Sedimentary Evolution and Geological Significance of the Dongsha Submarine Canyon in the Northern South China Sea
-
摘要: 为揭示南海北部东沙海底峡谷沉积演化及其资源效应,利用高分辨率二维多道地震与多波束测深数据,对该峡谷中-上游段的沉积层序、地貌特征及沉积构型展开剖析.东沙海底峡谷上游段表现为6个分支峡谷,中游段则汇聚为2条主峡谷,峡谷头部广泛发育分支水道.峡谷中游段于早中新世晚期开始发育,处于岩浆岩体和构造凸起之间;上游段分支峡谷形成于晚中新世以来,其与峡谷头部分支水道的形成分别受断裂体系和底流作用影响较大.东沙海底峡谷演化分为3个阶段:(1)早中新世晚期-中中新世,峡谷初始发育阶段;(2)晚中新世,峡谷拓展阶段;(3)上新世以来,现代峡谷发育阶段.东沙海底峡谷向马尼拉海沟提供了充足的富有机质沉积物,构成了马尼拉海沟增生楔天然气水合物形成的重要物质基础.Abstract: Based on high-resolution 2D multiple channel seismic data and multiple beams, this study investigated the sedimentary sequence, morphological features and depositional architectures of the Dongsha submarine canyon (DSC), to reveal the sedimentary evolution of the DSC and its geological significance in resources exploration. The results show that the upper segment of the DSC consists of six branches with widespread dendritic channels around the canyon heads, which have merged into two main branches at the middle segment. The middle segment of the DSC was initially formed at the late Early Miocene, when the canyon was confined between the tectonic uplift and igneous body. The upper segment of the DSC has begun to extend landwards since the Late Miocene; the formation of the upper-segment branches and dendritic channels at the canyon heads was significantly influenced by faults and strong bottom currents, respectively. The evolution of the DSC could be divided into three stages: (1) The initial development stage from late Early Miocene-Middle Miocene, (2) the expansion stage in Late Miocene, and (3) the modern development stage from Pliocene-present. Since the Late Miocene, the DSC has provided Manila trench with a great amount of organic-rich sediments, which are important materials for producing gas hydrates in the accretionary wedge of the Manila subduction zone.
-
图 1 研究区所处区域地质背景(a);研究区区域海洋背景(b);研究区海底地貌及测线位置(c)
图b中1~4分别代表东沙海底峡谷、台湾峡谷、澎湖峡谷群和高屏峡谷
Fig. 1. Index map displaying the geological background of the study area in the northern South China Sea (a); index map showing the oceanographic background of the study area (b); zoom-in bathymetric map displaying the location of the seismic lines (c)
-
[1] Alford, M. H., Peacock, T., MacKinnon, J. A., et al., 2015. The Formation and Fate of Internal Waves in the South China Sea. Nature, 521(7550): 65-69. https://doi.org/10.1038/nature14399 [2] Bischoff, A. P., Nicol, A., Beggs, M., 2017. Stratigraphy of Architectural Elements in a Buried Volcanic System and Implications for Hydrocarbon Exploration. Interpretation, 5(3): 141-159. https://doi.org/10.1190/INT-2016-0201.1 [3] Boswell, R., Frye, M., Shelander, D., et al., 2012. Architecture of Gas-Hydrate-Bearing Sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern Deepwater Gulf of Mexico. Marine and Petroleum Geology, 34(1): 134-149. https://doi.org/10.1016/j.marpetgeo.2011.08.010 [4] Carter, L., Gavey, R., Talling, P. J., et al., 2014. Insights into Submarine Geohazards from Breaks in Subsea Telecommunication Cables. Oceanography, 27(2): 58-67. https://doi.org/10.5670/oceanog.2014.40 [5] Chen, F., Su, X., Nurnberg, D., et al., 2006. Lithologic Features of Sediments Characterized by High Sedimentation Rates since the Last Glacial Maximum from Dongsha Area of the South China Sea. Marine Geology and Quaternary Geology, 26(6): 9-17 (in Chinese with English abstract). http://www.researchgate.net/publication/266852229_Lithologic_features_of_sediments_characterized_by_high_sedimentation_rates_since_the_Last_Glacial_Maximum_from_Dongsha_area_of_the_South_China_Sea [6] Chen, Z. H., Wu, N. Y., Li, J. B., 2010. Pathway of Fluid Migration for Gas Hydrate in the Accretionary Wedge of Manila Subduction Zone, Northeastern South China Sea. Geoscience, 24(3): 441-449 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geoscience_thesis/0201254375955.html [7] Ding, W. W., Li, J. B., Li, J., 2010. Forming Mechanism of the Submarine Canyon on the North Slope of the South China Sea. Journal of Marine Science, 28(1): 26-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY201001005.htm [8] Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932 [9] Ding, W. W., Wang, Y. M., Chen, H. L., et al., 2004. Deformation Characters and Its Tectonic Evolution of the Southwest Taiwan Basin. Journal of Zhejiang University (Science Edition), 31(2): 216-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HZDX200402023.htm [10] Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of Intraplate Seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016GC006792 [11] Geng, M. H., Song, H. B., Guan, Y. X., et al., 2017. The Distribution and Characteristics of very Large Subaqueous Sand Dunes in the Dongsha Region of the Northern South China Sea. Chinese Journal of Geophysics, 60(2): 628-638 (in Chinese with English abstract). http://www.researchgate.net/publication/316880854_The_distribution_and_characteristics_of_very_large_subaqueous_sand_dunes_in_the_Dongsha_region_of_the_northern_South_China_Sea [12] Gong, Z. S., Li, S. T., Xie, T. J., et al., 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Science Press, Beijing (in Chinese). [13] Harris, P. T., Whiteway, T., 2011. Global Distribution of Large Submarine Canyons: Geomorphic Differences between Active and Passive Continental Margins. Marine Geology, 285(1-4): 69-86. https://doi.org/10.1016/j.margeo.2011.05.008 [14] He, M., Zhu, W. L., Wu, Z., et al., 2019. Neotectonic Movement Characteristics and Hydrocarbon Accumulation of the Pearl River Mouth Basin. China Offshore Oil and Gas, 31(5): 9-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB2019S1015.htm [15] He, M., Zhuo, H. T., Chen, W. T., et al., 2017. Sequence Stratigraphy and Depositional Architecture of the Pearl River Delta System, Northern South China Sea: An Interactive Response to Sea Level, Tectonics and Paleoceanography. Marine and Petroleum Geology, 84: 76-101. https://doi.org/10.1016/j.marpetgeo.2017.03.022 [16] Huang, Q. Y., 2017. Geological Ages of Taiwan Stratigraphy and Tectonic Events. Science in China (Series D), 47(4): 394-405 (in Chinese with English abstract). [17] Jin, J. P., Wang, X. J., He, M., et al., 2020. Downward Shift of Gas Hydrate Stability Zone Due to Seafloor Erosion in the Eastern Dongsha Island, South China Sea. Journal of Oceanology and Limnology, 38(4): 1188-1200. https://doi.org/10.1007/s00343-020-0064-z [18] Liu, C. L., Meng, Q. G., Li, C. F., et al., 2017. Characterization of Natural Gas Hydrate and Its Deposits Recovered from the Northern Slope of the South China Sea. Earth Science Frontiers, 24(4): 41-50 (in Chinese with English abstract). http://www.researchgate.net/publication/319455791_Characterization_of_natural_gas_hydrate_and_its_deposits_recovered_from_the_northern_slope_of_the_South_China_Sea [19] Luan, X. W., Ran, W. M., Wang, K., et al., 2019. New Interpretation for the Main Sediment Source of the Rapidly Deposited Sediment Drifts on the Northern Slope of the South China Sea. Journal of Asian Earth Sciences, 171: 118-133. https://doi.org/10.1016/j.jseaes.2018.11.004 [20] Luo, W. D., Zhou, J., Li, X. J., et al., 2018. Morphology and Structure