• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于砾石-基质-裂缝三元素的砂砾岩岩相划分

    鲍怡晨 刘强虎 杜晓峰 王维 石文龙

    鲍怡晨, 刘强虎, 杜晓峰, 王维, 石文龙, 2021. 基于砾石-基质-裂缝三元素的砂砾岩岩相划分. 地球科学, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284
    引用本文: 鲍怡晨, 刘强虎, 杜晓峰, 王维, 石文龙, 2021. 基于砾石-基质-裂缝三元素的砂砾岩岩相划分. 地球科学, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284
    Bao Yichen, Liu Qianghu, Du Xiaofeng, Wang Wei, Shi Wenlong, 2021. Division of Glutenite Lithofacies Based on the Trielement of Gravel-Matrix-Fracture. Earth Science, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284
    Citation: Bao Yichen, Liu Qianghu, Du Xiaofeng, Wang Wei, Shi Wenlong, 2021. Division of Glutenite Lithofacies Based on the Trielement of Gravel-Matrix-Fracture. Earth Science, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284

    基于砾石-基质-裂缝三元素的砂砾岩岩相划分

    doi: 10.3799/dqkx.2020.284
    基金项目: 

    国家自然科学基金项目 41902112

    国家科技重大专项 2016ZX05024-003-007

    中海油科技专项 CCL2019TJT0NST1714

    详细信息
      作者简介:

      鲍怡晨(1997-), 女, 硕士研究生, 研究方向为储层地质学. ORCID: 0000-0002-5351-2750. E-mail: byc@cug.edu.cn

      通讯作者:

      刘强虎, ORCID: 0000-0001-8505-1779. E-mail: liuqh@cug.edu.cn

    • 中图分类号: P618.13

    Division of Glutenite Lithofacies Based on the Trielement of Gravel-Matrix-Fracture

    • 摘要: 近年来砂砾岩油气藏勘探不断获得重大发现,使得砂砾岩体成为油气勘探的新领域.当前,砂砾岩体侧重于沉积响应分析,针对其特征的岩相组合划分及差异性探讨较薄弱,缺乏统一划分标准,尤其是在渤海湾盆地渤南低凸起南侧断坡区古近系砂砾岩存在多砾石组分、复合成岩作用影响,极大制约优质砂砾岩储层的分布预测、评价.因为研究区内多物源供给,砾石组分、支撑类型和基质类型多样,基于区内典型钻井岩心、镜下综合观察及扫描电镜分析,提出“以沉积岩、变质岩及岩浆岩三种母岩类型为一级划分标准,支撑类型和基质类型作为二级划分标准”,将砂砾岩岩相划分为三大类、七小类,依次为:(1)以火山岩砾石为主的基质支撑-砂级基质-构造缝-砾岩相、颗粒支撑-砂级基质-砾缘缝-砾岩相、基质支撑-泥级基质-砾岩相,(2)以碳酸盐岩砾石为主的基质支撑-砂级基质-砾岩相、基质支撑-砂级基质-角砾岩相,(3)以变质岩砾石为主的胶结物支撑-砂级基质-含砾砂岩相及颗粒支撑-砂级基质-压实砾内缝-含砾砂岩相.不同砾石类型储层中,基质类型和裂缝发育程度具有明显的差异性,泥质含量高的储层渗透性很差,裂缝发育会改善其孔隙的连通性,并诱导形成砾内溶蚀和基质溶蚀,从而改善储集物性.

       

    • 图  1  黄河口凹陷构造单元区划分及主干断裂分布

      一级断裂:F1为郯庐断裂东支,F2为郯庐断裂西支1号断裂,F3为郯庐断裂西支2号断裂,F4黄河口1号断裂,F5为渤南1号断裂

      Fig.  1.  Division of structural units and distribution of main faults in the Huanghekou sag

      图  2  黄河口凹陷BZ26-2-2D—BZ26-2-3D—BZ27-2-2—BZ28-1-5—BZ33-1-1—BZ34-2-1井连井格架剖面

      Fig.  2.  Well cross-section profile of BZ26-2-2D—BZ26-2-3D—BZ27-2-2—BZ28-1-5—BZ33-1-1—BZ34-2-1 in the Huanghekou sag

      图  3  黄河口凹陷砂砾岩砾石类型

      a.BZ26-2-2D孔店组安山岩砾石;b.BZ28-1-5孔店组安山岩砾石;c.BZ28-2-1孔店组凝灰岩;d.BZ34-2-1沙三段变质花岗岩砾石;e.BZ26-2-3D沙一段硅质岩砾石;f.BZ26-2-3D孔店组灰岩砾石与花岗岩砾石共生

