Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen
-
摘要: 花岗岩的研究对于反演造山带下地壳物质组成、造山作用深部动力学过程具有重要意义.对位于东昆仑造山带东段的巴隆石英闪长岩开展了锆石U-Pb年代学、Hf同位素地球化学、全岩主微量元素地球化学和Sr-Nd同位素地球化学研究,以探讨其岩石成因和构造背景.岩体LA-ICP-MS锆石U-Pb定年结果为229.5±1.4 Ma,为晚三叠世岩浆活动产物.全岩SiO2含量为59.86%~61.83%,显示高Na2O(3.38%~3.55%)和Al2O3(16.38%~17.03%)特征,Na2O/K2O为1.25~1.39,Mg#为50.1~52.3,属高钾钙碱性系列.稀土元素标准化图呈右倾,具有较弱的负铕异常(δEu=0.71~0.82),微量元素蛛网图显示富集大离子亲石元素(LILE),显著亏损高场强元素(HFSE).石英闪长岩的高Sr(474~609×10-6)、Sr/Y(32.31~40.86)、(La/Yb)N(13.34~15.32)和低Yb(1.34~1.75×10-6)、Y(13.40~15.60×10-6)含量与埃达克质岩石特征相似.全岩(87Sr/86Sr)i为0.708 186~0.708 428,εNd(t)为-5.75~-5.27,对应的二阶段模式年龄tDM2(Nd)为1 432~1 471 Ma;εHf(t)为-5.2~-3.2,tDM2(Hf)为1 305~1 420 Ma.岩相学、元素地球化学和Sr-Nd-Hf同位素结果揭示石英闪长岩起源于加厚下地壳的部分熔融,并混有幔源岩浆.构造判别图解显示巴隆石英闪长岩体形成于后碰撞伸展构造环境.东昆仑与巴颜喀拉地体的陆陆碰撞导致板片断离,软流圈物质上涌,使富集地幔熔融并底侵下地壳,下地壳部分熔融形成巴隆石英闪长岩.Abstract: The study of granite is of great significance to the inversion of the material composition of the lower crust and the deep dynamic process of orogeny. The quartz diorite in Balong region is located in the east of the East Kunlun orogen. In this paper, it presents LA-ICP-MS zircon U-Pb age for the Balong quartz diorite to determine precisely the time of the magmatism, and also presents geochemical, Sr-Nd-Hf isotope data for the Balong quartz diorite to constrain the petrogenesis and tectonic setting. The LA-ICP-MS U-Pb analyses of zircon yielded a weighted mean age of 229.5±1.4 Ma, indicating that it was emplaced in the Late Triassic. The quartz diorites have contents of SiO2 (59.86%-61.83%), Na2O (3.38%-3.55%), Al2O3 (16.38%-17.03%) with Na2O/K2O ratios ranging from 1.25 to 1.39 and Mg# values ranging from 50.1 to 51.2. They are characterized by high silicon and belonging to the high-potassium-calcium-alkaline rock. Meanwhile, they are enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements(HFSEs). In addition, the quartz diorite shows characteristics of high Sr/Y (32.31-40.86) and (La/Yb)N (13.34-15.32) and low contents of Yb (1.34×10-6-1.75×10-6) and Y (13.40×10-6-15.60×10-6). These features indicate that the quartz diorite is similar to adakite. All rock samples are enriched in large ion lithophile elements and light rare earth elements, but depleted in high field strength elements. The (87Sr/86Sr)i ratios range from 0.708 186 to 0.708 428, εNd(t) values range from -5.75 to -5.27 with corresponding two-stage Nd model ages ranging from 1 432 to 1 471 Ma. The εHf(t) values are from -5.2 to -3.2 and two-stage Hf model ages rang from 1 305 to 1 420 Ma. Integrated geological, geochemical and isotopic data suggest that the quartz diorite from Balong region is most likely generated via partial melting of thickened mafic lower continental crust and with subordinate mantle-derived basic magma. In combination with the tectonic evolution of the East Kunlun orogenic belt and the geochronological and geochemical characteristics of contemporary intrusive rocks, it is concluded that the quartz diorite from Balong region was formed in post-collisional extensional tectonic environment. Slab break-off, triggered by continuous collision between the Bayanhar block and EKOB, led to underplating of basic magma formed by partial melting of enriched mantle. The quartz diorite from Balong region was formed by partial melting of lower crust.
