• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏搭格架高温热泉中钨的水文地球化学异常

    郭清海 杨晨

    郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
    引用本文: 郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
    Guo Qinghai, Yang Chen, 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
    Citation: Guo Qinghai, Yang Chen, 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287

    西藏搭格架高温热泉中钨的水文地球化学异常

    doi: 10.3799/dqkx.2020.287
    基金项目: 

    国家自然科学基金项目 41772370

    国家自然科学基金项目 41861134028

    详细信息
      作者简介:

      郭清海(1978-), 男, 教授, 主要从事高温地热系统地球化学工作.ORCID: 0000-0001-6602-9664.E-mail: qhguo2006@gmail.com

    • 中图分类号: P66

    Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China

    • 摘要: 西藏搭格架水热区的热泉含异常高浓度的钨,其钨/钼比也远高于常见天然水.开展了搭格架典型热泉的地球化学研究,发现中性热泉的钨浓度显著高于偏酸性热泉:前者是深部母地热流体经绝热冷却、传导冷却等过程后排出地表而形成,其中的钨主要来自岩浆水的贡献;而后者为中性地热水和蒸汽加热型强酸性水的混合产物,贫钨蒸汽加热型水的稀释使其钨浓度不同程度降低.在地热水中,钨与典型保守组分氯相似,不易自液相沉淀或被热储介质吸附;但地热水含硫化物时,钼则极易以辉钼矿的形式沉淀,导致搭格架热泉的钨/钼比偏高.虽然搭格架地热水中存在硫化物,但钨在水中主要以钨酸盐的形式存在,少量硫代钨酸盐的形成对钨的水文地球化学过程影响不大.

       

    • 图  1  搭格架水热系统的区域大地构造背景

      MBT. 主边界断层;ITS. 雅鲁藏布江缝合带;BNS. 班公错-怒江缝合带;JS. 龙木错-金沙江缝合带;据Guo et al.(2019b)修改

      Fig.  1.  Regional tectonic setting of the Daggyai hydrothermal system

      图  2  搭格架水热区地质简图及采样位置

      郑绵平等(1995)修改

      Fig.  2.  Simplified geological map of the Daggyai hydrothermal area and sampling locations

      图  3  搭格架热泉样品的Piper三线图

      Fig.  3.  Piper diagram of the Daggyai hot springs

      图  4  搭格架热泉样品的钨、钼浓度和钨/钼比

      Fig.  4.  Concentrations of tungsten and molybdenum as well as their ratios of the Daggyai hot springs

      图  5  搭格架热泉样品中硫代钨酸盐占总钨的百分含量与硫化物浓度(a)及pH(b)的关系

      Fig.  5.  Ratio of thiotungstates to total tungsten vs. sulfide concentration (a) and pH (b) of the Daggyai hot springs

      图  6  搭格架热泉样品中一硫代钨酸盐和二硫代钨酸盐占硫代钨酸盐的百分含量与硫化物浓度(a)及pH(b)的关系

      Fig.  6.  Ratios of mono-thiotungstate and di-thiotungstate to total thiotungstates vs. sulfide concentration (a) and pH (b) of the Daggyai hot springs

      图  7  搭格架热泉的δD-δ18O关系

      岩浆水氢氧同位素组成引自Giggenbach(1992);大气降水线引自Tan et al.(2014);□. 酸性热泉;○. 中性热泉;△. 入渗水;引自Guo et al.(2010)

      Fig.  7.  δD-δ18O relations of the Daggyai hot springs

      图  8  搭格架热泉样品的钨-氯(a)、钨-钠(b)、钨-砷(c)、钨-钼(d)散点图

      Fig.  8.  Relations of tungsten vs. chloride (a), tungsten vs. sodium (b), tungsten vs. arsenic (c), and tungsten vs. molybdenum (d) in the Daggyai hot springs