      Fig.  3.  Gravel type of glutenite in the Huanghekou sag

      图  4  黄河口凹陷基质类型

      a.BZ26-2-2D,Ek,火山岩砾石砂级基质;b.BZ28-1-5,Ek,火山岩砾石砂级基质;c.BZ34-2-1,Ek,火山岩砾石泥级基质;d.BZ26-2-2D,Ek,裂缝诱导下砾石斑晶、杏仁体溶蚀;e.BZ28-1-5,Ek,砾石斑晶溶蚀形成溶蚀孔;f.BZ34-2-1,Ek,高泥质含量,裂缝欠发育,以残留孔隙为主;g.BZ34-2-1,Es3,花岗片麻岩内钾长石表面溶蚀黏土化;h.BZ26-2-3D,Es1,云质泥晶套发育增强抗压实作用;i.BZ26-2-23D,Ek1,不等粒砂岩中长石溶蚀为高岭石,产生粘土矿物

      Fig.  4.  The matrix content in the Huanghekou sag

      图  5  黄河口凹陷岩心尺度裂缝发育特征

      a.BZ26-2-2D,Ek,高角度裂缝,砾内缝溶蚀扩大,部分基质裂缝被黄铁矿充填;b.BZ26-2-2D,Ek,开启裂缝,砾内缝和穿砾缝发育;c.BZ28-1-5,Ek,砾缘缝发育;d.BZ26-2-2D,Ek,局部裂缝发育,垂向连续性差;e.BZ26-2-2D,Ek,裂缝孔洞被方解石充填

      Fig.  5.  Characteristics of core-scale fracture development in the Huanghekou sag

      图  6  黄河口凹陷镜下微观尺度裂缝发育特征

      a.BZ26-2-2D,Ek,裂缝诱导砾内溶蚀孔;b.BZ28-1-5,Ek,砾缘缝;c.BZ34-2-1,Es3砾内缝和砾缘缝

      Fig.  6.  Characteristics of micro-scale fracture development under microscope in the Huanghekou sag

      图  7  黄河口凹陷古近系砂砾岩岩相类型

      Fig.  7.  Lithofacies of Paleogene sandstone and conglomerate in the Huanghekou sag

      图  8  黄河口凹陷中生界火山岩砾石岩相类型

      a.BZ26-2-2D,Ek,基质支撑-砂级基质-构造缝-砾岩相;b.BZ26-2-2D,Ek,砾石呈高角度定向排列;c.BZ26-2-2D,Ek,中酸性火山岩砾石;d.BZ28-1-5,Ek,颗粒支撑-砂级基质-砾缘缝-砾岩相;e.BZ28-1-5,Ek,砾石支撑方式为颗粒支撑,颗粒间点接触;f.BZ28-1-5,Ek,砾石为低角度水平排列,可见垂向序列;g.BZ34-2-1,Ek,基质支撑-泥基基质-砾岩相;h.BZ34-2-1,Ek,砾石漂浮于基质中;i.BZ34-2-1,Ek,特殊岩性段

      Fig.  8.  Mesozoic volcanic boulder lithofacies type in the Huanghekou sag

      图  9  黄河口凹陷BZ26-2-3D井3 250.1 m,场发射扫描电镜

      Fig.  9.  BZ26-2-3D, 3 250.1 m, field emission scanning electron microscope (sem) in the Huanghekou sag

      图  10  黄河口凹陷古生界碳酸盐岩砾石岩相类型

      a,b.BZ26-2-3D,Ek,基质支撑-砂级基质-砾岩相;c,d.BZ26-2-2D,Ek,基质支撑-砂级基质-角砾岩相

      Fig.  10.  Paleozoic carbonate-gravel lithofacies type in the Huanghekou sag

      图  11  黄河口凹陷前寒武变质岩砾石相类型

      a,b.BZ27-2-2,Es12,胶结物支撑-砂级基质-含砾砂岩相;c,d.BZ34-2-1,Es3,颗粒支撑-砂级基质-含砾砂岩相

      Fig.  11.  Gravel facies types of Precambrian metamorphic rocks in the Huanghekou sag

      图  12  黄河口凹陷北缘地区古近系母岩岩性平面分布

      a.孔店组时期渤南低凸起母岩岩性及分布图; b.沙三时期渤南低凸起母岩岩性及分布图; c.沙一、二时期渤南低凸起母岩岩性及分布图

      Fig.  12.  Plane distribution of Paleogene lithology of parent rock in the northern margin of Huanghekou sag

