• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析

    杜秋定 王剑 汪正江 邓奇 杨菲

    杜秋定, 王剑, 汪正江, 邓奇, 杨菲, 2021. 扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析. 地球科学, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280
    引用本文: 杜秋定, 王剑, 汪正江, 邓奇, 杨菲, 2021. 扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析. 地球科学, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280
    Du Qiuding, Wang Jian, Wang Zhengjiang, Deng Qi, Yang Fei, 2021. Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block. Earth Science, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280
    Citation: Du Qiuding, Wang Jian, Wang Zhengjiang, Deng Qi, Yang Fei, 2021. Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block. Earth Science, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280

    扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析

    doi: 10.3799/dqkx.2020.280
    基金项目: 

    国家自然科学基金项目“新元古代中期湘黔桂盆地重要变革期的沉积学响应研究” 41672108

    “扬子东南缘中新元古代沉积超覆界面性质及盆地转换过程研究” 41672112

    “鄂西裂陷槽在扬子古大陆裂解中的沉积响应及其油气地质意义” 41972121

    “扬子地块莲沱组沉积环境及其时代归属研究” 41302091

    中国石油-西南石油大学创新联合体科技合作项目 2020CX010000

    详细信息
      作者简介:

      杜秋定(1983-), 男, 副研究员, 主要从事沉积学和沉积盆地分析研究.ORCID: 0000-0003-4712-5735.E-mail: dqiuding@163.com

    • 中图分类号: P597

    Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block

    • 摘要: 扬子地块莲沱组及相当地层单元的划分和对比,一直是我国南华系(即Cryogenian)研究关键难题之一.新元古代裂谷盆地开启早期,构造-沉积分异作用,同裂谷相变很大,使得盆地边缘区地层序列不完整.过分依赖岩石地层单元对比,历存分歧,典型的就是关于莲沱组与板溪群地层对比、时代归属以及莲沱组的沉积环境问题.本文通过对扬子地块东南缘莲沱组沉积古环境分析和锆石U-Pb精确定年,认为莲沱组沉积时限为790~720 Ma,相当于板溪群中上部,是华南新元古代裂谷盆地沉积充填序列的第Ⅱ旋回.莲沱组顶部U-Pb最小年龄约720 Ma,制约了扬子地块Sturtian冰期的启动年龄≤720 Ma.通过对中扬子地块从北向南展布的莲沱组陆相-海陆过渡相-海相不同的沉积单元岩相组合的沉积特征观察研究,分析沉积环境并建立了沉积模式;莲沱组及休宁组碎屑锆石记录了莲沱组沉积时该盆地在780~760 Ma经历了持续热隆升与地层剥蚀,揭示了中国南方扬子和华夏地块聚合与裂解事件的重要信息.

       

    • 图  1  扬子地块莲沱组沉积结构对比(a); 南华裂谷盆地及剖面位置(b)

      Fig.  1.  Stratigraphic column of Liantuo Formation in Yangtze block (a); distribution of Nanhua rift and the section in Yangtze block (b)

      图  2  通山(a)和蓝田(b)区域地质及采样位置

      Fig.  2.  Geological map and the sampling location of Tongshan (a) and Lantian (b)

      图  3  通山莲沱组碎屑锆石阴极发光图

      Fig.  3.  Representative cathodoluminescence images for Liantuo Formation samples of Tongshan area

      图  4  蓝田休宁组碎屑锆石阴极发光图

      Fig.  4.  Representative cathodoluminescence images for Xiuning Formation samples of Lantian area

      图  5  通山地区莲沱组碎屑锆石U-Pb谐合曲线图和碎屑锆石U-Pb年龄统计直方图

      Fig.  5.  Detrital zircon data U-Pb concordia diagrams and histogram of from the Liantuo Formation

      图  6  蓝田地区休宁组碎屑锆石U-Pb谐合曲线图、碎屑锆石U-Pb年龄统计直方图

      Fig.  6.  Detrital zircon data U-Pb concordia diagrams and histogram of from the Xiuning Formation

      图  7  莲沱组图版

      a. 莲沱组与双桥山群接触关系;b. 莲沱组底部含砾石英砂岩;c. 莲沱组砾石叠瓦状排列;d. 莲沱组块状杂砾岩;e. 莲沱组斜层理,水流方向从左向右;f. 莲沱组石英砂岩发育平行层理;g. 莲沱组发育透镜状、波状潮汐层理;h.莲沱组灰绿色细粒沉积物

