Geochronology, Geochemistry and Petrogenesis of Late Permian Fe-Ti-P-Rich Ultramafic Rocks in Yunkai Terrane, South China
-
摘要: 为了更好地理解华南板块南缘二叠纪与三叠纪之交复杂的构造格局,通过岩石学、地球化学和年代学的方法,对粤西云开地区新发现的3处晚二叠世超镁铁质侵入岩进行了研究.这些岩石位于云开地块东缘的阳春三甲和地块中部的高州大井、东岸等地,呈小岩株、岩脉产出于云开岩群的片岩、变粒岩中.它们的主要岩性为辉石岩、角闪石岩、角闪岩和斜长角闪岩,锆石SHRIMP和LA-ICP-MS U-Pb定年获得的岩石形成时代为253~259 Ma.超镁铁质侵入岩富(含钛)磁铁矿、榍石和磷灰石,显示出显著富集Fe-Ti-P的地球化学特征,并表现为轻稀土中等富集,微量元素亏损Nb-Ta-Zr-Hf的特征.全岩εNd(t)集中在-3.4~-10.0之间,锆石εHf(t)介于-1.2~-9.5,锆石δ18O集中于7.01‰~9.71‰,表现为富集岩石圈地幔源区特征.研究认为,二叠纪峨眉山地幔柱活动(~259 Ma)的影响范围可能波及到了粤桂交界的云开地区,地幔柱热流导致岩石圈地幔部分熔融形成玄武质岩浆,经不同程度的结晶分异作用,最终形成了云开晚二叠世富Fe-Ti-P超镁铁质岩.Abstract: In order to better understand the complex tectonic framework on the southern margin of South China block (SCB) between Permian and Triassic, the petrology, geochemistry and chronology of three newly discovered Late Permian ultramafic intrusions in the Yunkai area of West Guangdong were studied. These rocks are located at Yangchun Sanjia on the eastern edge of the Yunkai terrane and at Gaozhou Dajing and Dong'an in the middle of the Yunkai terrane. They are intrusive rocks in schist and paragneiss of the Yunkai Group and out putted as laccoliths or dykes which main lithologies are pyroxenite, hornblendite, amphibolite and plagioclase amphibolite. Zircon SHRIMP and LA-ICP-MS U-Pb age of ultramafic rocks are 253-259 Ma. These intrusive rocks are rich in titanomagnetite, titanite and apatite, showing strong enrichment of Fe-Ti-P, and exhibiting moderate enrichment of LREE and depletion in Nb-Ta-Zr-Hf. Ultramafic rocks exhibit relatively low εNd(t)(-3.4 to -10.0) of whole rocks, εHf(t) (-1.2 to -9.5) and δ18O(7.01‰-9.71‰) values of zircon, showing the enriched lithosphere mantle source affinity. In this study, it is suggested that the influence range of Permian Emeishan mantle plume(~259 Ma) may have spread to Yunkai area. Yunkai Late Permian ultramafic intrusions are generated from the partial melting of the lithospheric mantle which resulted from heat flow of mantle plume. Fe-Ti-P-rich minerals were assembled at the late stage of magma crystallization.
