Age, Origin and Geological Implications of Early Paleozoic Marine Bentonites, Northern Yili Block of Central Asian Orogenic Belt
-
摘要: 伊犁地块位于西天山北部,通常认为其北缘经历了晚古生代活动陆缘的演化,但对其早古生代构造沉积演化(尤其是同位素定年)的研究仍较为薄弱.在伊犁北缘果子沟地区的奥陶系黑色硅质页岩中发现多层斑脱岩(蚀变凝灰岩)夹层,奥陶系发生了强烈褶皱变形,在其中一个倒转向斜的核部和翼部选取两层斑脱岩进行了锆石U-Pb测年.2个斑脱岩样品中的锆石显示岩浆锆石的特征,其加权平均年龄分别为458±2 Ma和460±2 Ma.结合前人研究成果,认为该斑脱岩的沉积时代为中奥陶世末期(达瑞威尔阶顶部),该时代与温泉地区大陆弧岩浆岩年龄基本一致,是准噶尔洋在中-晚奥陶世向伊犁地块之下俯冲的又一证据;该斑脱岩与全球范围内的大规模火山活动时代一致,该期火山活动可能是中-晚奥陶世全球气候变化与生物大灭绝的重要原因.Abstract: The Yili Block,a part of the Central Asian Orogenic Belt (CAOB),is located in the northern part of Chinese western Tianshan. It is generally believed that the northern Yili Block was an active continental margin during the Late Paleozoic. However,the study of sedimentary and tectonic evolution (especially the isotopic dating) of the Early Paleozoic in the northern Yili Block is relatively weak. Several bentonite (altered tuff) horizons within the Ordovician black siliceous shale sequences in the Guozigou area were recognized. The Ordovician strata were intensively folded. Two bentonite samples were collected from the core and limb of a syncline for zircon U-Pb dating. Both samples indicate their magmatic origin. They yielded consistent and concordant apparent ages,and weighted average ages of 458±2 Ma and 460±2 Ma,respectively. The previous and newly obtained data implies that the bentonites were deposited at the end of Middle Ordovician (Darriwilian Stage). The timing of the bentonites in this study is in agreement with the age of the continental arc-type magmatism in the Wenquan area,both were likely derived from subduction of the Junggar Ocean beneath the northern Yili Block. The bentonites are also coeval with the worldwide intense volcanism,and are likely one of the main causes of the Late Ordovician global climate change and mass extinction.
-
Key words:
- Yili Block /
- Ordovician /
- bentonite /
- Junggar Ocean /
- subduction and accretionary /
- orogeny /
- structural geology
-
图 1 中亚造山带(CAOB)及邻区构造简图(a)和哈萨克斯坦微大陆及天山造山带地质简图(b)
图a据Şengör et al.(1993)和Jahn et al.(2000);图b据Windley et al.(2007)、Wang et al.(2012)和Cao et al.(2017).KNT.吉尔吉斯北天山;KMT.吉尔吉斯中天山;BC.博什库尔-成吉斯;NB.北巴尔喀什;BY.巴尔喀什-伊犁;CY.楚-伊犁;JB.准噶尔-巴尔喀什;ACNT.阿克套-中国北天山;WJ.西准噶尔;KM.克拉玛依;CNT.中国北天山;BGD.博格达山;CCT.中国中天山;CST.中国南天山. 主要断层:①北天山断裂带;②赛里木-精河断裂带;③那拉提断裂带;④尼古拉耶夫线
Fig. 1. Sketch map of the Central Asian Orogenic Belt (CAOB) and adjacent regions (a), simplified geological map of the Kazakhstan microcontinent and Tianshan Orogen (b)
图 2 伊犁北部果子沟及其邻区地质构造简图
改编自新疆维吾尔自治区地质矿产勘查开发局,1988. 新疆1∶200 000地质图霍城幅(L-44-26、27、33)、赛里木湖幅(L-44-34)
Fig. 2. Simplified geological map of the Guozigou and neighboring areas, northern Yili Block
图 3 伊犁北缘霍城、科古琴山和博罗霍洛山地区下古生界地层柱状图
改编自新疆维吾尔自治区地质矿产勘查开发局,1988. 新疆1∶200 000地质图霍城幅(L-44-26、27、33)、赛里木湖幅(L-44-34)
Fig. 3. Stratigraphic sections of Lower Paleozoic from the Huocheng, Keguqin and Borohoro ranges, northern Yili Block
图 7 伊犁北部奥陶系斑脱岩锆石U-Pb定年结果
a、d. 样品18TS59-01和18TS59-11的锆石U-Pb年龄谐和图;b、e. 样品18TS59-01和18TS59-11代表性锆石CL图;c、f.样品18TS59-01和18TS59-11的206Pb/238U表观年龄;g.球粒陨石标准化稀土元素配分曲线(球粒陨石标准化值依据Sun and McDonough, 1989);h. Th-U图解
Fig. 7. Results of zircon U-Pb dating for the Ordovician bentonites from northern Yili Block
图 8 晚奥陶世全球古地理重建图
改编自Bond and Grasby(2017)和Yang et al.(2019)
Fig. 8. Global paleogeographic reconstruction for the Late Ordovician
图 9 全球奥陶纪斑脱岩分布及出现层位示意图
改编自Huff(2008)和Yang et al.(2019)
