Intelligent Interpretation of Rock Mass Discontinuity Based on Three-Dimensional Laser Point Cloud
-
摘要: 准确、高效、全面获取岩体结构面信息,对岩体的稳定性分析有着重要的意义.采用三维激光扫描设备进行岩体数据采集,基于岩体点云模型提出了结构面自动识别方法.通过对Ransac算法进行改进,引入了新的采样方法和评分准则,大大提升了Ransac算法的计算效率和提取精度,使之更好地适应粗糙不平的岩体点云数据;基于改进的Graham Scan算法可以精准描绘出结构面的凸凹边界,进而精细化计算出结构面尺寸.基于以上算法研发了结构面识别程序RDD(ransac discontinuity dtection),并且采用了两组标准几何体数据和一组岩体数据对程序进行测试.结果表明,标准几何体产状误差在1°以内,实际岩体最大误差在6°以内,结构面尺寸最大误差率为0.278%,满足工程限定的误差要求.
-
关键词:
- 三维激光点云 /
- 结构面 /
- Ransac算法 /
- Graham Scan算法 /
- 工程地质
Abstract: The stability of rock mass is mainly controlled by a large number of internal discontinuities. Therefore, the accurate and efficient extraction of discontinuity information is a significant process to analyze the stability of rock mass. In the paper, the raw point cloud data is collected by three-dimensional laser scanner, a new approach about automatic extraction of discontinuity is proposed based on point cloud model of rock mass, which can automatically decipher the parameters of rock mass discontinuities. The new sampling method and evaluation method are successfully introduced based on the modified Ransac algorithm, the efficiency and accuracy of Ransac algorithm are rapidly improved to adapt rough point cloud data of rock mass. The modified Graham Scan algorithm is proposed to delineate the convex-concave boundary and to calculate the size for discontinuity. Based on the above algorithms, this paper developed a discontinuity extraction program named RDD (ransac discontinuity dtection). RDD is tested by two sets of standard geometry data and one set of rock mass data. The results indicate that the orientation error of standard geometry is less than 1ånd the maximum error of rock is less than 6°, which satisfy the prescriptive error requirements of engineering. -
Algorithm 1 基于改进的Ransac算法提取平面
Algorithm 1. Extract plane based on modified Ransac algorithm
Input: P is a matrix which stores the point cloud. Output #1:Ψ is a matrix which stores the parameters of the extracted discontinuities.
Output #2:Pψ is a matrix which stores the points belonging to the corresponding discontinuities.
1:Ψ←Φ{extracted discontinuities}
2:C ←Φ{discontinuities candidates}
3: repeat
4: C ← C ∪ new candidates ()
5: m←best candidate(C)
6: if P(|m|, |c|)>pt then
7: P ← P\Pm {remove points}
8: Ψ←Ψ ∪ m
9: C←C\Cm {remove invalid candidates}
10: end if
11: until P(τ, |c|)>pt
12: return Ψ表 1 立方体平面几何信息提取
Table 1. Extraction of geometric properties of cube plane
平面 点云数量 倾角(°) 倾向(°) 面积(m2) 等效圆半径(m) 等效半径识别误差率(%) 平面1 8 162 90 180 0.983 0.559 0.179 平面2 8 134 90 90 0.984 0.56 0 平面3 8 109 0 180 0.979 0.558 0.357 平面4 8 120 0 0 0.981 0.559 0.179 平面5 8 101 90 90 0.986 0.56 0 平面6 8 121 90 0 0.982 0.559 0.179 表 2 二十面体平面几何信息提取
Table 2. Identification of icosahedron plane
平面 点云数量 倾角(°) 倾向(°) 产状差值(°) 面积(m2) 等效圆半径(m) 等效半径识别误差率(%) 平面1 3 595 90 339.1 0.9 1.747 0.746 0.539 平面2 3 498 54.74 315 0.26 1.71 0.738 0.539 平面3 3 626 20.9 360 0.9 1.748 0.746 0.539 平面4 3 463 69.09 90 0.91 1.694 0.734 1.078 平面5 3 538 69.1 270 0.9 1.711 0.738 0.539 平面6 3 599 54.74 225 0.26 1.753 0.747 0.674 表 3 Riquelme和RDD的产状计算结果对比
