Earth Science, 43(8): 2727-2741 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808015.htm [7] Dong, Y. P., Liu, X. M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196-197: 247-274. https://doi.org/10.1016/j.precamres.2011.12.007 [8] Li, B.L., Ji, J.Q., Wang, D.D., et al., 2012. Neoproterozoic Magmatism in South Yunnan: Evidence from SHRIMP Zircon U-Pb Geochrological Results of High-Grade Metamorphic Rocks in the Yaoshan Group. Acta Geologica Sinica, 86(10): 1584-1591 (in Chinese with English abstract). [9] Li, X.H., Liu, Y., Tu, X.L., et al., 2002. Precise Determination of Chemical Compositions in Silicate Rocks Using ICP AES and ICP MS: A Comparative Study of Sample Digestion Techniquesof Alkali Fusion and Acid Dissolution. Geochimica, 31(3): 289-294 (in Chinese with English abstract). http://www.researchgate.net/publication/306153354_Precise_determination_of_chemical_compositions_in_silicate_rocks_using_ICP-AES_and_ICP-MS_A_comparative_study_of_sample_digestion_techniquesofalkalifusion_and_acid_disolution [10] Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 [11] Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Research, 122(1-4): 111-140. https://doi.org/10.1016/s0301-9268(02)00222-x [12] Liu, J.L., Wang, A.J., Cao, S.Y., et al., 2008. Geochronology and Tectonic Implication of Migmatites from Diancangshan, Western Yunnan, China. Acta Petrologica Sinica, 24(3): 413-420 (in Chinese with English abstract). http://www.oalib.com/paper/1472578 [13] Liu, Y., Liu, H.C., Li, X. H, 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25(6): 552-558 (in Chinese with English abstract). http://www.researchgate.net/publication/303067662_Simultaneous_precise_determination_of_40_trace_elements_in_rock_samples_using_ICP-MS [14] Lyu, M. X., Cao, S. Y., Neubauer, F., et al., 2020. Deformation Fabrics and Strain Localization Mechanisms in Graphitic Carbon-bearing Rocks from the Ailaoshan-Red River Strike-Slip Fault Zone. Journal of Structural Geology, 140: 104150. https://doi.org/10.1016/j.jsg.2020.104150 [15] Meng, L.X., Zhou, Y., Cai, Y.F., et al., 2020. Southwestern Boundary between the Yangtze and Cathaysia Blocks: Evidence from Detrital Zircon U-Pb Ages of Early Paleozoic Sedimentary Rocks from Qinzhou-Fangchenggang Area, Guangxi. Earth Science, 45(4): 1227-1242 (in Chinese with English abstract). [16] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343 [17] Pearce, J. A., Stern, R. J., Bloomer, S. H., et al., 2005. Geochemical Mapping of the Mariana Arc-Basin System: Implications for the Nature and Distribution of Subduction Components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006. https://doi.org/10.1029/2004gc000895 [18] Qi, X. X., Zeng, L. S., Zhu, L. H., et al., 2012. Zircon U-Pb and Lu-Hf Isotopic Systematics of the Daping Plutonic Rocks: Implications for the Neoproterozoic Tectonic Evolution of the Northeastern Margin of the Indochina Block, Southwest China. Gondwana Research, 21(1): 180-193. https://doi.org/10.1016/j.gr.2011.06.004 [19] Sajona, F. G., Bellon, H., Maury, R., et al., 1994. Magmatic Response to Abrupt Changes in Geodynamic Settings: Pliocene-Quaternary Calc-Alkaline and Nb-Enriched Lavas from