Fig. 9. Distributions and stratigraphic positions of the Ordovician bentonites worldwide
-
[1] Alexeiev, D. V., Ryazantsev, A. V., Kröner, A., et al., 2011. Geochemical Data and Zircon Ages for Rocks in a High-Pressure Belt of Chu-Yili Mountains, Southern Kazakhstan: Implications for the Earliest Stages of Accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences, 42(5): 805-820. https://doi.org/10.1016/j.jseaes.2010.09.004 [2] Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9 [3] Altaner, S. P., Hower, J., Whitney, G., et al., 1984. Model for K-Bentonite Formation: Evidence from Zoned K-Bentonites in the Disturbed Belt, Montana. Geology, 12(7): 412-415. https://doi.org/10.1130/0091-7613(1984)12412:mfkfef>2.0.co;2 doi: 10.1130/0091-7613(1984)12412:mfkfef>2.0.co;2 [4] An, F., Zhu, Y. F., Wei, S. N., et al., 2017. The Zircon U-Pb and Hf Isotope Constraints on the Basement Nature and Paleozoic Evolution in Northern Margin of Yili Block, NW China. Gondwana Research, 43: 41-54. https://doi.org/10.1016/j.gr.2015.11.014 [5] Avouac, J.P., Tapponnier, P., Bai, M., et al., 1993. Active Thrusting and Folding along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan. Journal of Geophysical Research: Solid Earth, 98(B4): 6755-6804. https://doi.org/10.1029/92jb01963 [6] Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005 [7] Biske, Y. S., Seltmann, R., 2010. Paleozoic Tian-Shan as a Transitional Region between the Rheic and Urals-Turkestan Oceans. Gondwana Research, 17(2-3): 602-613. https://doi.org/10.1016/j.gr.2009.11.014 [8] Bu, J.J., He, W.H., Zhang, K.X., et al., 2020. Evolution of the Paleo-Asian Ocean: Evidences from Paleontology and Stratigraphy. Earth Science, 45(3): 711-727 (in Chinese with English abstract). [9] Cao, Y. C., Wang, B., Jahn, B. M., et al., 2017. Late Paleozoic Arc Magmatism in the Southern Yili Block (NW China): Insights to the Geodynamic Evolution of the Balkhash-Yili Continental Margin, Central Asian Orogenic Belt. Lithos, 278-281: 111-125. https://doi.org/10.1016/j.lithos.2017.01.023 [10] Charvet, J., Shu, L. S., Laurent-Charvet, S., et al., 2011. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Science China Earth Sciences, 54(2): 166-184. https://doi.org/10.1007/s11430-010-4138-1 [11] Chen, J.F., Ma, X., Li, C., et al., 2017. Geochemical and Sr-Nd-Os Isotopic Characteristics of Middle Silurian Volcanic Rocks in Northwest of the Xiemisitai Mountains, West Junggar and Its Tectonic Implications. Rock and Mineral Analysis, 36(3): 318-325 (in Chinese with English abstract). http://www.researchgate.net/publication/318347264_Geochemical_and_Sr-Nd-Os_Isotopic_characteristics_of_Middle_Silurian_Volcanic_Rocks_in_Northwest_of_the_Xiemisitai_Mountains_West_Junggar_and_Its_Tectonic_Implications [12] Choulet, F., Cluzel, D., Faure, M., et al., 2012. New Constraints on the Pre-Permian Continental Crust Growth of Central Asia (West Junggar, China) by U-Pb and Hf Isotopic Data from Detrital Zircon. Terra Nova, 24(3): 189-198. https://doi.org/10.1111/j.1365-3121.2011.01052.x [13] Choulet, F., Faure, M., Cluzel, D., et al., 2016. Toward a Unified Model of Altaids Geodynamics: Insight from the Palaeozoic Polycyclic Evolution of West Junggar (NW China). Science China Earth Sciences, 59(1): 25-57. https://doi.org/10.1007/s11430-015-5158-7 [14] Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53: 469-500. https://doi.org/10.2113/0530469 [15] Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43(1): 299-331. https://doi.org/10.1146/annurev-earth-060614-105049 [16] Eizenhöfer, P. R., Zhao, G. C., Zhang, J., et al., 2014. Final Closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from Geochronological and Geochemical Data of Permian Volcanic and Sedimentary Rocks. Tectonics, 33(4): 441-463. https://doi.org/10.1002/2013tc003357 [17] Gao, J., Klemd, R., 2003. Formation of HP-LT Rocks and Their Tectonic Implications in the Western Tianshan Orogen, NW China: Geochemical and Age Constraints. Lithos, 66(1-2): 1-22. https://doi.org/10.1016/s0024-4937(02)00153-6 [18] Gao, J., Li, M. S., Xiao, X. C., et al., 1998. Paleozoic Tectonic Evolution of the Tianshan Orogen, Northwestern China. Tectonophysics, 287(1-4): 213-231. https://doi.org/10.1016/s0040-1951(98)80070-x [19] Gao, J., Qian, Q., Long, L.L., et al., 2009. Accretionary Orogenic Process of Western Tianshan, China. Geological Bulletin of China, 28(12): 1804-1816 (in Chinese with English abstract). http://www.researchgate.net/profile/Jilei_Li/publication/279571465_Accretionary_orogenic_process_of_Western_Tianshan_China/links/559a0a2e08ae5d8f393649cc.pdf [20] Gao, J., Zhang, L. F., Liu, S. W., 2000. The 40Ar/39Ar Age Record of Formation and Uplift of the Blueschists and Eclogites in the Western Tianshan Mountains. Chinese Science Bulletin, 45(11): 1047-1052. https://doi.org/10.1007/bf02884989 [21] Guo, W., Feng, Q.L., Khan, M.Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng-Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582 (in Chinese with English abstract). [22] Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3-4): 627-640. https://doi.org/10.1130/b26491.1 [23] Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. https://doi.org/10.1016/s0040-1951(00)00176-1 [24] Hu, A.Q., Wei, G.J., Zhang, J.B., et al., 2008. SHRIMP U-Pb Ages for Zircons of the Amphibolites and Tectonic Evolution Significance from the Wenquan Domain in the West Tianshan Mountains, Xinjiang, China. Acta Petrologica Sinica, 24(12): 2731-2740 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200812008.htm [25] Hu, Y.H., Liu, J., Zhou, M.Z., et al., 2009. An Overview of Ordovician and Silurian K-Bentonites. Geochimica, 38(4): 393-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200904011.htm [26] Hu, Y.H., Zhou, J.B., Song, B., et al., 2008. SHRIMP Zircon U-Pb Dating of the Top Ordovician Bentonite in the Wangjiawan Section of Yichang, Hubei, China. Scientia Sinica Terrae, 38(1): 72-77 (in Chinese). doi: 10.1007/s11430-008-0028-1 [27] Huang, Z. Y., Long, X. P., Kröner, A., et al., 2013. Geochemistry, Zircon U-Pb Ages and Lu-Hf Isotopes of Early Paleozoic Plutons in the Northwestern Chinese Tianshan: Petrogenesis and Geological Implications. Lithos, 182-183: 48-66. https://doi.org/10.1016/j.lithos.2013.09.009 [28] Huff, W. D., 2008. Ordovician K-Bentonites: Issues in Interpreting and Correlating Ancient Tephras. Quaternary International, 178(1): 276-287. https://doi.org/10.1016/j.quaint.2007.04.007 [29] Huff, W. D., Bergström, S. M., Kolata, D. R., 1992. Gigantic Ordovician Volcanic Ash Fall in North America and Europe: Biological, Tectonomagmatic, and Event-Stratigraphic Significance. Geology, 20(10): 875-878. https://doi.org/10.1130/0091-7613(1992)0200875:govafi>2.3.co;2 doi: 10.1130/0091-7613(1992)0200875:govafi>2.3.co;2 [30] Huff, W.D., Dronov, A., Sell, B.K., et al., 2014. Tectonic Setting of Explosive Volcanic Eruptions in the Upper Ordovician of the Siberian Platform. Estonian Journal of Earth Sciences, 63: 244-250. https://doi.org/10.3176/earth.2014.26 [31] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001 [32] Jolivet, M., Heilbronn, G., Robin, C., et al., 2013. Reconstructing the Late Palaeozoic-Mesozoic Topographic Evolution of the Chinese Tian Shan: Available Data and Remaining Uncertainties. Advances in Geosciences, 37: 7-18. https://doi.org/10.5194/adgeo-37-7-2013 [33] Kröner, A., Hegner, E., Lehmann, B., et al., 2008. Palaeozoic Arc Magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP Zircon Ages and Whole-Rock Nd Isotopic Systematics. Journal of Asian Earth Sciences, 32(2-4): 118-130. https://doi.org/10.1016/j.jseaes.2007.10.013 [34] Liu, H. S., Wang, B., Shu, L. S., et al., 2014. Detrital Zircon Ages of Proterozoic Meta-Sedimentary Rocks and Paleozoic Sedimentary Cover of the Northern Yili Block: Implications for the Tectonics of Microcontinents in the Central Asian Orogenic Belt. Precambrian Research, 252: 209-222. https://doi.org/10.1016/j.precamres.2014.07.018 [35] Long, L. L., Gao, J., Klemd, R., et al., 2011. Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen: Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt. Lithos, 126(3-4): 321-340. https://doi.org/10.1016/j.lithos.2011.07.015 [36] Ludwig, K.R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. [37] Mitchell, C. E., Adhya, S., Bergström, S. M., et al., 2004. Discovery of the Ordovician Millbrig K-Bentonite Bed in the Trenton Group of New York State: Implications for Regional Correlation and Sequence Stratigraphy in Eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(2-4): 331-346. https://doi.org/10.1016/j.palaeo.2004.02.037 [38] Qian, Q., Gao, J., Klemd, R., et al., 2009. Early Paleozoic Tectonic Evolution of the Chinese South Tianshan Orogen: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemistry of Basaltic and Dioritic Rocks from Xiate, NW China. International Journal of Earth Sciences, 98(3): 551-569. https://doi.org/10.1007/s00531-007-0268-x [39] Ren, R., Han, B. F., Guan, S. W., et al., 2018. Linking the Southern West Junggar Terrane to the Yili Block: Insights from the Oldest Accretionary Complexes in West Junggar, NW China. Journal of Asian Earth Sciences, 159: 279-293. https://doi.org/10.1016/j.jseaes.2017.03.011 [40] Ren, R., Han, B. F., Xu, Z., et al., 2014. When did the Subduction First Initiate in the Southern Paleo-Asian Ocean: New Constraints from a Cambrian Intra-Oceanic Arc System in West Junggar, NW China. Earth and Planetary Science Letters, 388: 222-236. https://doi.org/10.1016/j.epsl.2013.11.055 [41] Safonova, I. Y., 2009. Intraplate Magmatism and Oceanic Plate Stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geology Reviews, 35(2): 137-154. https://doi.org/10.1016/j.oregeorev.2008.09.002 [42] Safonova, I.Y., Komiya, T., Romer, R. L., et al., 2018. Supra-Subduction Igneous Formations of the Char Ophiolite Belt, East Kazakhstan. Gondwana Research, 59: 159-179. https://doi.org/10.1016/j.gr.2018.04.001 [43] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 [44] Shen, S.Z., Zhang, H., 2017. What Caused the Five Mass Extinctions? Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese). doi: 10.1360/N972017-00013 [45] Shu, L. S., Wang, B., Yang, F., et al., 2003. Polyphase Tectonic Events and Cenozoic Basin-Range Coupling in the Tianshan Belt, Northwestern China. Acta Geologica Sinica (English Edition), 77(4): 457-467. https://doi.org/10.1111/j.1755-6724.2003.tb00126.x [46] Su, W.B., He, L.Q., Wang, Y.B., et al., 2002. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Scientia Sinica Terrae, 32(3): 207-219 (in Chinese). [47] Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111-130. https://doi.org/10.1016/j.gr.2008.06.004 [48] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [49] Thompson, J. M., Meffre, S., Danyushevsky, L., 2018. Impact of Air, Laser Pulse Width and Fluence on U-Pb Dating of Zircons by LA-ICPMS. Journal of Analytical Atomic Spectrometry, 33(2): 221-230. https://doi.org/10.1039/c7ja00357a [50] Wang, B., Faure, M., Cluzel, D., et al., 2006. Late Paleozoic Tectonic Evolution of the Northern West Chinese Tianshan Belt. Geodinamica Acta, 19(3-4): 237-247. https://doi.org/10.3166/ga.19.237-247 [51] Wang, B., Chen, Y., Zhan, S., et al., 2007. Primary Carboniferous and Permian Paleomagnetic Results from the Yili Block (NW China) and Their Implications on the Geodynamic Evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters, 263(3-4): 288-308. https://doi.org/10.1016/j.epsl.2007.08.037 [52] Wang, B., Faure, M., Shu, L. S., et al., 2008. Paleozoic Tectonic Evolution of the Yili Block, Western Chinese Tianshan. Bulletin de la Société Géologique de France, 179(5): 483-490. https://doi.org/10.2113/gssgfbull.179.5.483 [53] Wang, B., Jahn, B. M., Shu, L. S., et al., 2012. Middle-Late Ordovician Arc-Type Plutonism in the NW Chinese Tianshan: Implication for the Accretion of the Kazakhstan Continent in Central Asia. Journal of Asian Earth Sciences, 49: 40-53. https://doi.org/10.1016/j.jseaes.2011.11.005 [54] Wang, B., Liu, H. S., Shu, L. S., et al., 2014. Early Neoproterozoic Crustal Evolution in Northern Yili Block: Insights from Migmatite, Orthogneiss and Leucogranite of the Wenquan Metamorphic Complex in the NW Chinese Tianshan. Precambrian Research, 242: 58-81. https://doi.org/10.1016/j.precamres.2013.12.006 [55] Wang, M., Zhang, J. J., Zhang, B., et al., 2018. Geochronology and Geochemistry of the Borohoro Pluton in the Northern Yili Block, NW China: Implication for the Tectonic Evolution of the Northern West Tianshan Orogen. Journal of Asian Earth Sciences, 153: 154-169. https://doi.org/10.1016/j.jseaes.2017.03.024 [56] Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3-4): 303-341. https://doi.org/10.1016/j.earscirev.2012.04.001 [57] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [58] Xia, B., Zhang, L. F., Bader, T., 2014. Zircon U-Pb Ages and Hf Isotopic Analyses of Migmatite from the 'Paired Metamorphic Belt' in Chinese SW Tianshan: Constraints on Partial Melting Associated with Orogeny. Lithos, 192-195: 158-179. https://doi.org/10.1016/j.lithos.2014.02.003 [59] Xiao, W.J., Li, J.L., Song, D.F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905019.htm [60] Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008 [61] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [62] XBGMR, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing (in Chinese). [63] Xu, X.Y., Li, X.M., Ma, Z.P., et al., 2006. LA-ICPMS Zircon U-Pb Dating of Gabbro from the Bayingou Ophiolite in the Northern Tianshan Mountains. Acta Geologica