    • [1] Dai, L.M., Niu, C.M., Pang, X.J., et al., 2020. Reservoir Characteristics and Forming Mechanisms of Lacustrine Mixed Sedimentary Rock of First and Second Members of Shahejie Formation in BZ27-A Structure, Huanghekou Sag. Earth Science, 45(10): 3797-3807(in Chinese with English abstract).
      [2] Deng, Y., 2012. Cenozoic Tectonic Evolution, Later Transformation and Oil and Gas Occurrence Effects in Laizhou Bay Area, Bohai Bay Basin (Dissertation). Northwest University, Xi'an(in Chinese with English abstract).
      [3] Feng, Y.L., Wu, H.Y., Liu, W.L., 2011. Sequence Stratigraphy and Depositional Characteristics of the 4th Member of Yingcheng Formation of Lower Cretaceous, Rifted Depression of Xujiaweizi, Songliao Basin. Acta Sedimentologica Sinica, 29(5): 889-905(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201105010.htm
      [4] Fu, Q., Liu, B.B., Xu, C.H., et al., 2013. The Couple Relationship of Quantitative Analysis of the Structures and Oil & Gas Accumulation in Huanghekou Depression, Bohai Bay Basin. Acta Petrolei Sinica, 34(Suppl. 2): 112-119(in Chinese with English abstract). http://www.researchgate.net/publication/287777203_The_couple_relationship_of_quantitative_analysis_of_the_structures_and_oil_gas_accumulation_in_Huanghekou_depression_Bohai_Bay_Basin
      [5] Ghosh, K., Mitra, S., 2009. Structural Controls of Fracture Orientations, Intensity, and Connectivity, Teton Anticline, Sawtooth Range, Montana. AAPG Bulletin, 93(8): 995-1014. https://doi.org/10.1306/04020908115
      [6] Huo, S.J., Yang, X.H., Wang, Q.B., et al., 2015. Controlling Factors on Diamictite Reservoir in Shahejie Formation, H-1 Structure, Huanghekou Depression. Geoscience, 29(6): 1348-1359(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201506009.htm
      [7] Jia, B., Wu, Z.P., Zhang, X.Q., et al., 2017. Cenozoic Faulting System and Tectonic Evolution of the Huanghekou Sag. Special Oil & Gas Reservoirs, 24(1): 76-80(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ201701015.htm
      [8] Jiang, Y.Q., Zhang, C., Zhang, B.J., et al., 2013. Characteristics and Identification of Lithofacies in Complex Siliceous Clastic Reservoirs: A Case Study from Northwestern Sichuan Basin. Natural Gas Industry, 33(4): 31-36(in Chinese with English abstract). http://www.researchgate.net/publication/286964880_Characteristics_and_identification_of_lithofacies_in_complex_siliceous_clastic_reservoirs_A_case_study_from_Northwestern_Sichuan_Basin
      [9] Jin, J., Liu, D.W., Ji, Y.L., et al., 2019. Research on Lithofacies Types, Cause Mechanisms and Distribution of a Gravel Braided-River Alluvial Fan: A Case Study of the Modern Poplar River Alluvial Fan, Northwestern Junggar Basin. Acta Sedimentologica Sinica, 37(2): 254-267(in Chinese with English abstract).
      [10] Li, H., Wang, Q.B., Pang, X.J., et al., 2019. Fracture Generation and Reservoir Evaluation of Tight Glutenite Reservoir: A Case Study of Second Member of Shahejie Formation in Huanghekou Depression. Geological Science and Technology Information, 38(1): 176-185 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201901019.htm
      [11] Li, Q.R., 2014. Cenozoic Tectonic Evolution of Bohai Bay Basin and Its Implications on the Pacific Plate Subductionb(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [12] Liu, H., Tian, L.X., Zhou, X.H., et al., 2017. Slope Break Systems of Rift Lacustrine Basin and Erosion-Depositional Response: A Case Study of the Paleogene in Huanghekou Sag, Bohai Sea. China Offshore Oil and Gas, 29(4): 28-38(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201704004.htm