      Fig.  7.  Plate of Liantuo Formation

      图  8  中扬子地块莲沱组沉积期古地理格局及沉积模式

      Fig.  8.  Schematic diagram illustrating the tectonic-sedimentary model of Liantuo Formation in Mid-Yangtze block

      图  9  (a)莲沱组、休宁组样品锆石年龄谱;(b)2 000 Ma以来超大陆旋回与地幔柱喷发事件耦合图(Li et al., 2019

      Fig.  9.  (a)Histogram of from the Liantuo and Xiuning formations; (b) Supercontinent cycle (Nuna, Rodinia and Pangaea) since 2 000 Ma ago, coupled to a slightly phase-shifted ~600 Ma plume frequency cycle(Li et al., 2019)

      图  10  (a~c)北印度、南极洲、西澳大利亚新元古代地层锆石年谱曲线(Wang et al., 2018);(d)扬子东缘沉积岩前寒武纪碎屑锆石年龄谱(李献华等,2012);(e)莲沱组、休宁组样品锆石年龄谱

      Fig.  10.  (a~c)zircon U-Pb ages from this study and for other locations: northern India, Antarctica, western Australia(Wang et al., 2018); (d) Detrital zircon age histograms for Precambrian sedimentary form eastern Yangtze block(Li et al. 2012); (e) histogram of from the Liantuo and Xiuning formations