-
Key words:
- quartz diorite /
- Late Triassic /
- crust-mantle mixing /
- post-collision /
- East Kunlun /
- petrology /
- geochemistry
-
图 1 东昆仑构造单元划分图(a),东昆仑地区地质简图(b)及巴隆地区地质简图(c)
图a据Hu et al.(2016);图b修编自Zhang et al.(2014);图c修编自1∶5万巴隆乡幅地质矿产图;区域上晚三叠世岩浆岩研究概况:①220 Ma都兰花岗闪长岩(Shao et al., 2017);②223.6 Ma香日德斑状花岗闪长岩(Xiong et al., 2014);③223.2 Ma香日德二长花岗岩,220.6 Ma香日德花岗闪长岩(罗明非等,2014);④218.3 Ma科科鄂阿龙石英闪长岩(陈国超等,2013a),225 Ma和勒冈西里可特花岗闪长岩(陈国超等,2013b);⑤222 Ma小诺木洪花岗闪长岩(夏锐等,2014),215.6 Ma瑙木浑沟闪长玢岩(张明东等,2018);1.元古宙地层;2.古生代地层;3.中生代地层;4.新生代地层;5.早古生代侵入岩;6.晚古生代-中生代侵入岩;7.古元古界金水口群;8.长城系小庙组;9.中-新元古界万宝沟群;10.奥陶系祁漫塔格群;11.早志留世花岗闪长岩;12.早石炭世白岗岩;13.早石炭世似斑状二长花岗岩;14.早二叠世闪长岩;15.晚三叠世花岗闪长岩;16.晚三叠世石英闪长岩;17.断层;18.推测断层;19.采样位置
Fig. 1. Geotectonic framework (a), geological map of the East Kunlun orogen belt (b) and simplified geological map of the Balong region (c)
图 3 石英闪长岩样品D8012-1典型锆石CL图(a)及U-Pb定年结果(b, c)
图a中白色圆圈和红色圆圈分别代表U-Pb年代学、Hf同位素测试激光剥蚀点位,对应黑色年龄和红色数字分别代表锆石206Pb/238U表面年龄和εHf(t)值;圈中数字为分析点号,编号同表 1
Fig. 3. Cathodoluminescence images (a) and zircon U-Pb concordia diagrams (b, c) for zircons of quartz diorite sample (D8012-1)
图 4 巴隆石英闪长岩SiO2-K2O图解(a)和A/CNK-A/NK图解(b)
图a底图据Collins et al.(1982),图b底图据Maniar and Piccoli(1989).数据来源:和勒冈希里克特花岗闪长岩据陈国超等(2013b),香日德斑状花岗岩据Xiong et al.(2014)
Fig. 4. K2O-SiO2 (a) and A/CNK-A/NK (b) diagrams for the quartz diorite from Balong region
图 5 巴隆石英闪长岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石及原始地幔标准化数据引自Sun and McDonough(1989);东昆仑晚三叠世埃达克岩数据陈国超等(2013b),Xiong et al.(2014)
Fig. 5. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for the quartz diorite from Balong region
图 6 巴隆石英闪长岩YbN-(La/Yb)N图解(a)和Y-Sr/Y图解(b)
图a、b底图据Defant and Drummond(1990);数据来源同图 3,图中带短线的虚线为部分熔融曲线
Fig. 6. YbN-(La/Yb)N diagram (a) and Y-Sr/Y diagram (b) for the quartz diorite from Balong region
图 7 巴隆石英闪长岩(87Sr/86Sr)i-εNd(t)图解(a)和锆石Hf同位素图解(b)
图a阿尼玛卿洋中脊玄武岩数据来自郭安林等(2007),东昆仑三叠纪下地壳起源花岗岩数据来自刘成东等(2003)、张宏飞等(2006)、Xiong et al.(2012)、Ding et al.(2014)、Li et al.(2015)、Chen et al.(2017);图b底图据Xiong et al.(2016),Hf同位素下地壳部分熔融数据来自东昆仑五龙沟花岗岩、闪长岩(Ding et al. 2014)、香日德石英闪长岩、钾长花岗岩、斑状花岗岩(Xiong et al. 2014)、洪水河石英闪长岩、花岗闪长岩(Song et al., 2020),富集地幔数据来自东昆仑白日其利辉长岩(熊富浩等,2011)、阿克楚克塞辉长岩(杨锡铭等,2018)、希望沟辉长岩(张志青等,2019)
Fig. 7. (87Sr/86Sr)i-εNd(t) diagram (a) and Hf isotopic compositions of zircons (b) for the quartz diorite from Balong region
图 8 巴隆石英闪长岩Zr-Zr/Nb图解和MgO-FeOT图解
底图据Zorpi et al.(1991);数据来源同图 3
Fig. 8. Zr-Zr/Nb diagram (a) and MgO-FeOT diagram (b) for the quartz diorite from Balong region
图 9 巴隆石英闪长岩SiO2-Mg#图解(a)、Sr/Y估算地壳厚度与年龄关系图(b)、(Al2O3+FeOT+MgO+TiO2)-Al2O3/(FeOT+MgO+TiO2)图解(c)及(Na2O+K2O+MgO+FeOT+TiO2)-(Na2O+K2O)/(FeOT+MgO+TiO2)图解(d)
图a底图据Hou et al.(2004),图c、d底图据Patiño Douce(1999);图a、c、d数据来源同图 3,图b后碰撞背景数据据陈国超等(2013b)、夏锐等(2014)、Xiong et al.(2014)、罗明非等(2014)、Li et al.(2015),同碰撞背景数据据Zhang et al.(2012)、国显正等(2016),俯冲背景数据据Xiong et al.(2012, 2014)、Ding et al.(2015)、Song et al.(2020)
Fig. 9. SiO2-Mg# diagram (a), age-crustal thickness estimated from Sr/Y diagram (b), (Al2O3+FeOT+MgO+TiO2)-Al2O3/(FeOT+MgO+TiO2) diagram (c) and (Na2O+K2O+MgO+FeOT+TiO2)-(Na2O+K2O)/(FeOT+MgO+TiO2) diagram (d) for the quartz diorite from Balong region
图 10 巴隆石英闪长岩构造环境判别图解
Syn-COLG. 同碰撞花岗岩;WPG. 板内花岗岩;VAG.火山弧花岗岩;ORG.洋脊花岗岩;底图据Pearce et al.(1984);数据来源同图 3
Fig. 10. Tectonic discrimination diagrams for the quartz diorite from Balong region
表 1 巴隆石英闪长岩(D8012-1)锆石LA-ICP-MS U-Pb定年分析数据
Table 1. Zircon LA-ICP-MS U-Pb data of the Balong quartz diorite sample (D8012-1)
测试点号 232Th(10-6) 238U(10-6) Th/U U-Th-Pb同位素比值 年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ D8012-1-1 111 216 0.51 0.054 1 0.002 8 0.266 9 0.013 9 0.036 2 0.000 6 0.011 0 0.000 4 372 119 240 11 229 4 221 8 D8012-1-2 175 283 0.62 0.051 9 0.002 8 0.266 0 0.015 1 0.036 9 0.000 5 0.013 6 0.000 4 280 160 239 12 234 3 272 8 D8012-1-3 78 143 0.54 0.052 0 0.0044 0.2600 0.021 5 0.036 9 0.000 7 0.012 6 0.000 5 283 194 235 17 234 5 253 9 D8012-1-4 87 159 0.55 0.050 5 0.003 3 0.251 1 0.016 4 0.036 2 0.000 5 0.012 4 0.000 4 220 152 227 13 229 3 250 9 D8012-1-5 151 256 0.59 0.050 8 0.003 2 0.252 9 0.016 4 0.036 1 0.000 6 0.012 5 0.000 4 232 146 229 13 229 4 252 9 D8012-1-6 94 192 0.49 0.051 9 0.003 1 0.256 1 0.015 2 0.036 4 0.000 5 0.012 4 0.000 4 280 106 232 12 230 3 248 7 D8012-1-7 108 188 0.58 0.051 0 0.002 5 0.252 5 0.012 4 0.036 4 0.000 4 0.012 3 0.000 3 239 115 229 10 230 3 248 7 D8012-1-8 183 241 0.76 0.052 3 0.003 3 0.2605 0.016 6 0.036 0 0.000 5 0.011 6 0.000 3 298 146 235 13 228 3 234 7 D8012-1-9 134 281 0.48 0.051 1 0.002 5 0.252 1 0.012 1 0.035 9 0.000 5 0.012 9 0.000 4 256 111 228 10 227 3 258 7 D8012-1-10 87 179 0.49 0.050 3 0.002 7 0.249 6 0.013 8 0.036 2 0.000 5 0.011 8 