      [13] Liu, Q.H., Zhu, H.T., Du, X.F., et al., 2020. Development and Hotspots of Sedimentary Response of Glutenite in the Offshore Bohai Bay Basin. Earth Science, 45(5): 1676-1705(in Chinese with English abstract).
      [14] Liu, W.B., Zhang, S.Q., Xu, X.Y., et al., 2018. Development Model and Prediction of Fault-Related Fractures: A Case Study of the Third Member of Shahejie Formation in Dongpu Depression. Journal of Earth Sciences and Environment, 40(3): 308-321(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201803010.htm
      [15] Lü, W.Y., Miao, F.B., Zhang, B.J., et al., 2020. Fracture Characteristics and Their Influence on Natural Gas Production: A Case Study of the Tight Conglomerate Reservoir in the Upper Triassic Xujiahe Formation in Jian'ge Area, Sichuan Basin. Oil & Gas Geology, 41(3): 484-491, 557(in Chinese with English abstract).
      [16] Pang, X.J., Wang, Q.B., Feng, C., et al., 2020a. Differences and Genesis of High-Quality Reservoirs in Es1+2 at the Northern Margin of the Huanghekou Sag, Bohai Sea. Acta Sedimentologica Sinica(in press)(in Chinese with English abstract).
      [17] Pang, X.J., Wang, Q.B., Xie, T., et al., 2020b. Paleogene Provenance and Its Control on High-Quality Reservoir in the Northern Margin of Huanghekou Sag. Lithologic Reservoirs, 32(2): 1-13(in Chinese with English abstract).
      [18] Pang, X.J., Niu, C.M., Du, X.F., et al., 2020c. Differences and Genesis of High-Quality Reservoirs of Mixed Siliciclastic Carbonate Rocks in the Es12 around Bozhong Depression, Bohai Sea. Earth Science, 45(10): 3853-3869(in Chinese with English abstract).
      [19] Tan, J.K., Zhang, H.H., Xiong, Z., 2013. Research Status of Glutenite Reservoir. Science and Technology in Western China, 12(1): 10-12(in Chinese with English abstract).
      [20] Wang, X.J., Li, W.F., Dong, H., et al., 2017. Genetic Classification of Sandy Conglomerate Facies and Sedimentary Characteristics of Fan Delta: A Case Study from Upper Wuerhe Formation in District Wuba in Northwestern Margin of Junggar Basin. Xinjiang Petroleum Geology, 38(5): 537-543(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201705007.htm
      [21] Wei, W., Zhu, X.M., Tan, M.X., et al., 2015. Diagenetic and Porosity Evolution of Conglomerate Sandstones in Bayingebi Formation of the Lower Cretaceous, Chagan Sag, China-Mongolia Frontier Area. Marine and Petroleum Geology, 66: 998-1012. https://doi.org/10.1016/j.marpetgeo.2015.08.011
      [22] Xu, C.G., Yu, H.B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 25-38(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-PEAD201901004.htm
      [23] Yu, X.H., Qu, J.H., Tan, C.P., et al., 2014. Conglomerate Lithofacies and Origin Models of Fan Deltas of Baikouquan Formation in Mahu Sag, Junggar Basin. Xinjiang Petroleum Geology, 35(6): 619-627(in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=663538243
      [24] Zahm, C.K., Hennings, P.H., 2009. Complex Fracture Development Related to Stratigraphic Architecture: Challenges for Structural Deformation Prediction, Tensleep Sandstone at the Alcova Anticline, Wyoming. AAPG Bulletin, 93(11): 1427-1446. https://doi.org/10.1306/08040909110
      [25] Zan, L., Wang, S.H., Zhang, Z.H., et al., 2011. Research Status of Sandy Conglomerates Reservoir. Journal of Yangtze University (Natural Science Edition), 8(3): 63-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJDL201103022.htm
      [26] Zeng, Y.F., Tian, J.C., Zhao, Z.C., et al., 1994. Genetic Types and Reservoir Characteristicsof the Sandy Conglomerate Bodies in the Shahejie Formation in the Northern Zone of the Dongying Sag. Sedimentary Facies and Palaeogeography, (1): 1-10(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YXGD401.000.htm