-
Key words:
- Yunkai terrane /
- ultramafic /
- Emeishan mantle plume /
- zircon Hf-O isotope /
- geochemistry
-
图 1 华南板块二叠纪-三叠纪构造格局与主要岩浆岩分布
Fig. 1. Structural framework and igneous rocks of South China block in the Permian-Triassic
图 3 典型野外露头及岩石镜下特征
a.大井上平废弃采石场外貌;b.角闪石岩,角闪石粒径粗大,集中在3~15 mm;c.东岸上垌超镁铁质岩露头不佳,所见多为风化壳内的准原地滚石;d~e.三甲(磷灰石磁铁矿)角闪石岩,含钛磁铁矿呈海绵陨铁状-浸染状填充在角闪石晶间,呈堆晶结构;f.三甲黑云母辉石岩;g~h.大井上平角闪岩,粗大的角闪石晶内及晶间包裹大量细小的磷灰石、榍石和含钛磁铁矿;i.东岸上平石榴斜长角闪岩.图 3e为正交平光,其他为单偏光.Hbl.角闪石;Mag.磁铁矿;Ap.磷灰石;Ttn.榍石;Grt.石榴石;Pl.斜长石;Cpx.单斜辉石;Bt.黑云母
Fig. 3. Field and microscopic photos of typical ultramafic rocks
图 4 变基性岩原岩判别(a)和TAS图解(b)
图a据Misra(1971); 图b据Middlemost(1994),矾山数据引自Hou et al.(2015)
Fig. 4. Identification of the origin of metabasites (a) and TAS classification diagram(b) of the ultramafic rocks
图 8 超镁铁质岩SiO2-εNd(t)(a)和ISr-εNd(t)(b)图解
峨眉山玄武岩和矾山数据分别引自Luo et al.(2014)和Hou et al.(2015)
Fig. 8. SiO2-εNd(t) (a) and ISr-εNd(t) (b) diagrams of ultramafic rocks
图 12 大井上平角闪岩(15DJ13)锆石Hf-O同位素组成
竹雅、石板辉长岩数据周岱等(2017);龙虎岗辉绿岩数据引自Wang et al.(2013)
Fig. 12. Zircon Hf-O isotopic element of amphibolite (15DJ13) from Dajing Shangping
图 13 超镁铁质岩Th/Yb-Nb/Yb图解(a)和TiO2/Yb-Nb/Yb图解(b)
底图据Pearce(2008);云开早古生代基性岩据Wang et al.(2013)和周岱等(2017)
Fig. 13. Discrimination diagrams of Th/Yb vs. Nb/Y (a) and TiO2/Yb vs. Nb/Yb (b) for the ultramafic rocks
表 1 云开地块及周边地区二叠纪至三叠纪典型岩浆岩统计
Table 1. The typical igneous rocks in Yunkai terrane and adjacent area between Permian and Triassic
分布区域 岩体名称 主要岩性 形成年龄(Ma) 数据来源 桂东南 大容山-六万大山-十万大山 堇青石黑云母花岗岩、石榴石紫苏辉石花岗岩 248~251 Jiao et al., 2015;王磊等,2016 桂东南 那丽 堇青石黑云母二长花岗岩 262~265 贾小辉等,2012;Li et al., 2016 粤西 阳春三甲、高州上平-上垌 辉石岩、角闪石岩 253~259 本文 粤西 岑溪安平 辉长岩、辉绿岩 248~252 Xu et al., 2018 粤西 新兴 黑云母二长花岗岩 240~224 未发表数据 粤西 那蓬 混合花岗岩 245~231 柯贤忠等,2018 川滇、黔、桂西 峨眉山大火成岩省 玄武岩、辉长岩、辉绿岩 259 Zhong et al., 2014;Fan et al., 2008 海南 五指山、尖峰岭、黎母岭 花岗岩、碱性岩、辉长岩 280~220 谢才富等,2006;Li et al., 2006 -
[1] Charoy, C., Barbey, P., 2008. Ferromagnesian Silicate Association in S-Type Granites: The Darongshan Granitic Complex (Guangxi, South China). Bulletin de la Société Géologique de France, 179(1): 13-27. https://doi.org/10.2113/gssgfbull.179.1.13 [2] Chen, C.H., Hsieh, P.S., Lee, C.Y., et al., 2011. Two Episodes of the Indosinian Thermal Event on the South China Block: Constraints from LA-ICP-MS U-Pb Zircon and Electron Microprobe Monazite Ages of the Darongshan S-Type Granitic Suite. Gondwana Research, 19(4): 1008-1023. doi: 10.1016/j.gr.2010.10.009 [3] Chen, X.Y., Wang, Y.J., Fan, W.M., et al., 2011. Zircon LA-ICP-MS U-Pb Dating of Granitic Gneisses from Wuzhishan Area, Hainan, and Geological Significances. Geochimica, 40(5): 454-463(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252979485.html [4] Chen, Z.C., Lin, W., Faure, M., et al., 2013. Geochronological Constraint of Early Mesozoic Tectonic Event at Northeast Vietnam. Acta Petrologica Sinica, 29(5): 1825-1840(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305027.htm [5] Cheng, S.B., Fu, J.M., Chen, X.Q., et al., 2012. Zircon SHRIMP U-Pb Dating and Geochemical Characteristics of Haiyangshan Monzogranitic Batholith, Northeast Guangxi. Geology and Mineral Resources of South China, 28(2): 132-140(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201202007.htm [6] Dawson, J., Hill, P., Kinny, P., 2001. Mineral Chemistry of a Zircon-Bearing, Composite, Veined and Metasomatised Upper-Mantle Peridotite Xenolith from Kimberlite. Contributions to Mineralogy and Petrology, 140: 720-733. doi: 10.1007/s004100000216 [7] Fan, W.M., Zhang, C.H., Wang, Y.J., et al., 2008. Geochronology and Geochemistry of Permian Basalts in Western Guangxi Province, Southwest China: Evidence for Plume-Lithosphere Interaction. Lithos, 102(1/2): 218-236. https://doi.org/10.1016/j.lithos.2007.09.019 [8] Faure, M., Lepvrier, C., van Vuong, N., et al., 2014. The South China Block-Indochina Collision: Where, When, and How? Journal of Asian Earth