0.000 4 209 126 226 11 229 3 237 7 D8012-1-11 96 154 0.62 0.052 2 0.003 2 0.255 7 0.015 0 0.036 2 0.000 5 0.011 5 0.000 4 295 139 231 12 229 3 232 9 D8012-1-12 215 515 0.42 0.050 1 0.001 9 0.2501 0.009 3 0.036 0 0.000 4 0.0107 0.000 2 198 87 227 8 228 2 216 5 D8012-1-13 84 151 0.56 0.051 0 0.005 0 0.255 0 0.025 1 0.036 3 0.000 7 0.011 7 0.000 6 239 211 231 20 230 4 234 12 D8012-1-14 172 183 0.94 0.050 7 0.003 6 0.248 3 0.016 9 0.036 0 0.000 5 0.0104 0.000 3 233 168 225 14 228 3 209 6 D8012-1-15 121 169 0.72 0.052 3 0.003 5 0.2605 0.017 0 0.036 4 0.000 5 0.011 1 0.000 4 298 128 235 14 230 3 222 7 D8012-1-16 123 177 0.69 0.049 1 0.003 0 0.246 8 0.015 1 0.036 4 0.000 5 0.0102 0.000 3 150 56 224 12 230 3 205 5 D8012-1-17 212 270 0.78 0.051 9 0.002 5 0.257 5 0.011 9 0.036 0 0.000 5 0.0108 0.000 3 280 111 233 10 228 3 218 5 D8012-1-18 195 254 0.77 0.051 0 0.002 3 0.252 8 0.011 4 0.035 9 0.000 4 0.009 6 0.000 3 239 106 229 9 228 3 194 5 D8012-1-19 88 165 0.54 0.051 3 0.003 0 0.252 3 0.0146 0.036 2 0.000 6 0.0106 0.000 3 254 131 228 12 229 3 214 6 D8012-1-20 100 190 0.52 0.051 8 0.002 9 0.259 9 0.013 9 0.036 7 0.000 5 0.011 0 0.000 3 276 128 235 11 232 3 222 6 表 2 巴隆石英闪长岩主量元素(%)、微量元素和稀土元素(10-6)分析结果
Table 2. Major elements (%), trace and REE elements (10-6) data of the quartz diorite from Balong region
样品 BLWG-1 BLWG-2 BLWG-3 BLWG-4 BLWG-5 BLWG-6 N 35.96°
E 97.38°N 35.96°
E 97.38°N 35.95°
E 97.35°N 35.95°
E 97.35°N 35.95°
E 97.38°N 35.95°
E 97.38°SiO2 61.83 61.71 59.86 61.44 61.51 61.36 TiO2 0.62 0.71 0.76 0.70 0.67 0.68 Al2O3 16.86 16.38 17.03 16.56 16.90 16.60 Fe2O3T 4.88 5.46 5.96 5.66 5.34 5.46 MnO 0.08 0.09 0.09 0.09 0.08 0.09 MgO 2.60 3.02 3.13 2.87 2.75 2.77 CaO 4.96 4.95 5.77 5.26 5.42 5.33 Na2O 3.55 3.39 3.48 3.38 3.39 3.40 K2O 2.85 2.68 2.50 2.71 2.64 2.72 P2O5 0.14 0.16 0.18 0.16 0.16 0.16 LOI 0.94 0.72 0.69 0.70 0.96 0.57 Total 99.31 99.27 99.45 99.53 99.82 99.14 Na2O/K2O 1.25 1.26 1.39 1.25 1.28 1.25 Na2O+K2O 6.40 6.07 5.98 6.09 6.03 6.12 σ 2.18 1.97 2.12 2.01 1.96 2.04 A/CNK 0.94 0.94 0.90 0.92 0.92 0.91 A/NK 1.89 1.93 2.02 1.95 2.00 1.94 Mg# 51.3 52.3 51.0 50.1 50.5 50.1 Li 23.50 22.80 23.20 22.20 20.70 20.00 Be 1.85 1.52 1.74 1.65 1.77 1.99 Sc 10.10 11.40 12.40 11.70 10.90 11.00 V 102.00 133.00 139.00 94.00 111.00 131.00 Cr 21.00 23.00 25.00 22.00 20.00 21.00 Co 90.30 103.00 104.00 68.50 80.00 91.80 Ni 57.40 62.50 63.70 44.50 50.30 55.90 Cu 15.70 9.30 19.20 9.20 30.10 10.20 Ga 19.15 19.30 20.50 19.40 19.40 19.80 Rb 116.00 111.50 100.50 104.50 97.90 111.00 Ba 644.00 582.00 608.00 649.00 586.00 552.00 Sr 572.00 474.00 509.00 609.00 518.00 504.00 Y 14.00 13.80 15.30 15.50 13.40 15.60 Zr 142.00 143.00 195.00 167.00 167.00 196.00 Nb 9.70 9.50 9.60 9.40 9.80 9.60 Sn 2.00 2.00 2.00 2.00 2.00 2.00 Cs 7.23 7.37 5.08 5.05 4.63 6.85 La 31.40 28.40 27.60 34.80 29.70 31.80 Ce 47.50 47.20 48.30 47.20 42.50 44.20 Pr 6.20 5.85 6.04 7.55 6.00 6.73 Nd 21.70 21.10 22.50 28.40 21.60 24.20 Sm 4.18 3.99 4.29 5.21 4.10 4.74 Eu 1.00 0.98 1.06 1.11 1.02 1.00 Gd 3.32 3.24 3.44 4.11 3.28 3.69 Tb 0.48 0.47 0.50 0.58 0.48 0.54 Dy 2.84 2.74 2.93 3.43 2.84 3.22 Ho 0.57 0.53 0.57 0.66 0.58 0.63 Er 1.57 1.48 1.63 1.90 1.50 1.70 Tm 0.24 0.22 0.24 0.35 0.23 0.26 Yb 1.47 1.34 1.48 1.75 1.44 1.71 Lu 0.23 0.22 0.22 0.32 0.22 0.25 Hf 4.00 3.80 4.90 4.70 4.30 5.20 Ta 1.52 1.60 1.44 1.22 1.43 1.64 Pb 17.30 15.60 17.50 27.40 16.90 17.50 Th 14.65 12.95 10.05 18.60 12.05 17.05 U 4.32 2.06 1.99 2.04 2.38 2.31 ΣREE 122.70 117.76 120.80 137.37 115.49 124.67 LREE 111.98 107.52 109.79 124.27 104.92 112.67 HREE 10.72 10.24 11.01 13.10 10.57 12.00 LREE/HREE 10.45 10.50 9.97 9.49 9.93 9.39 (La/Yb)N 15.32 15.20 13.38 14.26 14.79 13.34 δEu 0.79 0.81 0.82 0.71 0.82 0.70 Sr/Y 40.86 34.35 33.27 39.29 38.66 32.31 注:A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔比;A/NK=Al2O3/(Na2O+K2O)摩尔比;Mg#=100×molar MgO/(MgO+FeO);σ=(K2O+Na2O)2/(SiO2-43);δEu={(Eu/0.058)/[(Sm/0.153)+(Gd/0.205 5)]/2}. 表 3 巴隆石英闪长岩全岩Sm-Nd同位素分析结果
Table 3. Sm-Nd isotopic compositions of the quartz diorite from Balong region
样品号 87Rb/86Sr 87Sr/86Sr ±1σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd ±2σ εNd(t) tDM1(Ma) tDM2(Ma) BLWG-1 0.639 4 0.710 52 0.000 03 0.708 428 0.116 4 0.512 227 0.000 004 -5.66 1 447 1 464 BLWG-2 0.747 0 0.710 63 0.000 04 0.708 186 0.114 3 0.512 244 0.000 003 -5.27 1 390 1 432 BLWG-3 0.594 8 0.710 24 0.000 02 0.708 294 0.115 3 0.512 233 0.000 003 -5.51 1 421 1 452 BLWG-5 0.606 7 0.710 30 0.000 02 0.708 315 0.114 7 0.512 220 0.000 004 -5.75 1 433 1 471 注:计算采用(87Rb/86Sr)CHUR=0.082 7;(87Sr/86Sr)CHUR=0.704 5;εNd(t)值计算采用(147Sm/144Nd)CHUR=0.196 7;(143Nd/144Nd)CHUR=0.512 638;t代表成岩年龄(230 Ma),同位素亏损地幔模式年龄(tDM2)计算中采用(147Sm/144Nd)DM=0.213 6;(143Nd/144Nd)DM=0.513 1(Liew and Hofmann, 1988). 表 4 巴隆石英闪长岩(D8012-1)锆石Hf同位素分析结果