      表  1  搭格架热泉样品的水文地球化学和同位素地球化学特征

      Table  1.   Hydrogeochemical and isotopic characteristics of the Daggyai hot springs

      样品编号 T(℃) pH EC(µs/cm) EH(V) W(µg/L) Mo(µg/L) W/Mo 硫化物(mg/L) δD(‰ SMOW) δ18O(‰ SMOW)
      DGJ00 79.3 8.59 1 873 -0.389 899.9 32.20 28 0.15 -153 -20.5
      DGJ01 79.5 8.24 1 910 -0.357 868.5 30.20 29 0.09 -153 -20.2
      DGJ03 69.1 4.46 386 -0.060 323.1 1.41 230 0.04 -156 -15.3
      DGJ04 80.1 7.40 1 912 -0.307 879.2 27.40 32 0.07 -148 -19.3
      DGJ05 78.9 8.25 2 004 -0.358 950.1 32.00 30 0.13 -147 -18.8
      DGJ06 74.1 6.96 1 916 -0.272 897.6 36.10 25 0.15 n.a. n.a.
      DGJ07 82.1 6.97 1 872 -0.278 890.4 41.50 21 0.11 -148 -19.7
      DGJ08 75.5 6.92 1 994 -0.269 923.1 37.40 25 0.09 n.a. n.a.
      DGJ09 41.5 6.90 1 678 -0.212 919.9 26.10 35 0.20 n.a. n.a.
      DGJ10 81.9 7.35 1 914 -0.320 925.6 33.20 28 0.49 -156 -20.0
      DGJ11 79.9 6.99 1 966 -0.287 961.2 29.30 33 0.26 n.a. n.a.
      DGJ12 77.8 7.00 1 805 -0.285 849.3 28.60 30 0.15 -159 -19.7
      DGJ13 80.2 6.00 1 502 -0.203 795.7 33.30 24 0.12 -157 -19.4
      注:n.a. 未分析;表中水化学数据据Guo et al. (2019a).
      下载: 导出CSV

      表  2  水中钨的不同形态的化学热力学数据

      Table  2.   Chemical thermodynamic data of various tungsten species in water

      钨的形态 化学结构式 化学反应式 log(K) 来源
      钨酸盐 HnWO4n-2 (n=0, 1, 2) WO42-+H+=HWO4- 3.60 Smith and Martell(2004)
      WO42-+2H+=H2WO4 5.80 Smith and Martell(2004)
      一硫代钨酸盐 WSO32- WO42-+H2S=WSO32-+H2O 3.08 Mohajerin et al.(2014)
      二硫代钨酸盐 WS2O22- WSO32-+H2S=WS2O22-+H2O 3.22 Mohajerin et al.(2014)
      三硫代钨酸盐 WS3O2- WS2O22-+H2S=WS3O2-+H2O 2.76 Mohajerin et al.(2014)
      四硫代钨酸盐 WS42- WS3O2-+H2S=WS42-+H2O 2.36 Mohajerin et al.(2014)
      注:n.a. 未分析;表中水化学数据据Guo et al. (2019a).
      下载: 导出CSV

      表  3  搭格架热泉中钨酸盐和硫代钨酸盐的浓度(mol/L)

      Table  3.   Concentrations of tungstate and thiotungstate in the Daggyai hot springs (mol/L)