Table 3. Comparison of discontinuity orientation data between Riquelme and RDD
结构面组 Riquelme产状计算结果(°) RDD产状计算结果(°) 差值(°) J1 246.24/39.02(平面11) 244.54/38.60(平面11) 0.42 J1 256.86/52.30(平面12) 77.52/52.94(平面12) 0.64 J1 70.26/35.80(平面13) 250.37/35.83(平面13) 0.03 J1 252.68/35.48(平面14) 251.60/34.00(平面14) 1.48 J1 249.74/35.91(平面15) 250.24/36.12(平面15) 0.11 J1 70.47/35.92(平面16) 70.23/35.72(平面16) 0.24 J1 255.12/32.72(平面17) 251.61/36.00(平面17) 3.51 J2 339.47/83.25(平面21) 334.90/81.72(平面21) 4.57 J2 166.33/76.58(平面22) 346.15/72.81(平面22) 3.77 J2 160.20/89.86(平面23) 338.01/89.08(平面23) 1.22 J2 173.55/76.85(平面24) 353.81/76.58(平面24) 0.27 J3 136.59/82.58(平面31) 135.12/78.43(平面31) 4.15 J3 131.25/82.67(平面32) 317.69/87.73(平面32) 5.06 J3 143.91/89.70(平面33) 327.33/89.84(平面33) 0.14 J4 97.55/63.22(平面41) 99.30/68.12(平面41) 4.90 J4 91.07/50.19(平面42) 92.60/48.67(平面42) 1.53 J4 96.64/47.97(平面43) 96.59/48.04(平面43) 0.07 J5 123.42/76.15(平面51) 125.63/81.94(平面51) 5.79 J5 105.75/69.94(平面52) 106.90/70.43(平面52) 1.15 表 4 CAD和RDD的结构面尺寸计算结果对比
Table 4. Comparison of discontinuity dimension data between Polyworks and RDD
结构面组 CAD计算面积(m2) RDD计算面积(m2) CAD计算尺寸(m) RDD计算尺寸(m) 尺寸误差率(%) J1 15.300 0(平面11) 15.321 7(平面11) 2.206 8 2.208 4 0.073 J1 0.435 2(平面12) 0.434 1(平面12) 0.372 2 0.371 7 0.134 J1 2.864 1(平面13) 2.863 6(平面13) 0.954 8 0.954 7 0.010 J1 23.321 2(平面14) 23.339 8(平面14) 2.724 6 2.725 7 0.040 J1 1.176 8(平面15) 1.174 9(平面15) 0.612 0 0.611 5 0.082 J1 5.935 9(平面16) 5.938 9(平面16) 1.374 6 1.374 9 0.022 J1 18.430 0(平面17) 18.429 2(平面17) 2.422 1 2.422 0 0.004 J2 1.355 2(平面21) 1.351 3(平面21) 0.656 8 0.655 8 0.152 J2 0.913 8(平面22) 0.918 9(平面22) 0.539 3 0.540 8 0.278 J2 2.102 0(平面23) 2.107 0(平面23) 0.818 0 0.819 0 0.122 J2 4.199 6(平面24) 4.194 6(平面24) 1.156 2 1.155 5 0.061 J3 15.380 0(平面31) 15.376 0(平面31) 2.212 6 2.212 3 0.014 J3 1.005 9(平面32) 1.002 8(平面32) 0.565 9 0.565 0 0.159 J3 2.134 8(平面33) 2.130 8(平面33) 0.824 3 0.823 6 0.085 J4 1.170 0(平面41) 1.170 0(平面41) 0.610 3 0.610 3 0 J4 6.971 6(平面42) 6.976 5(平面42) 1.489 7 1.490 2 0.034 J4 2.933 3(平面43) 2.930 3(平面43) 0.966 3 0.965 8 0.052 J5 2.955 4(平面51) 2.951 3(平面51) 0.969 9 0.969 2 0.072 J5 8.485 6(平面52) 8.491 1(平面52) 1.643 5 1.644 0 0.030 -
[1] Chen, J.Q., Zhu, H.H., Li, X.J., 2016. Automatic Extraction of Discontinuity Orientation from Rock Mass Surface 3D Point Cloud. Computers and Geosciences, 95: 18-31. https://doi.org/10.1016/j.cageo.2016.06.015. [2] Chen, Z.F., Chen, D.L., Yang, J.X., 2012. Application of Three⁃Dimensional Laser Scanning Technique in Deformation Monitoring of Excavations. Chinese Journal of Geotechnical Engineering, 34(Suppl): 557-559 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-BJCH2017S1040.htm [3] Deb, D., Hariharan, S., Rao, U.M., et al. , 2007. Automatic Detection and Analysis of Discontinuity Geometry of Rock Mass from Digital