and Evolution of West Basin Canyon, South China Sea. Earth Science, 43(6): 2172-2183 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806029.htm [21] Maier, K. L., Johnson, S. Y., Hart, P., 2018. Controls on Submarine Canyon Head Evolution: Monterey Canyon, Offshore Central California. Marine Geology, 404: 24-40. https://doi.org/10.1016/j.margeo.2018.06.014 [22] Pomar, L., Morsilli, M., Hallock, P., et al., 2012. Internal Waves, an Under-Explored Source of Turbulence Events in the Sedimentary Record. Earth-Science Reviews, 111(1-2): 56-81. https://doi.org/10.1016/j.earscirev.2011.12.005 [23] Ren, J. F., Sun, M., Han, B., 2021. A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea. Earth Science, 46(3): 1058-1071 (in Chinese with English abstract). [24] Shu, Y. Q., Wang, Q., Zu, T. T., 2018. Progress on Shelf and Slope Circulation in the Northern South China Sea. Science China Earth Sciences, 61(5): 560-571. https://doi.org/10.1007/s11430-017-9152-y [25] Su, M., Lin, Z. X., Wang, C., et al., 2020. Geomorphologic and Infilling Characteristics of the Slope-Confined Submarine Canyons in the Pearl River Mouth Basin, Northern South China Sea. Marine Geology, 424: 106166. https://doi.org/10.1016/j.margeo.2020.106166 [26] Su, M., Sha, Z. B., Qiao, S. H., et al., 2015. Sedimentary Evolution since Quaternary in the Shenhu Hydrate Drilling Area, Northern South China Sea. Chinese Journal of Geophysics, 58(8): 2975-2985 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/1135892?mode=full&submit_simple=Show+full+item+record [27] Su, M., Xie, X. N., Wang, Z. F., et al., 2013. Sedimentary Evolution of the Central Canyon System in Qiongdongnan Basin, Northern South China Sea. Acta Petrolei Sinica, 34(3): 467-468 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201303008.htm [28] Sun, J. L., Xu, H. L., Li, Y. M., 2009. Neotectonics in the Northeastern South China Sea and Its Dynamic Mechanism. Marine Geology and Quaternary Geology, 29(3): 61-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200903012.htm [29] Sun, Q. L., Alves, T. M., Zhao, M. H., et al., 2020. Post-rift Magmatism on the Northern South China Sea Margin. Geological Society of America Bulletin, In Press. https://doi.org/10.1130/B35471.1 [30] Talling, P. J., 2014. On the Triggers, Resulting Flow Types and Frequencies of Subaqueous Sediment Density Flows in Different Settings. Marine Geology, 352: 155-182. https://doi.org/10.1016/j.margeo.2014.02.006 [31] Wang, H. L., Zhao, Q., Huang, J. L., et al., 2019. Morphological Structure and Evolution of Accretionary Wedge in the Northern Part of Manila Subduction Zone. Marine Sciences, 43(8): 1-16 (in Chinese with English abstract). [32] Xie, X. N., Ren, J. Y., Pang, X., et al., 2019. Stratigraphic Architectures and Associated Unconformities of Pearl River Mouth Basin during Rifting and Lithospheric Breakup of the South China Sea. Marine Geophysical Research, 40(2): 129-144. https://doi.org/10.1007/s11001-019-09378-6 [33] Xie, Z. Y., Sun, L. T., Pang, X., et al., 2017. Origin of the Dongsha Event in the South China Sea. Marine Geophysical Research, 38(4): 357-371. https://doi.org/10.1007/s11001-017-9321-8 [34] Yao, B. C., 1996. Tectonic Evolution of the South China Sea in Cenozoic. Marine Geology and Quaternary Geology, 16(2): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hydz602.000.htm [35] Yin, S. R., Wang, L. L., Guo, Y. Q., et al., 2015. Morphology, Sedimentary Characteristics, and Origin of the Dongsha Submarine Canyon in the Northeastern Continental Slope of the South China Sea. Science