Sciences, 79 (Part A): 260-274. https://doi.org/10.1016/j.jseaes.2013.09.022 [9] Faure, M., Lin, W., Chu, Y., et al., 2016. Triassic Tectonics of the Southern Margin of the South China Block. Comptes Rendus Geoscience, 348(1): 5-14. https://doi.org/10.1016/j.crte.2015.06.012 [10] Halpin, J.A., Tran, H.T., Lai, C.K., et al., 2015. U-Pb Zircon Geochronology and Geochemistry from NE Vietnam: A 'Tectonically Disputed' Territory between the Indochina and South China Blocks. Gondwana Research, 34: 254-273. https://doi.org/10.1016/j.gr.2015.04.005 [11] Hou, T., Zhang, Z.C., Keiding, J.K., et al., 2015. Petrogenesis of the Ultrapotassic Fanshan Intrusion in the North China Craton: Implications for Lithospheric Mantle Metasomatism and the Origin of Apatite Ores. Journal of Petrology, 56(5): 893-918. https://doi.org/10.1093/petrology/egv021 [12] Jia, X.H., Wang, X.D., Yang, W.Q., et al., 2012. LA-ICP-MS Zircon U-Pb Age of the Nali Granite in Qinzhou Area of Southern Guangxi and Its Geological Significance. Geological Bulletin of China, 31(1): 82-89(in Chinese with English abstract). [13] Jiao, S.J., Guo, J.H., Peng, S.B., 2013. Petrogenesis of Garnet in the Darongshan-Shiwandashan Granitic Suite of the South China Block and the Metamorphism of the Granulite Enclave. Acta Petrologica Sinica, 29(5): 1740-1758(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305022.htm [14] Jiao, S.J., Li, X.H., Huang, H.Q., et al., 2015. Metasedimentary Melting in the Formation of Charnockite: Petrological and Zircon U-Pb-Hf-O Isotope Evidence from the Darongshan S-Type Granitic Complex in Southern China. Lithos, 239: 217-233. https://doi.org/10.1016/j.lithos.2015.10.004 [15] Ke, X.Z., Zhou, D., Long, W.G., et al., 2008. Indosinian Metamorphism and Anatexis in Yunkai Massif: Evidences from Zircon Geochronology and Hf Isotopes of Migmatites and Gneisses. Earth Science, 43(7): 2249-2275(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807005.htm [16] Lai, S.C., Qin, J.F., Li, Y.F., et al., 2012. Permian High Ti/Y Basalts from the Eastern Part of the Emeishan Large Igneous Province, Southwestern China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 47: 216-230. https://doi.org/10.1016/j.jseaes.2011.07.010 [17] Li, S.Z., Zang, Y.B., Wang, P.C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction. Earth Science Frontiers, 24(4): 213-225(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201704028.htm [18] Li, Z.X., Li, X.H., Chung, S.L., et al., 2012a. Magmatic Switch-on and Switch-off along the South China Continental Margin since the Permian: Transition from an Andean-Type to a Western Pacific-Type Plate Boundary. Tectonophysics, 532-535: 271-290. https://doi.org/10.1016/j.tecto.2012.02.011 [19] Li, X.H., Li, Z.X., He, B., et al., 2012b. The Early Permian Active Continental Margin and Crustal Growth of the Cathaysia Block: In Situ U-Pb, Lu-Hf and O Isotope Analyses of Detrital Zircons. Chemical Geology, 328: 195-207. https://doi.org/10.1016/j.chemgeo.2011.10.027 [20] Li, Y.J., Wei, J.H., Santosh, M., et al., 2016. Geochronology and Petrogenesis of Middle Permian S-Type Granitoid in Southeastern Guangxi Province, South China: Implications for Closure of the Eastern Paleo-Tethys. Tectonophysics, 682: 1-16. https://doi.org/10.1016/j.tecto.2016.05.048 [21] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geological Society of America, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 [22] Li, X.H., Li, Z.X., Li, W.X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114(3): 341-353. https://doi.org/10.1086/501222 [23] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [24] Long, T., Shi, J., Bao, Z.M., et al., 2015. Influence of Edge Effect and X-Y Effect on Measurement Precision in Sensitive High Resolution Ion Microprobe IIe MC Oxygen Isotopes Analysis. Chinese Journal of Analytical Chemistry, 43(12): 1888-1894(in