Images. Computers and Geosciences, 34(2): 115-126. https://doi.org/10.1016/j.cageo.2007.03.007. [4] Dong, X.J., Huang, R.Q., 2006. Application of 3D Laser Scanning Technology to Geologic Survey of High and Steep Slope. Chinese Journal of Rock Mechanics and Engineering, 25(S2): 3629-3635 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2006z2046 [5] Fan, L.M., Li, N., 2005. Study on Rock Mass Joint Measurement Based on Digital Photogrammetry. Chinese Journal of Rock Mechanics and Engineering, 24(5): 792-797 (in Chinese with English abstract). http://www.oalib.com/paper/1485913 [6] Ge, Y.F., Tang, H.M., Xia, D., et al. , 2018. Automated Measurements of Discontinuity Geometric Properties from a 3D⁃Point Cloud Based on a Modified Region Growing Algorithm. Engineering Geology, 242(14): 44-54. https://doi.org/10.1016/j.enggeo.2018.05.007. [7] Gigli, G., Casagli, N., 2010. Semi⁃Automatic Extraction of Rock Mass Structural Data from High Resolution LIDAR Point Clouds. International Journal of Rock Mechanics and Mining Sciences, 48(2): 187-198. https://doi.org/10.1016/j.ijrmms.2010.11.009. [8] Gu, D.Z., 1979. Foundation of Rock Engineering Geomechanics. Science Press, Beijing, 290-329 (in Chinese with English abstract). [9] Héctor, F., Cristóbal, A. N., Hitschfeld, N., 2020. A Filtering Technique for Fast Convex Hull Construction in R2. Journal of Computational and Applied Mathematics, 364: 112-298. https://doi.org/10.1016/j.cam.2019.06.014 [10] Huang, D., Zhong, Z., 2015. A Universal Mathematical Method for Determining Occurrence of Underground Rock Discontinuity Based on TV Picture of Wall of a Single Borehole. Earth Science, 40(6): 1101-1106 (in Chinese with English abstract). http://www.researchgate.net/publication/283749157_A_universal_mathematical_method_for_determining_occurrence_of_underground_rock_discontinuity_based_on_tv_picture_of_wall_of_a_single_borehole [11] Kang, J.T., Wu, Q., Tang, H.M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911029.htm [12] Lato, M., Kemeny, J., Harrap, R, M., et al., 2013. Rock Bench: Establishing a Common Repository and Standards for Assessing Rockmass Characteristics Using Lidar and Photogrammetry. Computers and Geosciences, 50: 106-114. https://doi.org/10.1016/j.cageo.2012.06.014. [13] Lato, M.J., VÖge, M., 2012. Automated Mapping of Rock Discontinuities in 3D Lidar and Photogrammetry Models. International Journal of Rock Mechanics and Mining Sciences, 54: 150-158. doi: 10.1016/j.ijrmms.2012.06.003 [14] Li, H. B., Li, X. W., Li, W. Z., et al., 2019. Quantitative Assessment for the Rockfall Hazard in a Post⁃Earthquake High Rock Slope Using Terrestrial Laser Scanning. Engineering Geology, 248: 1-13. https://doi.org/10.1016/j.enggeo.2018.11.003. [15] Lin, S., Wang, W., Deng, X.H., et al., 2019. Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District. Earth Science, 44(9): 3135-3146(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909026.htm [16] Myatt, D. R., Torr, P. H. S., Nasuto, S. J., et al., 2002. NAPSAC: High Noise, High Dimensional Model Parameterization: It's in the Bag. British Machine Vision Conference. DBLP., 458-467. http://www.researchgate.net/publication/221259336_NAPSAC_High_Noise_High_Dimensional_Robust_Estimation_-_it's_in_the_Bag [17] Math, J., Samson, C., McKinnon, S.D., 2011. 3D Laser Imaging for Joint Orientation Analysis. International Journal of Rock Mechanics and Mining Sciences, 48(6): 932-941. https://doi.org/10.1016/j.ijrmms.2011.04.010. [18] Olariu, M.I., Ferguson, J.F., Aiken, C.L.V., et al., 2008. Outcrop Fracture Characterization Using Terrestrial Laser Scanners: Deep⁃Water Jackfork Sandstone at Big Rock Quarry, Arkansas Geosphere, 4(1): 247-259. https://doi.org/10.1130/GES00139.1CorpusID:129157012. [19] Qiu, J.L., Xia, Q.L., Yao, L.Q., et al., 2012. Mine Geological Modeling and Application Based on the Three⁃Dimensional Laser Scanner Technology. Earth Science, 37(6): 1209-1216 (in Chinese with English abstract). http://www.researchgate.net/publication/289046802_Mine_geological_modeling_and_application_based_on_the_three-dimensional_laser_scanner_technology [20] Riquelme, A.J., Riquelme, A., Abellán, R., et al., 2014. A New Approach for Semi⁃Automatic Rock Mass Joints Recognition from 3D Point Clouds. Computers and Geosciences, 68: 38-52. https://doi.org/10.1016/j.cageo.2014.03.014. [21] Slob, S., Hack, H.R.G.K., Feng, Q., et al., 2007. Fracture Mapping Using 3D Laser Scanning Techniques. In: Ribeiro, E., Sousa, L., Olalla, C., eds., Proceeding of the 11th Congress of the International Society for Rock Mechanics, Lisbon, 1: 299-302. [22] Slob, S., Van, K.B., Hack, R., et al., 2005. Method for Automated Discontinuity Analysis of Rock Slopes with Three⁃Dimensional Laser Scanning. Transportation Research Record: Journal of the Transportation Research Board, 1913(1): 187-194. https://doi.org/10.1177/0361198105191300118 [23] Sun, G.Z., 1993. On the Theory of Structure⁃Controlled Rockmass. Journal of Engineering Geology, (1): 14-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ199301003.htm [24] Tang, H.M., Ge, Y.F., Wang, L.Q., et al., 2012. Study on Estimation Method of Rock Mass Discontinuity Shear Strength Based on Three⁃Dimensional Laser Scanning and Image Technique. Journal of Earth Science, 23(6): 908-913. doi: 10.1007/s12583-012-0301-2 [25] Uherčík, M., Kybic, J., Liebgott, H., et al., 2010. Model Fitting Using RANSAC for Surgical Tool Localization in 3D Ultrasound Images. IEEE Transactions on Bio⁃Medical Engineering, 57(8): 1907-16. https://doi.org/10.1109/TBME.2010.2046416 [26] Vöge, M., Lato, M.J., Diederichs, M.S., 2013. Automated Rockmass Discontinuity Mapping from 3⁃Dimensional Surface Data. Engineering Geology, 164: 155-162. https://doi.org/10.1016/j.enggeo.2013.07.008. [27] Wang, J.C., Wang, C.Y., Hu, S., et al., 2017. A New Method for Extraction of Parameters of Structural Surface in Borehole Images. Rock and Soil