      样品编号 钨酸盐 一硫代钨酸盐 二硫代钨酸盐 三硫代钨酸盐 四硫代钨酸盐
      WO42- HWO4- H2WO4 WSO32- WS2O22- WS3O2- WS42-
      DGJ00 4.90×10-6 3.08×10-11 1.06×10-17 3.40×10-12 3.26×10-18 1.08×10-24 1.43×10-31
      DGJ01 4.73×10-6 6.68×10-11 5.16×10-17 3.16×10-12 2.92×10-18 9.33×10-25 1.19×10-31
      DGJ03 2.83×10-7 3.06×10-8 1.55×10-10 3.09×10-10 4.68×10-13 2.45×10-16 5.11×10-20
      DGJ04 4.79×10-6 4.67×10-10 2.50×10-15 2.64×10-11 2.01×10-16 5.32×10-22 5.59×10-28
      DGJ05 5.18×10-6 7.06×10-11 5.30×10-17 5.86×10-12 9.14×10-18 4.95×10-24 1.07×10-30
      DGJ06 4.89×10-6 1.33×10-9 1.96×10-14 1.84×10-10 9.51×10-15 1.71×10-19 1.22×10-24
      DGJ07 4.85×10-6 1.27×10-9 1.82×10-14 8.16×10-11 1.89×10-15 1.52×10-20 4.88×10-26
      DGJ08 5.03×10-6 1.50×10-9 2.42×10-14 1.40×10-10 5.36×10-15 7.12×10-20 3.77×10-25
      DGJ09 5.01×10-6 1.63×10-9 2.80×10-14 4.70×10-10 6.09×10-14 2.74×10-18 4.90×10-23
      DGJ10 5.04×10-6 5.50×10-10 3.29×10-15 2.04×10-10 1.14×10-14 2.20×10-19 1.70×10-24
      DGJ11 5.24×10-6 1.31×10-9 1.80×10-14 2.50×10-10 1.64×10-14 3.75×10-19 3.41×10-24
      DGJ12 4.63×10-6 1.16×10-9 1.57×10-14 3.15×10-10 2.96×10-14 9.65×10-19 1.25×10-23
      DGJ13 4.32×10-6 1.12×10-8 1.54×10-12 9.79×10-10 3.06×10-13 3.32×10-17 1.43×10-21
      注:n.a. 未分析;表中水化学数据据Guo et al. (2019a).
      下载: 导出CSV

      表  4  搭格架热泉样品相对于常见含钼矿物的饱和指数

      Table  4.   Saturation indices of the Daggyai hot springs with respect to common molybdenum-bearing minerals