    • [1] Borg, G., Karner, K., Buxton, M., et al., 2003. Geology of the Skorpion Supergene Zinc Deposit, Southern Namibia. Economic Geology, 98(4): 749-771. https://doi.org/10.2113/gsecongeo.98.4.749
      [2] Cai, X.F., Ye, Q., Xiao, M.Y., 2018. Some Opinions Concerning the Understanding of CIA Cold Climate of the Liantuo Formation of Nanhua System: Exemplified by the Nanhua System from Shennongjia in Western Hubei and Western Hunan. Acta Petrologica et Mineralogica, 37(4): 621-636 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201804008.htm
      [3] Cawood, P. A., Wang, W., Zhao, T. Y., et al., 2020. Deconstructing South China and Consequences for Reconstructing Nuna and Rodinia. Earth-Science Reviews, 204(1): 103-169. https://doi.org/10.1016/j.earscirev.2020.103169
      [4] Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186(5-6): 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
      [5] Du, Q. D., Wang, Z. J., Wang, J., et al., 2013. Geochronology and Paleoenvironment of the Pre-Sturtian Glacial Strata: Evidence from the Liantuo Formation in the Nanhua Rift Basin of the Yangtze Block, South China. Precambrian Research, 233(3-5): 118-131. https://doi.org/10.1016/j.precamres.2013.04.012
      [6] Du, Q.D., Wang, Z.J., Wang, J., et al., 2013. LA-ICP-MS U-Pb Ages of Detrital Zircons from the Neoproterozoic Chang'an Formation in Central Hunan and Its Geological Implicatons. Geological Review, 59(2): 332-344 (in Chinese with English abstract). http://www.researchgate.net/publication/281095298_LA-ICP-MS_U-Pb_ages_of_detrital_zircons_from_the_Neoproterozoic_Chang'an_Formation_in_Central_Huanan_and_its_geological_implications
      [7] Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2004. New Evidence of Deposition under Cold Climate for the Xieshuihe Formation of the Nanhua System in Northwestern Hunan, China. Chinese Science Bulletin, 49(2): 1172-1178 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kxtb-e200413019
      [8] Frimmel, H. E., Klötzli, U. S., Siegfried, P. R., 1996. New Pb-Pb Single Zircon Age Constraints on the Timing of Neoproterozoic Glaciation and Continental Break-Up in Namibia. The Journal of Geology, 104(4): 459-469. https://doi.org/10.1086/629839
      [9] Hofmann, M., Linnemann, U., Rai, V., et al., 2011. The India and South China Cratons at the Margin of Rodinia: Synchronous Neoproterozoic Magmatism Revealed by LA-ICP-MS Zircon Analyses. Lithos, 123(1/2/3/4): 176-187. https://doi.org/10.1016/j.lithos.2011.01.012
      [10] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      [11] Huang, J., Feng, L. J., Lu, D. B., et al., 2014. Multiple Climate Cooling Prior to Sturtian Glaciations: Evidence from Chemical Index of Alteration of Sediments in South China. Scientific Reports, 4(1): 1-6. https://doi.org/10.1038/srep06868
      [12] Jiang, X.S., Wang, J., Cui, X.Z., et al., 2012. Zircon SHRIMP U-Pb Geochronology of the Neoproterozoic Chengjiang Formation in Central Yunnan Province (SW China) and Its Geological Significance. Science China: Earth Sciences, 42(10): 1496-1507 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXK201210005.htm
      [13] Key, R. M., Liyungu, A. K., Njamu, F. M., et al., 2001. The Western Arm of the Lufilian Arc in NW Zambia and its Potential for Copper Mineralization. Journal of African Earth Sciences, 33(3/4): 503-528. https://doi.org/10.1016/s0899-5362(01)00098-7
      [14] Lan, Z. W., Li, X. H., Zhu, M. Y., et al., 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb Zircon Age Constraints and Regional and Global Significance. Precambrian Research, 263: 123-141. https://doi.org/10.1016/j.precamres.2015.03.012
      [15] Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010
      [16] Li, W. X., Li, X. H., Li, Z. X., 2010. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China: Initial Extension during the Breakup of Rodinia? American Journal of Science, 310(9): 951-980. https://doi.org/10.2475/09.2010.08
      [17] Li, X.H., Li, W.X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31: 543-559 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201206001.htm
      [18] Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the ~850 Ma Gangbian Alkaline Complex in South China: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1/2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      [19] Li, Z. X., Mitchell, R. N., Spencer, C. J., et al., 2019. Decoding Earth's Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 323: 1-5. https://doi.org/10.1016/j.precamres.2019.01.009
      [20] Li, Z. X., Wartho, J. A., Occhipinti, S., et al., 2007. Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia: New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints. Precambrian Research, 159(1/2): 79-94. https://doi.org/10.1016/j.precamres.2007.05.003
      [21] Lin, S.J., 1995. Correlation for Liantuo Formation to Banxi Group and Boundary between the Presinian and Sinian in Eastern Guizhou. Guizhou Geology, 12(1): 23-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ501.001.htm
      [22] Liu, H.Y., 1991. The System in China. Science Press, Beijing, 1-388(in Chinese).
      [23] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [24] Ma, G.G., Zhang Z.C., Li, H.Q., et al., 1989. A Geochronostratigraphical Study of the Simian System in Yangtze Platform. Bull. Yichang Inst. Geol. Mineral Resources, CAGA, 14: 83-124 (in Chinese with English abstract).
      [25] Wang J., Pan, G.T., 2009. Neoproterozoic South China Palaeocontinents: An Overview. Acta Sedimentologica Sinica, 27(5): 818-825 (in Chinese with English abstract). http://www.researchgate.net/publication/280949693_Neoproterozoic_South_China_Palaeocontinents_An_overview
      [26] Wang, D., Wang, X. L., Zhou, J. C., et al., 2013. Unraveling the Precambrian Crustal Evolution by Neoproterozoic Conglomerates, Jiangnan Orogen: U-Pb and Hf Isotopes of Detrital Zircons. Precambrian Research, 233(9): 223-236. https://doi.org/10.1016/j.precamres.2013.05.005