Table 4. Hf isotopic data of the Balong quartz diorite sample (D8012-1)
测试点号 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ 年龄(Ma) εHf(0) 1σ εHf(t) 1σ tDM1 (Ma) tDM2(Ma) fLu/Hf D8012-1-1 0.282 512 0.000 017 0.000 539 0.000 008 0.014 952 0.000 199 229 -9.2 0.8 -4.2 0.8 1 033 1 365 -0.98 D8012-1-2 0.282 506 0.000 018 0.000 829 0.000 014 0.022 396 0.000 363 234 -9.4 0.8 -4.4 0.8 1 050 1 377 -0.98 D8012-1-3 0.282 483 0.000 020 0.000 599 0.000 006 0.016 486 0.000 208 234 -10.2 0.9 -5.2 0.9 1 075 1 420 -0.98 D8012-1-4 0.282 541 0.000 016 0.000 527 0.000 008 0.014 571 0.000 186 229 -8.2 0.8 -3.2 0.8 993 1 308 -0.98 D8012-1-6 0.282 489 0.000 019 0.000 755 0.000 014 0.020 371 0.000 298 230 -10.0 0.8 -5.1 0.8 1 073 1 413 -0.98 D8012-1-8 0.282 504 0.000 021 0.000 536 0.000 006 0.015 361 0.000 141 228 -9.5 0.9 -4.5 0.9 1 044 1 381 -0.98 D8012-1-9 0.282 493 0.000 019 0.000 757 0.000 025 0.020 783 0.000 720 227 -9.9 0.8 -5.0 0.9 1 067 1 406 -0.98 D8012-1-10 0.282 508 0.000 018 0.000 439 0.000 008 0.012 201 0.000 201 229 -9.3 0.8 -4.4 0.8 1 036 1 372 -0.99 D8012-1-11 0.282 507 0.000 019 0.000 428 0.000 004 0.012 229 0.000 167 229 -9.4 0.9 -4.4 0.9 1 038 1 375 -0.99 D8012-1-12 0.282 523 0.000 018 0.000 451 0.000 007 0.011 986 0.000 163 228 -8.8 0.8 -3.9 0.8 1 016 1 343 -0.99 D8012-1-14 0.282 544 0.000 019 0.000 638 0.000 014 0.018 573 0.000 359 228 -8.1 0.8 -3.2 0.9 992 1 305 -0.98 D8012-1-15 0.282 518 0.000 017 0.000 728 0.000 010 0.021 449 0.000 197 230 -9.0 0.8 -4.0 0.8 1 031 1 355 -0.98 D8012-1-16 0.282 513 0.000 018 0.000 626 0.000 017 0.018 404 0.000 473 230 -9.2 0.8 -4.2 0.8 1 035 1 365 -0.98 D8012-1-17 0.282 541 0.000 021 0.000 676 0.000 010 0.019 806 0.000 222 228 -8.2 0.9 -3.2 0.9 997 1 310 -0.98 D8012-1-18 0.282 543 0.000 023 0.000 787 0.000 017 0.023 570 0.000 476 228 -8.1 1.0 -3.2 1.0 998 1 307 -0.98 D8012-1-20 0.282 527 0.000 018 0.000 413 0.000 001 0.011 755 0.000 094 232 -8.7 0.8 -3.6 0.8 1 010 1 335 -0.99 注:分析点保留U-Pb定点的分析点号: εHf(0)=10 000×[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1]; fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1; εHf(t)=10 000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tDM2=tDMHf-(tDMHf-t)×[(fCC-fS)/(fCC-fDM)]; (176Lu/177Hf)CHUR=0.033 2,(176Hf/177Hf)CHUR, 0=0.282 772( Blichert-Toft et al., 1997 ),(176Lu/177Hf)DM=0.038 4(Griffin et al., 2000 ),(176Hf/177Hf)DM=0.283 25(Nowell et al., 1998 );(176Lu/177Hf)CC=0.015, fCC=-0.548, fDM=0.16(Griffin et al., 2000 ),λ=1.867×10-11 a-1(Söderlund et al., 2004 ). -
[1] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278 [2] Castillo, P.R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257-268. https://doi.org/10.1007/s11434-006-0257-7 [3] Castillo, P.R., 2012. Adakite Petrogenesis. Lithos, 134-135: 304-316. https://doi.org/10.1016/j.lithos.2011.09.013 [4] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 [5] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013a. Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun. Acta Geologica Sinica, 87(2): 178-196(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201302006.htm [6] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013b. Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from the Southern Margin of the Eastern East Kunlun Orogenic Belt and Their Tectonic Significance. Acta Geologica Sinica, 87(10): 1525-1541(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201310004&dbcode=CJFD&year=2013&dflag=pdfdown [7] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2018. Age and Lithogenesis of Keri Syenogranite from Eastern Part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic Tectonic Evolution of East Kunlun. Acta Petrologica Sinica, 34(3): 567-585(in Chinese with English abstract). http://www.researchgate.net/publication/330637186_Age_and_lithogenesis_of_Keri_syenogranite_from_eastern_part_of_East_Kunlun_Orogenic_Belt_Constraint_on_the_Middle_Triassic_tectonic_evolution_of_East_Kunlun [8] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2019. Lithospheric Extension of the Post-Collision Stage of the Paleo-Tethys Oceanic System in the East Kunlun Orogenic Belt: Insights from Late Triassic Plutons. Earth Science Frontiers, 26(4): 191-208(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904026.htm [9] Chen, J.J., Wei, J.H., Fu, L.B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292-293: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006 [10] Chen, L., Sun, Y., Pei, X.Z., et al., 2001. Northernmost Paleo-Tethyan Oceanic Basin in Tibet: Geochronological Evidence from 40Ar/39Ar Age Dating of Dur'ngoi Ophiolite. Chinese Science Bulletin, 46(14): 1203-1205. https://doi.org/10.1007/bf02900603 doi: 10.1007/BF02900603 [11] Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1 doi: 10.1130/G19796.1 [12] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895 doi: 10.1007/BF00374895 [13] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0 [14] Deng, J.F., Wu, Z.X., Yang, J.J., et al., 1995. Crust-Mantle Petrological Structure and Deep Processes along the Golmud-Ejin Qi Geoscience Section. Chinese Journal of Geophysics, 38(Suppl. 