      样品编号 辉钼矿 硒钼矿 钼钙矿 钼铁矿 钼镁矿 钼镍矿 钼华
      DGJ00 5.77 -26.04 -1.75 -29.99 -10.85 -10.40 -11.88
      DGJ01 6.21 -24.62 -1.75 -28.67 -10.86 -9.80 -11.21
      DGJ03 18.83 n.a. -3.24 -24.30 -12.16 -8.64 -5.09
      DGJ04 9.41 -21.27 -1.67 -26.72 -10.78 -9.19 -9.57
      DGJ05 6.79 n.a. -1.81 -28.45 -11.15 -10.01 -11.21
      DGJ06 12.78 n.a. -1.74 -26.07 -10.89 -8.14 -8.57
      DGJ07 11.09 6.88 -1.74 -25.32 -10.94 -8.24 -8.53
      DGJ08 12.39 -19.48 -2.29 -26.91 -11.43 -8.31 -8.47
      DGJ09 17.99 11.37 -1.91 -26.59 -11.14 -8.00 -8.57
      DGJ10 11.31 n.a. -1.69 -26.63 -10.80 -8.87 -9.39
      DGJ11 12.18 -19.84 -2.08 -26.69 -11.39 -8.61 -8.72
      DGJ12 12.77 -19.85 -2.45 -28.50 -11.56 -8.91 -8.74
      DGJ13 15.10 n.a. -2.36 -24.46 -11.54 -7.80 -6.82
      注:n.a. 由于样品中硒未检出,未计算样品相对于硒钼矿的饱和指数.
      下载: 导出CSV
    • [1] Arnórsson, S., Óskarsson, N., 2007. Molybdenum and Tungsten in Volcanic Rocks and in Surface and < 100℃ Ground Waters in Iceland. Geochimica et Cosmochimica Acta, 71(2): 284-304. https://doi.org/10.1016/j.gca.2006.09.030
      [2] Chen, X., Deng, X., Zhang, J., et al., 2018. Fluid Inclusions Constraints on the Origin of the Xiaobaishitou W-Mo Deposit in Hami, Xingjiang, NW China. Earth Science, 43 (9): 3086-3099 (in Chinese with English abstract). http://www.researchgate.net/publication/329031227_Fluid_Inclusions_Constraints_on_the_Origin_of_the_Xiaobaishitou_W-Mo_Deposit_in_Hami_Xinjiang_NW_China
      [3] Farnham, I. M., Johannesson, K. H., Singh, A. K., et al., 2003. Factor Analytical Approaches for Evaluating Groundwater Trace Element Chemistry Data. Analytica Chimica Acta, 490(1/2): 123-138. https://doi.org/10.1016/s0003-2670(03)00350-7
      [4] Firdaus, M.L., Norisuye, K., Nakagawa, Y., et al., 2008. Dissolved and Labile Particulate Zr, Hf, Nb, Ta, Mo and W in the Western North Pacific Ocean. Journal of Oceanography, 64(2): 247-257. https://doi.org/10.1007/s10872-008-0019-z
      [5] Giggenbach, W. F., 1992. Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and their Origin. Earth and Planetary Science Letters, 113(4): 495-510. https://doi.org/10.1016/0012-821x(92)90127-h
      [6] Guo, Q. H., Li, Y. M., Luo, L., 2019a. Tungsten from Typical Magmatic Hydrothermal Systems in China and its Environmental Transport. Science of the Total Environment, 657(2-3): 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
      [7] Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019b. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in some Southern Tibetan Geothermal Waters. Chemical Geology, 513(3): 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008
      [8] Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014a. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed Via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10): 1-12. https://doi.org/10.1007/s00445-014-0868-9
      [9] Guo, Q. H., Nordstrom, D.K., McCleskey, R.B., 2014b. Towards Understanding the Puzzling Lack of Acid Geothermal Springs in Tibet (China): Insight from a Comparison with Yellowstone (USA) and Some Active Volcanic Hydrothermal Systems. Journal of Volcanology and Geothermal Research, 288(Nb2): 94-104. https://doi.org/10.1016/j.jvolgeores.2014.10.005
      [10] Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453(1): 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      [11] Guo, Q. H., Wang, Y. X., Liu, W., 2010. O, H, and Sr Isotope Evidences of Mixing Processes in Two Geothermal Fluid Reservoirs at Yangbajing, Tibet, China. Environmental Earth Sciences, 59(7): 1589-1597. https://doi.org/10.1007/s12665-009-0145-y