      [27] Wang, J., 2005. New advances in the study of "the Nanhuaan System": with Particular Reference to the Stratigraphic Division and Correlation of the Nanhuaan System, South China. Geological Bulletin of China, 24(6): 491-495 (in Chinese with English abstract). http://www.researchgate.net/publication/281025564_New_advances_in_the_study_of_the_Nanhuaan_System-With_particular_reference_to_the_stratigraphic_division_and_correlation_of_the_Nanhuaan_System_South_China
      [28] Wang, J., Li Z. X, 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1/2/3/4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7
      [29] Wang, W., Zeng, M. F., Zhou, M. F., et al., 2018. Age, Provenance and Tectonic Setting of Neoproterozoic to Early Paleozoic Sequences in Southeastern South China Block: Constraints on its Linkage to Western Australia-East Antarctica. Precambrian Research, 309(1): 290-308. https://doi.org/10.1016/j.precamres.2017.03.002
      [30] Wang, Z.J., 2008. A Proposal to Establish the Banxi System and Discussion on Its Foundations-Based Mainly on Studies in Eastern Guizhou Area. Geological Review, 54(3): 296-306 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/OA000004486
      [31] Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006a. Chemostratigraphic Studies to Explain Neoproterozoic Stratigraphic Division and Correlation. Earth Science Frontiers, 13(6): 268-279 (in Chinese with English abstract). http://www.researchgate.net/publication/285504331_Chemostratigraphic_studies_to_explain_Neoproterozoic_stratigraphic_division_and_correlation
      [32] Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006b. The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area. Geological Review, 52(5): 577-585 (in Chinese with English abstract). http://www.researchgate.net/publication/291448584_The_character_of_the_chemical_index_of_alteration_and_discussion_of_subdivision_and_correlation_of_the_Nanhua_System_in_Yichang_Area
      [33] Xu, B., Xiao, S., Zou, H., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008
      [34] Yin, C.Y., Liu, D.Y., Gao, L.Z., et al., 2003. Lower Boundary Age of the Nanhua System and the Gucheng Glacial Stage: Evidence from SHRIMPⅡ Dating. Chinese Science Bulletin, 48(16): 1721-1725 (in Chinese with English abstract). doi: 10.1360/csb2003-48-16-1721
      [35] Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186(2): 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
      [36] Zheng, Y.F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48: 1705-1720 (in Chinese with English abstract). doi: 10.1360/csb2003-48-16-1705
      [37] Zheng, Y.F., Zhang, S.B., 2007. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1-10 (in Chinese with English abstract). doi: 10.1007/s11434-007-0015-5
      [38] Zhou, C.M., 2016. Neoproterozoic Lithostratigraphy and Correlation across the Yangtze Block, South China. Journal of Stratigraphy, 40(2): 120-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201602002.htm
      [39] Zhou, C. M., Tucker, R., Xiao, S. H., et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437. https://doi.org/10.1130/g20286.1
      [40] Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China: Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2): 27-42. https://doi.org/10.1016/j.precamres.2008.11.002
      [41] 蔡雄飞, 叶琴, 肖明元, 2018. 对南华系下统莲沱组CIA值寒冷气候认识的几点商榷——以鄂西神农架、湘西北南华系莲沱组为例. 岩石矿物学杂志, 37(4): 621-636. doi: 10.3969/j.issn.1000-6524.2018.04.008
      [42] 杜秋定, 汪正江, 王剑, 等, 2013. 湘中长安组碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质论评, 59(2): 332-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201302017.htm
      [43] 冯连君, 储雪蕾, 张启锐, 等, 2004. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 49(2): 1172-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200412012.htm
      [44] 江新胜, 王剑, 崔晓庄, 等, 2012. 滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义. 中国科学: 地球科学, 42(10): 1496-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201210005.htm
      [45] 李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合——裂解, 观察、解释与检验. 矿石岩石地球化学通报, 31: 543-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201206001.htm
      [46] 林树基, 1995. 板溪群与莲沱组对比问题与震旦/前震旦界限. 贵州地质, 12(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ501.001.htm
      [47] 刘鸿允, 1991. 中国震旦系. 北京: 科学出版社, 1-388.
      [48] 马国干, 张自超, 李华芹, 等, 1989. 扬子地台震旦系同位素年代地层学研究. 中国地质科学院宜昌地质矿产研究所所刊, 14: 83-124. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198908001005.htm
      [49] 汪正江, 2008. 关于建立"板溪系"的建议及其基础的讨论. 地质论评, 54(3): 296-306. doi: 10.3321/j.issn:0371-5736.2008.03.002
      [50] 王剑, 2005. 华南"南华系"研究新进展——论南华系地层划分与对比. 地质通报, 24(6): 491-495. doi: 10.3969/j.issn.1671-2552.2005.06.001
      [51] 王剑, 潘桂堂, 2009. 中国南方古大陆研究进展与问题评述. 沉积学报, 27(5): 818-825. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905007.htm
      [52] 王自强, 尹崇玉, 高林志, 等, 2006a. 用化学地层学研究新元古代地层划分和对比. 地学前缘, 13(6): 268-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606035.htm
      [53] 王自强, 尹崇玉, 高林志, 等, 2006b. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论. 地质论评, 52(5): 577-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200605000.htm
      [54] 尹崇玉, 刘敦一, 高林志, 等, 2003. 南华系底界与古城冰期的年龄: SHRIMP Ⅱ定年证据. 科学通报, 48(16): 1721-1725. doi: 10.3321/j.issn:0023-074X.2003.16.002
      [55] 郑永飞, 2003. 新元古代岩浆活动与全球变化. 科学通报, 48: 1705-1720. doi: 10.3321/j.issn:0023-074X.2003.16.001
      [56] 郑永飞, 张少兵, 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10. doi: 10.3321/j.issn:0023-074X.2007.01.001
      [57] 周传明, 2016. 扬子区新元古代前震旦纪地层对比. 地层学杂志, 40(2): 120-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201602002.htm
    • 加载中
    图(10)
    计量
    • 文章访问数:  664
    • HTML全文浏览量:  318
    • PDF下载量:  80
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-29
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回