      [27] Zou, N.N., Zhang, D.Q., Shi, J.A., et al., 2017. Lithofacies Classification of Glutenite in the Fan Delta of the Mabei Area in the Northwestern Junggar Basin and Its Reservoir Significance. Acta Geologica Sinica, 91(2): 440-452(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201702010&dbcode=CJFD&year=2017&dflag=pdfdown
      [28] 曾允孚, 田景春, 赵志超, 等, 1994. 东营凹陷北带沙河街组沙砾岩体的成因类型及其储集性研究. 岩相古地理, (1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD401.000.htm
      [29] 代黎明, 牛成民, 庞小军, 等, 2020. 黄河口凹陷渤中27-A构造沙一二段湖相混积岩储层特征及成因. 地球科学, 45(10): 3797-3807. doi: 10.3799/dqkx.2020.088
      [30] 邓煜, 2012. 渤海湾盆地莱州湾地区新生代构造演化、后期改造及其油气赋存效应(博士学位论文). 西安: 西北大学.
      [31] 冯有良, 吴河勇, 刘文龙, 2011. 徐家围子断陷下白垩统营城组四段层序地层与沉积体系发育特征. 沉积学报, 29(5): 889-905. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201105010.htm
      [32] 傅强, 刘彬彬, 徐春华, 等, 2013. 渤海湾盆地黄河口凹陷构造定量分析与油气富集耦合关系. 石油学报, 34(增刊2): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2014.htm
      [33] 霍沈君, 杨香华, 王清斌, 等, 2015. 黄河口凹陷H-1构造沙河街组混积岩储层控制因素. 现代地质, 29(6): 1348-1359. doi: 10.3969/j.issn.1000-8527.2015.06.009
      [34] 贾博, 吴智平, 张晓庆, 等, 2017. 黄河口凹陷新生代断裂体系与构造演化. 特种油气藏, 24(1): 76-80. doi: 10.3969/j.issn.1006-6535.2017.01.015
      [35] 蒋裕强, 张春, 张本健, 等, 2013. 复杂砂砾岩储集体岩相特征及识别技术——以川西北地区为例. 天然气工业, 33(4): 31-36.
      [36] 靳军, 刘大卫, 纪友亮, 等, 2019. 砾质辫状河型冲积扇岩相类型、成因及分布规律——以准噶尔盆地西北缘现代白杨河冲积扇为例. 沉积学报, 37(2): 254-267. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201902003.htm
      [37] 李欢, 王清斌, 庞小军, 等, 2019. 致密砂砾岩储层裂缝形成及储层评价: 以黄河口凹陷沙二段为例. 地质科技情报, 38(1): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901019.htm
      [38] 李倩茹, 2014. 渤海湾盆地新生代构造演化特征及其对太平洋板块俯冲作用的指示意义(硕士学位论文). 北京: 中国地质大学.
      [39] 刘豪, 田立新, 周心怀, 等, 2017. 断陷湖盆坡折体系与剥蚀沉积响应——以黄河口凹陷古近系为例. 中国海上油气, 29(4): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201704004.htm
      [40] 刘强虎, 朱红涛, 杜晓峰, 等, 2020. 渤海海域砂砾岩体沉积响应进展及热点. 地球科学, 45(5): 1676-1705. doi: 10.3799/dqkx.2020.010
      [41] 刘卫彬, 张世奇, 徐兴友, 等, 2018. 断层相关裂缝的发育模式及分布预测——以东濮凹陷沙三段为例. 地球科学与环境学报, 40(3): 308-321. doi: 10.3969/j.issn.1672-6561.2018.03.008
      [42] 吕文雅, 苗凤彬, 张本键, 等, 2020. 四川盆地剑阁地区须家河组致密砾岩储层裂缝特征及对天然气产能的影响. 石油与天然气地质, 41(3): 484-491, 557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003006.htm
      [43] 庞小军, 王清斌, 冯冲, 等, 2020a. 渤海海域黄河口凹陷北缘沙河街组优质储层差异及成因. 沉积学报(待刊).
      [44] 庞小军, 王清斌, 解婷, 等, 2020b. 黄河口凹陷北缘古近系物源及其对优质储层的控制. 岩性油气藏, 32(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202002001.htm
      [45] 庞小军, 牛成民, 杜晓峰, 等, 2020c. 渤海海域环渤中地区沙一二段混积岩优质储层差异及成因. 地球科学, 45(10): 3853-3869. doi: 10.3799/dqkx.2020.078
      [46] 谈健康, 张洪辉, 熊钊, 2013. 砂砾岩储层研究现状. 中国西部科技, 12(1): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XBKJ201301004.htm
      [47] 汪孝敬, 李维锋, 董宏, 等, 2017. 砂砾岩岩相成因分类及扇三角洲沉积特征——以准噶尔盆地西北缘克拉玛依油田五八区上乌尔禾组为例. 新疆石油地质, 38(5): 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201705007.htm
      [48] 徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
      [49] 于兴河, 瞿建华, 谭程鹏, 等, 2014. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式. 新疆石油地质, 35(6): 619-627. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201406002.htm
      [50] 昝灵, 王顺华, 张枝焕, 等, 2011. 砂砾岩储层研究现状. 长江大学学报(自然科学版), 8(3): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201103022.htm
      [51] 邹妞妞, 张大权, 史基安, 等, 2017. 准噶尔西北缘玛北地区扇三角洲砂砾岩岩相分类及储集意义. 地质学报, 91(2): 440-452. doi: 10.3969/j.issn.0001-5717.2017.02.010
    • 加载中
    图(12)
    计量
    • 文章访问数:  840
    • HTML全文浏览量:  357
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-23
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回