Mindanao (Philippines). Tectonophysics, 237(1-2): 47-72. https://doi.org/10.1016/0040-1951(94)90158-9 [20] Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998. Setouchi High-Mg Andesites Revisited: Geochemical Evidence for Melting of Subducting Sediments. Earth and Planetary Science Letters, 160(3-4): 479-492. https://doi.org/10.1016/s0012-821x(98)00105-8 [21] Song, Z.J., 2008. Tectonite Series in the Middle-Southern Segment of Ailao Shan-Red River Shear Zone and Their Geological Implication (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [22] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [23] Tang, Z.C., Wang, F.X., Zhou, H.W., et al., 2020. Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition: Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang. Earth Science, 45(1): 180-193 (in Chinese with English abstract). [24] Taylor, B., Martinez, F., 2003. Back-Arc Basin Basalt Systematics. Earth and Planetary Science Letters, 210(3-4): 481-497. https://doi.org/10.1016/s0012-821x(03)00167-5 [25] Wang, B.D., Wang, L.Q., Wang, D.B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8): 2527-2550 (in Chinese with English abstract). [26] Wang, Y. J., Zhou, Y. Z., Cai, Y. F., et al., 2016. Geochronological and Geochemical Constraints on the Petrogenesis of the Ailaoshan Granitic and Migmatite Rocks and Its Implications on Neoproterozoic Subduction along the SW Yangtze Block. Precambrian Research, 283: 106-124. https://doi.org/10.1016/j.precamres.2016.07.017 [27] Wang, Y.Z., Ding, J., 1996. Structural Deformation and Evolution of the Medium- to High-Grade Metamorphic Rock Series in the Ailao Mountains, Yunnan. Tethyan Geology, (20): 52-69 (in Chinese with English abstract). http://www.researchgate.net/publication/281036766_Structural_deformation_and_evolution_of_the_medium-to_high-grade_metamorphic_rock_series_in_the_Ailao_Mountains_Yunnan [28] Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4): 491-504. https://doi.org/10.1016/0012-821x(93)90078-n [29] Yunnan Provincial Bureau of Geology and Mineral Resources, 1990. Regional Geology of Yunnan Province. Geological Publishing House, Beijing (in Chinese). [30] Zhai, M.G., Cong, B. L, 1993. The Diancangshan-Shigu Metamorphic Belt in W. Yunnan, China: Their Geochemical and Geochronological Characteristics and Division of Metamorphic Domains. Acta Petrologica Sinica, 9(3): 227-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199303001.htm [31] Zhang, A. M., Wang, Y. J., Fan, W. M., et al., 2012. Earliest Neoproterozoic (ca. 1.0 Ga) Arc-Back-Arc Basin Nature along the Northern Yunkai Domain of the Cathaysia Block: Geochronological and Geochemical Evidence from the Metabasite. Precambrian Research, 220-221: 217-233. https://doi.org/10.1016/j.precamres.2012.08.003 [32] Zhang, J.B., Ding, X.Z., Liu, Y.X., et al., 2020. Geochronology and Geological Implication in Two Episodes of Meso-Neoproterozoic Magmatism in the Southwestern Yangtze Block. Earth Science, 45(7): 2452-2468 (in Chinese with English abstract). [33] Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017 [34] Zhao, J. H., Zhou, M. F., 2008. Neoproterozoic Adakitic Plutons in the Northern Margin of the Yangtze