Sinica, 80(8): 1168-1176 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200608020.htm [64] Yang, G. X., Li, Y. J., Xiao, W. J., et al., 2015. OIB-Type Rocks within West Junggar Ophiolitic Mélanges: Evidence for the Accretion of Seamounts. Earth-Science Reviews, 150: 477-496. https://doi.org/10.1016/j.earscirev.2015.09.002 [65] Yang, H.B., Gao, P., Li, B., et al., 2005. The Geological Character of the Sinian Dalubayi Ophiolite in the West Tianshan, Xinjiang. Xinjiang Geology, 23(2): 123-126 (in Chinese with English abstract). [66] Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13-25. https://doi.org/10.1016/j.epsl.2019.04.020 [67] Zhang, X.R., Zhao, G. C., Sun, M., et al., 2016. Tectonic Evolution from Subduction to Arc-Continent Collision of the Junggar Ocean: Constraints from U-Pb Dating and Hf Isotopes of Detrital Zircons from the North Tianshan Belt, NW China. Geological Society of America Bulletin, 128(3-4): 644-660. https://doi.org/10.1130/b31230.1 [68] Zhong, L. L., Wang, B., Alexeiev, D. V., et al., 2017. Paleozoic Multi-Stage Accretionary Evolution of the SW Chinese Tianshan: New Constraints from Plutonic Complex in the Nalati Range. Gondwana Research, 45: 254-274. https://doi.org/10.1016/j.gr.2016.12.012 [69] Zhu, Y.F., Xu, X., 2006. The Discovery of Early Ordovician Ophiolite Melange in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica, 22(12): 2833-2842 (in Chinese with English abstract). http://www.researchgate.net/publication/283405266_The_discovery_of_Early_Ordovician_ophiolite_melange_in_Taerbahatai_Mts [70] 卜建军, 何卫红, 张克信, 等, 2020. 古亚洲洋的演化: 来自古生物地层学方面的证据. 地球科学, 45(3): 711-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003001.htm [71] 陈家富, 马旭, 李超, 等, 2017. 西准噶尔谢米斯台山西北段中志留世火山岩地球化学与Sr-Nd-Os同位素特征及其地质意义. 岩矿测试, 36(3): 318-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201703015.htm [72] 高俊, 钱青, 龙灵利, 等, 2009. 西天山的增生造山过程. 地质通报, 28(12): 1804-1816. doi: 10.3969/j.issn.1671-2552.2009.12.013 [73] 郭伟, 冯庆来, Khan, M.Z., 2021. 重庆焦页143-5井五峰组-龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572-582. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102013.htm [74] 胡霭琴, 韦刚健, 张积斌, 等, 2008. 西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 24(12): 2731-2740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812008.htm [75] 胡艳华, 刘健, 周明忠, 等, 2009. 奥陶纪和志留纪钾质斑脱岩研究评述. 地球化学, 38(4): 393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010 [76] 胡艳华, 周继彬, 宋彪, 等, 2008. 中国湖北宜昌王家湾剖面奥陶系顶部斑脱岩SHRIMP锆石U-Pb定年. 中国科学: 地球科学, 38(1): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200801007.htm [77] 沈树忠, 张华, 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201711007.htm [78] 苏文博, 何龙清, 王永标, 等, 2002. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层. 中国科学: 地球科学, 32(3): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203004.htm [79] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905019.htm [80] 新疆维吾尔自治区地质矿产勘查开发局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社. [81] 徐学义, 李向民, 马中平, 等, 2006. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据. 地质学报, 80(8): 1168-1176. doi: 10.3321/j.issn:0001-5717.2006.08.010 [82] 杨海波, 高鹏, 李兵, 等, 2005. 新疆西天山达鲁巴依蛇绿岩地质特征. 新疆地质, 23(2): 123-126. doi: 10.3969/j.issn.1000-8845.2005.02.004 [83] 朱永峰, 徐新, 2006. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩. 岩石学报, 22(12): 2833-2842. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612001.htm -
dqkxzx-46-8-2804-附表.docx