Mechanics, 38(10): 3074-3080 (in Chinese with English abstract). http://www.researchgate.net/publication/322114200_A_new_method_for_extraction_of_parameters_of_structural_surface_in_borehole_images [28] Wang, M.C., Xu, Z.S., Wang, F.Y., et al., 2018. Fitting Test on Probability Distribution of Discontinuity Parameters in Rock Mass Based on Photogrammetry. Journal of Jilin University (Earth Science Edition), 48(6): 1898-1906 (in Chinese with English abstract). http://www.researchgate.net/publication/330884895_Fitting_Test_on_Probability_Distribution_of_Discontinuity_Parameters_in_Rock_Mass_Based_on_Photogrammetry [29] Warburton, J., Holden, J., Mills, A.J., 2004. Hydrological Controls of Surficial Mass Movements in Peat. Earth Science Reviews, 67(1): 139-156. https://doi.org/10.1016/j.enggeo.2013.07.008. [30] Yuan, G.X., Wang, H.J., Huang, Z.Q., et al., 2017. Distribution of Discontinuities along Drillholes in Granite: Case Study from Dayawan, Shenzhen. Journal of Engineering Geology, 25(4): 1010-1016 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201704015.htm [31] Yu, T.L., 2009. Digital Identification of the Discontinuities Information and Strength Evaluation of the Rockmass (Dissertation). Northeastern University, Shenyang (in Chinese with English abstract). [32] Zhang, P., Du, K., Tannant, D.D., et al., 2018. Automated Method for Extracting and Analyzing the Rock Discontinuities from Point Clouds Based on Digital Surface Model of Rock Mass. Engineering Geology, 239: 109-118. https://doi.org/10.1016/j.enggeo.2018.03.020. [33] 陈致富, 陈德立, 杨建学, 2012. 三维激光扫描技术在基坑变形监测中的应用. 岩土工程学报, 34(S1): 557-559. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1109.htm [34] 董秀军, 黄润秋, 2006. 三维激光扫描技术在高陡边坡地质调查中的应用. 岩石力学与工程学报, 25(2): 3629-3635. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2045.htm [35] 范留明, 李宁, 2005. 基于数码摄影技术的岩体裂隙测量方法初探. 岩石力学与工程学报, 24(5): 792-797. doi: 10.3321/j.issn:1000-6915.2005.05.010 [36] 谷德振, 1979. 岩体工程地质力学基础. 北京: 科学出版社, 290-329. [37] 黄达, 钟助, 2015. 基于单个钻孔孔壁电视图像确定地下岩体结构面产状的普适数学方法. 地球科学, 40(6): 1101-1106. doi: 10.3799/dqkx.2015.092 [38] 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110 [39] 林松, 王薇, 邓小虎, 等, 2019. 三峡库区典型滑坡地球物理实测及其意义: 以万州区四方碑滑坡为例. 地球科学, 44(9): 3135-3146. doi: 10.3799/dqkx.2019.074 [40] 邱俊玲, 夏庆霖, 姚凌青, 等, 2012. 基于三维激光扫描技术的矿山地质建模与应用. 地球科学, 37(6): 1209-1216. http://www.earth-science.net/article/id/2326 [41] 孙广忠, 1993. 论"岩体结构控制论". 工程地质学报, 1(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ199301003.htm [42] 汪进超, 王川婴, 胡胜, 等, 2017. 孔壁钻孔图像的结构面参数提取方法研究. 岩土力学, 38(10): 3074-3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710040.htm [43] 王明常, 徐则双, 王凤艳, 等, 2018. 基于摄影测量获取岩体结构面参数的概率分布拟合检验. 吉林大学学报(地球科学版), 48(6): 1898-1906. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201806027.htm [44] 袁广祥, 王洪建, 黄志全, 等, 2017. 花岗岩体钻孔中结构面的分布规律——以深圳大亚湾花岗岩体为例. 工程地质学报, 25(4): 1010-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201704015.htm [45] 于天亮, 2009. 岩体结构面信息数字识别及强度评价(硕士学位论文). 沈阳: 东北大学.