Block, China: Partial Melting of a Thickened Lower Crust and Implications for Secular Crustal Evolution. Lithos, 104(1-4): 231-248. https://doi.org/10.1016/j.lithos.2007.12.009 [35] Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. https://doi.org/10.1130/g31701.1 [36] Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004 [37] Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67. https://doi.org/10.1016/s0012-821x(01)00595-7 [38] Zhu, B.Q., Chang, X.Y., Qiu, H.N., et al., 2001. Geochronological Study on Formation and Metamorphism of Precambrian Basement and Their Mineralization in Yunnan, China. Progress in Precambrian Research, 24(2): 75-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200102001.htm [39] Zhu, W. G., Zhong, H., Li, X. H., et al., 2008. SHRIMP Zircon U-Pb Geochronology, Elemental, and Nd Isotopic Geochemistry of the Neoproterozoic Mafic Dykes in the Yanbian Area, SW China. Precambrian Research, 164(1-2): 66-85. https://doi.org/10.1016/j.precamres.2008.03.006 [40] Zou, R., Zhu, B.Q., Sun, D.Z., et al., 1997. Geochronology Studies of Crust-Mantle Interaction and Mineralization in the Honghe Ore Deposit Zone. Geochimica, 26(2): 46-56 (in Chinese with English abstract). http://www.researchgate.net/publication/291047999_Geochronology_studies_of_crust-mantle_interaction_and_mineralization_in_the_Honghe_ore_deposit_zone [41] 蔡永丰, 王岳军, 刘汇川, 等, 2014. 哀牢山新元古代斜长角闪岩的形成时代、地球化学特征及其大地构造意义. 大地构造与成矿学, 38(1): 168-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201401015.htm [42] 代作文, 李光明, 丁俊, 等, 2018. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物. 地球科学, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230 [43] 李宝龙, 季建清, 王丹丹, 等, 2012. 滇南新元古代的岩浆作用: 来自瑶山群深变质岩SHRIMP锆石U-Pb年代学证据. 地质学报, 86(10): 1584-1591. doi: 10.3969/j.issn.0001-5717.2012.10.003 [44] 李献华, 刘颖, 涂湘林, 等, 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定: 酸溶与碱熔分解样品方法的对比. 地球化学, 31(3): 289-294. doi: 10.3321/j.issn:0379-1726.2002.03.010 [45] 刘俊来, 王安建, 曹淑云, 等, 2008. 滇西点苍山杂岩中混合岩的地质年代学分析及其区域构造内涵. 岩石学报, 24(3): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803002.htm [46] 刘颖, 刘海臣, 李献华, 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004 [47] 蒙麟鑫, 周云, 蔡永丰, 等, 2020. 扬子与华夏地块西南端界线: 来自钦防地区碎屑锆石U-Pb年代学的制约. 地球科学, 45(4): 1227-1242. doi: 10.3799/dqkx.2019.090 [48] 宋志杰, 2008. 哀牢山-红河剪切带中南段构造岩序列及其地质意义(硕士学位论文). 北京: 中国地质大学. [49] 唐增才, 汪发祥, 周汉文, 等, 2020. 浙西开化地区新元古代(~800 Ma)洋陆俯冲: 来自活动陆缘弧火山岩序列组合的制约. 地球科学, 45(1): 180-193. doi: 10.3799/dqkx.2018.244 [50] 王保弟, 王立全, 王冬兵, 等, 2018. 三江昌宁-孟连带原-古特提斯构造演化. 地球科学, 43(8): 2527-2550. doi: 10.3799/dqkx.2018.160 [51] 王义昭, 丁俊, 1996. 云南哀牢山中深变质岩系构造变形特征及演变. 特提斯地质, (20): 52-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD600.002.htm [52] 云南省地质矿产局, 1990. 云南省区域地质志. 北京: 地质出版社. [53] 翟明国, 从柏林, 1993. 对于点苍山-石鼓变质带区域划分的意见. 岩石学报, 9(3): 227-239. doi: 10.3321/j.issn:1000-0569.1993.03.002 [54] 张继彪, 丁孝忠, 刘燕学, 等, 2020. 扬子西南缘中-新元古代两期岩浆活动年代学及地质意义. 地球科学, 45(7): 2452-2468. doi: 10.3799/dqkx.2020.034 [55] 朱炳泉, 常向阳, 邱华宁, 等, 2001. 云南前寒武纪基底形成与变质时代及其成矿作用年代学研究. 前寒武纪研究进展, 24(2): 75-82. doi: 10.3969/j.issn.1672-4135.2001.02.002 [56] 邹日, 朱炳泉, 孙大中, 等, 1997. 红河成矿带壳幔演化与成矿作用的年代学研究. 地球化学, 26(2): 46-56. doi: 10.3321/j.issn:0379-1726.1997.02.007 -
dqkxzx-46-8-2860-附表.docx