      [12] Hall, G. E. M., Jefferson, C. W., Michel, F. A., 1988. Determination of W and Mo in Natural Spring Waters by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) and ICP-MS (Inductively Coupled Plasma Mass Spectrometry): Application to South Nahanni River Area, N.W.T., Canada. Journal of Geochemical Exploration, 30(1/2/3): 63-84. https://doi.org/10.1016/0375-6742(88)90050-7
      [13] Johannesson, K.H., Lyons, W.B., Graham, E.Y., Welch, K.A., 2000. Oxyanion Concentrations in Eastern Sierra Nevada Rivers-3. Boron, Molybdenum, Vanadium, and Tungsten. Aquatic Geochemistry, 6(1): 19-46. doi: 10.1023/A:1009622219482
      [14] Kalinich, J. F., Emond, C. A., Dalton, T. K., et al., 2005. Embedded Weapons-Grade Tungsten Alloy Shrapnel Rapidly Induces Metastatic High-Grade Rhabdomyosarcomas in F344 Rats. Environmental Health Perspectives, 113(6): 729-734. https://doi.org/10.1289/ehp.7791
      [15] Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2012. In Vivo Tungsten Exposure Alters B-Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324
      [16] Kishida, K., Sohrin, Y., Okamura, K., et al., 2004. Tungsten Enriched in Submarine Hydrothermal Fluids. Earth and Planetary Science Letters, 222(3/4): 819-827. https://doi.org/10.1016/j.epsl.2004.03.034
      [17] Kletzin, A., Adams, M. W. W., 1996. Tungsten in Biological Systems. FEMS Microbiology Reviews, 18(1): 5-63. https://doi.org/10.1111/j.1574-6976.1996.tb00226.x
      [18] Konhauser, K. O., Powell, M. A., Fyfe, W. S., et al., 1997. Trace Element Chemistry of Major Rivers in Orissa State, India. Environmental Geology, 29(1/2): 132-141. https://doi.org/10.1007/s002540050111
      [19] Koutsospyros, A., Braida, W., Christodoulatos, C., et al., 2006. A Review of Tungsten: From Environmental Obscurity to Scrutiny. Journal of Hazardous Materials, 136(1): 1-19. https://doi.org/10.1016/j.jhazmat.2005.11.007
      [20] Krauskopf, K.B., 1974. Tungsten. In: Wedepohl, H.K., ed., Handbook of Geochemistry, Vol. 5. Springer, New York.
      [21] Marquet, P., Franç ois, B., Vignon, P., et al., 1996. A Soldier Who Had Seizures after Drinking Quarter of a Litre of Wine. The Lancet, 348(9034): 1070. https://doi.org/10.1016/s0140-6736(96)05459-1
      [22] Marquet, P., Franç ois, B., Lotfi, H., et al., 1997. Tungsten Determination in Biological Fluids, Hair and Nails by Plasma Emission Spectrometry in a Case of Severe Acute Intoxication in Man. Journal of Forensic Sciences, 42(3): 14162J. https://doi.org/10.1520/jfs14162j
      [23] McCleskey, R. B., Nordstrom, D. K., Susong, D. D., et al., 2010. Source and Fate of Inorganic Solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. Ⅱ. Trace Element Chemistry. Journal of Volcanology and Geothermal Research, 196(3/4): 139-155. https://doi.org/10.1016/j.jvolgeores.2010.05.004
      [24] Mohajerin, T. J., Helz, G. R., White, C. D., et al., 2014. Tungsten Speciation in Sulfidic Waters: Determination of Thiotungstate Formation Constants and Modeling their Distribution in Natural Waters. Geochimica et Cosmochimica Acta, 144(53): 157-172. https://doi.org/10.1016/j.gca.2014.08.037
      [25] Sheppard, P. R., Ridenour, G., Speakman, R. J., et al., 2006. Elevated Tungsten and Cobalt in Airborne Particulates in Fallon, Nevada: Possible Implications for the Childhood Leukemia Cluster. Applied Geochemistry, 21(1): 152-165. https://doi.org/10.1016/j.apgeochem.2005.09.012
      [26] Sheppard, P. R., Speakman, R. J., Ridenour, G., et al., 2007. Temporal Variability of Tungsten and Cobalt in Fallon, Nevada. Environmental Health Perspectives, 115(5): 715-719. https://doi.org/10.1289/ehp.9451
      [27] Smith, G.R., 1994. Materials Flow of Tungsten in the United States. US Department of the Interior, Bureau of Mines, Information Circular, C9388, New York.