in China (Series D), 45(3): 275-289 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201506012.htm [36] You, L., Zhong, J., Zhang, Y. C., et al., 2018. Petrography-Geochemistry and Source Significance of Western Canyon Channel of Northern South China Sea. Earth Science, 43(2): 514-524 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQKX201802013&dbcode=CJFD&year=2018&dflag=pdfdown [37] Zhao, F., Alves, T. M., Wu, S. G., et al., 2016. Prolonged Post-Rift Magmatism on Highly Extended Crust of Divergent Continental Margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445: 79-91. https://doi.org/10.1016/j.epsl.2016.04.001 [38] Zhao, J. B., Zhong, G. F., 2018. A Review on Geomorphic Response of Submarine Canyons to Tectonic Deformation. Marine Geology Frontiers, 34(12): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201812001.htm [39] Zhao, S. J., Wu, S. G., Shi, H. S., et al., 2012. Structures and Dynamic Mechanism Related to the Dongsha Movement at the Northern Margin of South China Sea. Progress in Geophysics, 27(3): 1008-1019 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201203023.htm [40] 陈芳, 苏新, Nurnberg, D., 等, 2006. 南海东沙海域末次冰期最盛期以来的沉积特征. 海洋地质与第四纪地质, 26(6): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200606001.htm [41] 陈志豪, 吴能友, 李家彪, 2010. 马尼拉海沟俯冲带增生楔中天然气水合物的流体运移通道. 现代地质, 24(3): 441-449. doi: 10.3969/j.issn.1000-8527.2010.03.004 [42] 丁巍伟, 李家彪, 李军, 2010. 南海北部陆坡海底峡谷形成机制探讨. 海洋学研究, 28(1): 26-31. doi: 10.3969/j.issn.1001-909X.2010.01.004 [43] 丁巍伟, 王渝明, 陈汉林, 等, 2004. 台西南盆地构造特征与演化. 浙江大学学报(理学版), 31(2): 216-220. doi: 10.3321/j.issn:1008-9497.2004.02.023 [44] 耿明会, 宋海斌, 关永贤, 等, 2017. 南海北部东沙海域巨型水下沙丘的分布及特征. 地球物理学报, 60(2): 628-638. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702017.htm [45] 龚再升, 李思田, 谢泰俊, 等, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社. [46] 何敏, 朱伟林, 吴哲, 等, 2019. 珠江口盆地新构造运动特征与油气成藏. 中国海上油气, 31(5): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905002.htm [47] 黄奇瑜, 2017. 台湾岛的年龄. 中国科学(D辑): 47(4): 394-405. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704003.htm [48] 刘昌岭, 孟庆国, 李承峰, 等, 2017. 南海北部陆坡天然气水合物及其赋存沉积物特征. 地学前缘, 24(4): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704008.htm [49] 罗伟东, 周娇, 李学杰, 等, 2018. 南海海盆盆西峡谷的形态与结构及形成演化. 地球科学, 43(6): 2172-2183. doi: 10.3799/dqkx.2017.615 [50] 任金锋, 孙鸣, 韩冰, 2021. 南海南沙海槽大型海底滑坡的发育特征及成因机制. 地球科学, 46(3): 1058-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202103022.htm [51] 苏明, 沙志彬, 乔少华, 等, 2015. 南海北部神狐海域天然气水合物钻探区第四纪以来的沉积演化特征. 地球物理学报, 58(8): 2975-2985. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508030.htm [52] 苏明, 解习农, 王振峰, 等, 2013. 南海北部琼东南盆地中央峡谷体系沉积演化. 石油学报, 34(3): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303008.htm [53] 孙金龙, 徐辉龙, 李亚敏, 2009. 南海东北部新构造运动及其动力学机制. 海洋地质与第四纪地质, 29(3): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200903012.htm [54] 王红丽, 赵强, 黄金莲, 等, 2019. 马尼拉俯冲带北段增生楔形态结构及演化过程. 海洋科学, 43(8): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201908001.htm [55] 姚伯初, 1996. 南海海盆新生代的构造演化史. 海洋地质与第四纪地质, 16(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ602.000.htm [56] 殷绍如, 王嘹亮, 郭依群, 等, 2015. 东沙海底峡谷的地貌沉积特征及成因. 中国科学(D辑), 45(3): 275-289. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201503003.htm [57] 尤丽, 钟佳, 张迎朝, 等, 2018. 南海北部中央峡谷水道的岩相-地球化学特征及其源区性质. 地球科学, 43(2): 514-524. doi: 10.3799/dqkx.2017.588 [58] 赵家斌, 钟广法, 2018. 构造活动对海底峡谷地貌形态的影响, 海洋地质前沿, 34(12): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201812001.htm [59] 赵淑娟, 吴时国, 施和生, 等, 2012. 南海北部东沙运动的构造特征及动力学机制探讨. 地球物理学进展, 27(3): 1008-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203023.htm