2): 130-144(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX5S2.011.htm [15] Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015 [16] Ding, Q.F., Liu, F., Yan, W., 2015. Zircon U-Pb Geochronology and Hf Isotopic Constraints on the Petrogenesis of Early Triassic Granites in the Wulonggou Area of the Eastern Kunlun Orogen, Northwest China. International Geology Review, 57(13): 1735-1754. https://doi.org/10.1080/00206814.2015.1029541 [17] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 [18] Gao, S., Zhang, J.F., Xu, W.L., et al., 2009. Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54(14): 1962-1973(in Chinese). doi: 10.1360/csb2009-54-14-1962 [19] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011 [20] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9 [21] Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007. Sr-Nd-Pb Isotopic Geochemistry of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin, Qinghai Province and Geological Implications. Acta Petrologica Sinica, 23(4): 747-754(in Chinese with English abstract). [22] Guo, X.Z., Jia, Q.Z., Li, Y.Z., et al., 2016. Zircon U-Pb Geochronology and Geochemical Characteristics of the Reshui Monzogranite in the Eastern Kunlun and Their Tectonic Significances. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1318-1328(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201606031.htm [23] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x doi: 10.1016/S0012-821X(04)00007-X [24] Hu, C.B., Li, M., Zha, X.F., et al., 2018. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou. Earth Science, 43(12): 4334-4349(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812005.htm [25] Hu, F.Y., Ducea, M.N., Liu, S.W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7: 7058 https://doi.org/10.1038/s41598-017-07849-7 [26] Hu, Y., Niu, Y.L., Li, J.Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004 [27] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h [28] Huang, H., Niu, Y.L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010 [29] Kong, J.J., Niu, Y.L., Hu, Y., et al., 2020. Petrogenesis of the Triassic Granitoids from the East Kunlun Orogenic Belt, NW China: Implications for Continental Crust Growth from Syn-Collisional to Post-Collisional Setting. Lithos, 364-365: 105513. https://doi.org/10.1016/j.lithos.2020.105513 [30] Li, B.L., Zhi, Y.B., Zhang, L., et al., 2015. U-Pb Dating, Geochemistry, and Sr-Nd Isotopic Composition of a Granodiorite Porphyry from the Jiadanggen Cu-(Mo) Deposit in the Eastern Kunlun Metallogenic Belt, Qinghai Province, China. Ore Geology Reviews, 67: 1-10. https://doi.org/10.1016/j.oregeorev.2014.11.008 [31] Li, R.B., 2012. Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [32] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2018. Paleo-Tethys Ocean Subduction in Eastern Section of East Kunlun Orogen: Evidence from the Geochronology and Geochemistry of the Wutuo Pluton. Acta Petrologica Sinica, 34(11): 3399-3421(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201270234073.html [33] Li, W.Y., Zhang, Z.W., Gao, Y.B., et al., 2011. Important Metallogenic Events and Tectonic Response of Qinling, Qilian and Kunlun Orogenic Belts. Geology in China, 38(5): 1135-1149(in Chinese with English abstract). http://www.cqvip.com/QK/90050X/201105/39798712.html [34] Li, Y.J., Wei, J.H., Santosh, M., et al., 2020. Anisian Granodiorites and Mafic Microgranular Enclaves in the Eastern Kunlun Orogen, NW China: Insights into Closure of the Eastern Paleo-Tethys. Geological Journal, 55(9): 6487-6507. https://doi.org/10.1002/gj.3814 [35] Liew, T.C., Hofmann, A.W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. https://doi.org/10.1007/bf00402106 doi: 10.1007/BF00402106 [36] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2014. 40Ar-39Ar Age and Geochemistry of Subduction-Related Mafic Dikes in Northern Tibet, China: Petrogenesis and Tectonic Implications. International Geology Review, 56(1): 57-73. https://doi.org/10.1080/00206814.2013.818804 [37] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2003. Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt. Acta Geosicientia Sinica, 24(6): 584-588(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200306020.htm [38] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [39] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [40] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [41] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201102005.htm [42] Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronology Center Special Publication, Berkeley. http://www.researchgate.net/publication/301951506_User's_Manual_for_IsoplotEx_rev_300_A_Geochronological_Toolkit_for_Microsoft_Excel [43] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2014. Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun. Acta Petrologica Sinica, 30(11): 3229-3241(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201411010.htm [44] Luo, Z.H., Huang, Z.M., Ke, S., 2007. An Overview of Granitoid. Geological Review, 53(Suppl. 1): 180-226 (in Chinese with English abstract). [45] Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034 [46] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [47] Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0 doi: 10.1016/S0024-4937(98)00076-0 [48] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M [49] Moyen, J.F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001 [50] Nowell, G.M., Kempton, P.D., Noble, S.R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3-4): 211-233. https://doi.org/10.1016/s0009-2541(98)00036-9 doi: 10.1016/S0009-2541(98)00036-9 [51] Patiño Douce, A.E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05 doi: 10.1144/GSL.SP.1999.168.01.05 [52] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [53] Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410: 197-200. https://doi.org/10.1038/35065583 [54] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 doi: 10.1016/S0009-2541(99)00106-0 [55] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 [56] Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. https://doi.org/10.1029/2002tc001466 doi: 10.1029/2002TC001466 [57] Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273 doi: 10.1007/BF00307273 [58] Shao, F.L., Niu, Y.L., Liu, Y., et al., 2017. Petrogenesis of Triassic Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau and Their Tectonic Implications. Lithos, 282-283: 33-44. https://doi.org/10.1016/j.lithos.2017.03.002 [59] Smithies, R.H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115-125. https://doi.org/10.1016/s0012-821x(00)00236-3 doi: 10.1016/S0012-821X(00)00236-3 [60] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 doi: 10.1016/S0012-821X(04)00012-3 [61] Song, K., Ding, Q.F., Zhang, Q., et al., 2020. Zircon U-Pb Geochronology, Hf Isotopes, and Whole-Rock Geochemistry of Hongshuihe Early to Middle Triassic Quartz Diorites and Granites in the Eastern Kunlun Orogen, NW China: Implication for Petrogenesis and Geodynamics. Geological Journal, 55(2): 1507-1528. https://doi.org/10.1002/gj.3517 [62] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [63] Vernon, R.H., 1984. Microgranitoid Enclaves in Granites: Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309: 438-439. https://doi.org/10.1038/309438a0 [64] Wang, Y.L., Li, Y.J., Wei, J.H., et al., 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen: Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4): 1219-1236(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804018.htm [65] Wang, Y.W., Wang, J.B., Long, L.L., et al., 2012. Type, Indicator, Mechanism, Model and Relationship with Mineralization of Magma Mixing: A Case Study in North Xinjiang. Acta Petrologica Sinica, 28(8): 2317-2330(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201208003.htm [66] Wu, F., Zhang, X.J., Zhang, Y.Q., et al., 2010. Zircon U-Pb Ages for Rhyolitic Tuffs of the Naocangjiangou Formation in the East Kulun Orogenic Belt and Their Implication. Journal of Geomechanics, 16(1): 44-50(in Chinese with English abstract). http://www.researchgate.net/publication/285329979_Zircon_U-Pb_ages_for_rhyolitic_tuffs_of_the_Naocangjiangou_Formation_in_the_east_Kulun_orogenic_belt_and_their_implication [67] Xia, R., Qing, M., Wang, C.M., et al., 2014. The Genesis of the Ore-Bearing Porphyry of the Tuoketuo Porphyry Cu-Au(Mo) Deposit in the East Kunlun, Qinghai Province: Constraints from Zircon U-Pb Geochronological and Geochemistry. Journal of Jilin University (Earth Science Edition), 44(5): 1502-1524(in Chinese with English abstract). http://www.researchgate.net/publication/286654334_The_genesis_of_the_ore-bearing_porphyry_of_the_Tuoketuo_porphyry_Cu-AuMo_deposit_in_the_East_Kunlun_Qinghai_Province_Constraints_from_zircon_U-Pb_geochronological_and_geochemistry [68] Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [69] Xiong, F.H., 2014. Spatial-Temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt (Eastern Segment) (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [70] Xiong, F.H., Ma, C.Q., Jiang, H.A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474-490. https://doi.org/10.1007/s12583-016-0674-6 [71] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98201111016.aspx [72] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. https://doi.org/10.1007/s00710-011-0187-1 [73] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038 [74] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 [75] Xu, J.F., Wu, J.B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 6-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201401002.htm [76] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860(in Chinese with English abstract). http://www.cqvip.com/QK/94579X/20136/46670152.html [77] Yan, Z., Bian, Q.T., Korchagin, O., et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains: Constrains from Detrital Framework, Heavy Mineral Analysis and Geochemistry. Acta Petrologica Sinica, 24(5): 1068-1078(in Chinese with English abstract). http://www.oalib.com/paper/1471328 [78] Yang, J.S., Wang, X.B., Shi, R.D., et al., 2004. The Dur'ngoi Ophiolite in East Kunlun, Northern Qinghai-Tibet Plateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI200403000.htm [79] Yang, J.S., Xu, Z.Q., Ma, C.Q., et al., 2010. Compound Orogeny and Scientific Problems Concerning the Central Orogenic Belt of China. Geology in China, 37(1): 1-11(in Chinese with English abstract). http://www.researchgate.net/publication/281228388_Compound_orogeny_and_scientific_problems_concerning_the_Central_Orogenic_Belt_of_China/download [80] Yang, X.M., Sun, F.Y., Zhao, T.F., et al., 2018. Zircon U-Pb Dating, Geochemistry and Tectonic Implications of Akechukesai Gabbro in East Kunlun Orogenic Belt. Geological Bulletin of China, 37(10): 1842-1852(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201810010.htm [81] Zhang, H.F., Chen, Y.L., Xu, W.C., et al., 2006. Granitoids around Gonghe Basin in Qinghai Province: Petrogenesis and Tectonic Implications. Acta Petrologica Sinica, 22(12): 2910-2922(in Chinese with English abstract). http://www.oalib.com/paper/1472584 [82] Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. https://doi.org/10.1017/s0016756811001142 doi: 10.1017/S0016756811001142 [83] Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210-211: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003 [84] Zhang, M.D., Ma, C.Q., Wang, L.X., et al., 2018. Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen. Earth Science, 43(4): 1183-1206(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804016.htm [85] Zhang, Q., Jin, W.J., Xiong, X.L., et al., 2009. Characteristics and Implication of O-Type Adakite in China during Different Geological Periods. Geotectonica et Metallogenia, 33(3): 432-447(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200903018&dbcode=CJFD&year=2009&dflag=pdfdown [86] Zhang, Q., Wang, Y., Liu, H.T., et al., 2003. On the Space-Time Distribution and Geodynamic Environments of Adakites in China Annex: Controversies over Differing Opinions for Adakites in China. Earth Science Frontiers, 10(4): 385-400(in Chinese with English abstract). http://www.researchgate.net/publication/312984938_On_the_space-time_distribution_and_geodynamic_environments_of_adakites_in_China [87] Zhang, Z.B., Tang, J.X., Tang, P., et al., 2019. The Origin of the Mafic Microgranular Enclaves from Jiama Porphyry Cu Polymetallic Deposit, Tibet: Implications for Magma Mixing/Mingling and Mineralization. Acta Petrologica Sinica, 35(3): 934-952(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.19 [88] Zhang, Z.Q., Chen, J., Yu, F.C., et al., 2019. Sr-Nd-Lu-Hf Isotopic Characteristics and Geological Significance of the Middle Permian Gabbro in Xiwanggou Area, East Kunlun. Mineralogy and Petrology, 39(3): 26-31(in Chinese with English abstract). [89] Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201802002.htm [90] Zhao, X., Wei, J.H., Fu, L.B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360-361: 105446. https://doi.org/10.1016/j.lithos.2020.105446 [91] Zorpi, M.J., Coulon, C., Orsini, J.B., 1991. Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids: A Case Study in Northern Sardinia, Italy. Chemical Geology, 92(1-3): 45-86. https://doi.org/10.1016/0009-2541(91)90049-w doi: 10.1016/0009-2541(91)90049-W [92] 陈国超, 裴先治, 李瑞保, 等, 2013a. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302006.htm [93] 陈国超, 裴先治, 李瑞保, 等, 2013b. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义. 地质学报, 87(10): 1525-1541. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310004.htm [94] 陈国超, 裴先治, 李瑞保, 等, 2018. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约. 岩石学报, 34(3): 567-585. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803003.htm [95] 陈国超, 裴先治, 李瑞保, 等, 2019. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据. 地学前缘, 26(4): 191-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904026.htm [96] 邓晋福, 吴宗絮, 杨建军, 等, 1995. 格尔木-额济纳旗地学断面走廊域地壳-上地幔岩石学结构与深部过程. 地球物理学报, 38(增刊2): 130-144 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S2.011.htm [97] 高山, 章军锋, 许文良, 等, 2009. 拆沉作用与华北克拉通破坏. 科学通报, 54(14): 1962-1973. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914004.htm [98] 郭安林, 张国伟, 孙延贵, 等, 2007. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704007.htm [99] 国显正, 贾群子, 栗亚芝, 等, 2016. 东昆仑热水二长花岗岩地球化学特征、年代学及其构造意义. 矿物岩石地球化学通报, 35(6): 1318-1328. doi: 10.3969/j.issn.1007-2802.2016.06.022 [100] 胡朝斌, 李猛, 查显锋, 等, 2018. 东昆仑祁漫塔格晚古生代末期幔源岩浆活动成因及地质意义: 以鹰爪沟岩体为例. 地球科学, 43(12): 4334-4349. doi: 10.3799/dqkx.2018.120 [101] 李瑞保, 2012. 东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文). 西安: 长安大学. [102] 李瑞保, 裴先治, 李佐臣, 等, 2018. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石U-Pb年代学和地球化学证据. 岩石学报, 34(11): 3399-3421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811020.htm [103] 李文渊, 张照伟, 高永宝, 等, 2011. 秦祁昆造山带重要成矿事件与构造响应. 中国地质, 38(5): 1135-1149. doi: 10.3969/j.issn.1000-3657.2011.05.002 [104] 刘成东, 莫宣学, 罗照华, 等, 2003. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征. 地球学报, 24(6): 584-588. doi: 10.3321/j.issn:1006-3021.2003.06.020 [105] 刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm [106] 罗明非, 莫宣学, 喻学惠, 等, 2014. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义. 岩石学报, 30(11): 3229-3241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411010.htm [107] 罗照华, 黄忠敏, 柯珊, 2007. 花岗质岩石的基本问题. 地质论评, 53(增刊1): 180-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2007S1025.htm [108] 莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [109] 王艺龙, 李艳军, 魏俊浩, 等, 2018. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约. 地球科学, 43(4): 1219-1236. doi: 10.3799/dqkx.2018.717 [110] 王玉往, 王京彬, 龙灵利, 等, 2012. 岩浆混合作用的类型、标志、机制、模式及其与成矿的关系——以新疆北部为例. 岩石学报, 28(8): 2317-2330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208003.htm [111] 吴芳, 张绪教, 张永清, 等, 2010. 东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义. 地质力学学报, 16(1): 44-50. doi: 10.3969/j.issn.1006-6616.2010.01.006 [112] 夏锐, 卿敏, 王长明, 等, 2014. 青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因: 锆石U-Pb年代学和地球化学约束. 吉林大学学报(地球科学版), 44(5): 1502-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405011.htm [113] 熊富浩, 2014. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文). 武汉: 中国地质大学. [114] 熊富浩, 马昌前, 张金阳, 等, 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm [115] 许继峰, 邬建斌, 王强, 等, 2014. 埃达克岩与埃达克质岩在中国的研究进展. 矿物岩石地球化学通报, 33(1): 6-13. doi: 10.3969/j.issn.1007-2802.2014.01.015 [116] 许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm [117] 闫臻, 边千韬, Korchagin, O., 等, 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据. 岩石学报, 24(5): 1068-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805014.htm [118] 杨经绥, 王希斌, 史仁灯, 等, 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239. doi: 10.3969/j.issn.1000-3657.2004.03.001 [119] 杨经绥, 许志琴, 马昌前, 等, 2010. 复合造山作用和中国中央造山带的科学问题. 中国地质, 37(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001004.htm [120] 杨锡铭, 孙丰月, 赵拓飞, 等, 2018. 东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义. 地质通报, 37(10): 1842-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201810010.htm [121] 张宏飞, 陈岳龙, 徐旺春, 等, 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义. 岩石学报, 22(12): 2910-2922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612008.htm [122] 张明东, 马昌前, 王连训, 等, 2018. 后碰撞阶段的"俯冲型"岩浆岩: 来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据. 地球科学, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715 [123] 张旗, 金惟俊, 熊小林, 等, 2009. 中国不同时代O型埃达克岩的特征及其意义. 大地构造与成矿学, 33(3): 432-447. doi: 10.3969/j.issn.1001-1552.2009.03.015 [124] 张旗, 王焰, 刘红涛, 等, 2003. 中国埃达克岩的时空分布及其形成背景附: 《国内关于埃达克岩的争论》. 地学前缘, 10(4): 385-400. doi: 10.3321/j.issn:1005-2321.2003.04.007 [125] 张泽斌, 唐菊兴, 唐攀, 等, 2019. 西藏甲玛铜多金属矿床暗色包体岩石成因: 对岩浆混合和成矿的启示. 岩石学报, 35(3): 934-952. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903019.htm [126] 张志青, 陈静, 余福承, 等, 2019. 东昆仑希望沟中二叠世辉长岩Sr-Nd-Lu-Hf同位素特征及其地质意义. 矿物岩石, 39(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201903004.htm [127] 赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020