      [28] Smith, R.M., Martell, A.E., 2004. NIST Standard Reference Database 46: NIST Critically Selected Stability Constants of Metal Complexes Database. US Department of Commerce Technology Administration, New York.
      [29] Sohrin, Y., Isshiki, K., Kuwamoto, T., et al., 1987. Tungsten in North Pacific Waters. Marine Chemistry, 22(1): 95-103. https://doi.org/10.1016/0304-4203(87)90051-x
      [30] Sohrin, Y., Matsui, M., Nakayama, E., 1999. Contrasting Behavior of Tungsten and Molybdenum in the Okinawa Trough, the East China Sea and the Yellow Sea. Geochimica et Cosmochimica Acta, 63(19/20): 3457-3466. https://doi.org/10.1016/s0016-7037(99)00273-2
      [31] Stefánsson, A., Arnórsson, S., 2005. The Geochemistry of As, Mo, Sb, and W in Natural Geothermal Waters, Iceland, Proceedings World Geothermal Congress, Antalaya, Turkey.
      [32] Steinberg, K. K., Relling, M. V., Gallagher, M. L., et al., 2007. Genetic Studies of a Cluster of Acute Lymphoblastic Leukemia Cases in Churchill County, Nevada. Environmental Health Perspectives, 115(1): 158-164. https://doi.org/10.1289/ehp.9025
      [33] Tan, H. B., Zhang, Y. F., Zhang, W. J., et al., 2014. Understanding the Circulation of Geothermal Waters in the Tibetan Plateau Using Oxygen and Hydrogen Stable Isotopes. Applied Geochemistry, 51: 23-32. https://doi.org/10.1016/j.apgeochem.2014.09.006
      [34] Tyrrell, J., Galloway, T. S., Abo-Zaid, G., et al., 2013. High Urinary Tungsten Concentration is Associated with Stroke in the National Health and Nutrition Examination Survey 1999-2010. PLoS ONE, 8(11): e77546. https://doi.org/10.1371/journal.pone.0077546
      [35] Van der Sloot, H. A., Hoede, D., Wijkstra, J., et al., 1985. Anionic Species of V, As, Se, Mo, Sb, Te and W in the Scheldt and Rhine Estuaries and the Southern Bight (North Sea). Estuarine, Coastal and Shelf Science, 21(5): 633-651. https://doi.org/10.1016/0272-7714(85)90063-0
      [36] Witten, M. L., Sheppard, P. R., Witten, B. L., 2012. Tungsten Toxicity. Chemico-Biological Interactions, 196(3): 87-88. https://doi.org/10.1016/j.cbi.2011.12.002
      [37] Xu, P., Zheng, Y., Yang, Z., et al., 2019. Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit. Earth Science, 44(6): 1974-1986 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906016.htm
      [38] Yan, G.Q., Wang, X.X., Huang, Y., et al., 2020. Constraint of Pb Isotope on Ore-Forming Source Origin of Nuri Polymetallic Deposit, Tibet. Earth Science, 45(1): 31-42 (in Chinese with English abstract).
      [39] Zhang, Z., Zhu, M., Liu, S., et al., 1982. Preliminary Study of Hydrogeochemistry of Thermal Waters in Tibet. Acta Scientiarum Naturalium Universitatis Pekinensis, 1(3): 88-96 (in Chinese with English abstract).
      [40] Zheng, M., Wang, Q., Duo, J., et al., 1995. New Types of Hydrothermal Mineralization: Cesium Sinter Deposit in Tibet. Geology Press, Beijing (in Chinese).
      [41] 陈叙安, 邓小华, 张静, 等, 2018. 新疆哈密小白石头钨钼矿床流体包裹体及矿床成因. 地球科学, 43(9): 3086-3099. doi: 10.3799/dqkx.2018.171
      [42] 徐培言, 郑远川, 杨竹森, 等, 2019. 西藏甲岗雪山钨钼矿床成矿流体及成矿物质来源. 地球科学, 44(6): 1974-1986. doi: 10.3799/dqkx.2019.066
      [43] 闫国强, 王欣欣, 黄勇, 等, 2020. Pb同位素对努日铜钼钨多金属矿床成矿物源的制约. 地球科学, 45(1): 31-42. doi: 10.3799/dqkx.2019.191
      [44] 张知非, 朱梅湘, 刘时彬, 等, 1982. 西藏水热地球化学的初步研究. 北京大学学报(自然科学版), 18(3): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198203009.htm
      [45] 郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型——西藏铯硅华矿床. 北京: 地质出版社, 1-114.
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  630
    • HTML全文浏览量:  275
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-10-07
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回