Chinese with English abstract). doi: 10.1016/S1872-2040(15)60885-4 [25] Luo, W.J., Zhang, Z.C., Santosh, M., et al., 2014. Petrology and Geochemistry of Permian Mafic-Ultramafic Intrusions in the Emeishan Large Igneous Province, SW China: Insight into the Ore Potential. Ore Geology Reviews, 56: 258-275. doi: 10.1016/j.oregeorev.2013.06.011 [26] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 [27] Middlemost E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9 [28] Misra, S.N., 1971. Chemical Distinction of High-Grade Ortho and Para-metabasites. Norsk Geologisk Tidsskrift, 51: 311-316. http://www.researchgate.net/publication/285840932_Chemical_distinction_of_high-grade_ortho-_and_para-metabasites [29] Pearce, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [30] Peng, S.B., Jin, Z.M., Liu, Y.H., et al., 2006. Petrochemistry, Chronology and Tectonic Setting of Strong Peraluminous Anatectic Granitoids in Yunkai Orogenic Belt, Western Guangdong Province, China. Earth Science, 31(1): 110-120(in Chinese with English abstract). [31] Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252283503.html [32] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(S1): 26-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [33] Wang, K., Dong, H., Cao, Y.H., et al., 2017. Research Status and Existing Problems of Silicate Liquid Immiscibility in Intermediate-Basic Magma. Geological Review, 63(3): 739-757(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201703014.htm [34] Wang, L., Long, W.G., Zhou, D., et al., 2016. Late Triassic Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of Darongshan Granites in Southeastern Guangxi and Their Geological Implications. Geological Bulletin of China, 35(8): 1291-1303(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201608010.htm [35] Wang, X.D., Xu, D.M., Wang, L., et al., 2020. Reworking of Indosinian Tectono-Thermal Events in the Yunkai Massif : Gneissic Multi-Mineral U-Pb Geochronological Evidence. Earth Science, 45(5): 1653-1675(in Chinese with English abstract). [36] Wang, Y., Deng, J.F., 2003. The Geodynamic Significance of Petrochemical Features of Triassic Strongly Peraluminous Igneous Pocks in the Southern Part of Guangxi Province. Geology-Geochemistry, 31(4): 35-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200304006.htm [37] Wang, Y.J., Fan, W.M., Cawood, P.A., et al., 2007. Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China: Kinematics and 40Ar/39Ar Geochronological Constraints. Tectonics, 26(6): TC6008. https://doi.org/10.1029/2007tc002099 [38] Wang, Y.J., Wu, C.M., Zhang, A.M., et al., 2012. Kwangsian and Indosinian Reworking of the Eastern South China Block: Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites. Lithos, 150: 227-242. https://doi.org/10.1016/j.lithos.2012.04.022 [39] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1/2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027 [40] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2013. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block: Geochronological and Geochemical Evidence. Lithos, 160/161: 37-54. https://doi.org/10.1016/j.lithos.2012.11.004 [41] Xie, C.F., Zhu, J.C., Ding, S.J., et al., 2006. Identification of Hercynian Shoshonitic Intrusive Rocks in Central Hainan Island and Its Geotectonic Implications. Chinese Science Bulletin, 51(20): 1944-1954 (in Chinese). http://www.ingentaconnect.com/content/ssam/10016538/2006/00000051/00000020/art00012 [42] Xu, C., Wang, Y.J., Zhang, Y.Z., et al., 2019. Geochronological and Geochemical Constraints of Chidong Silurian Gabbroic Pluton in Yunkai Domain and Its Tectonic Implications. Earth Science, 44(4): 1202-1215(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904011.htm [43] Xu, W.C., Luo, B.J., Xu, Y.J., et al., 2018. Geochronology, Geochemistry, and Petrogenesis of Late Permian to Early Triassic Mafic Rocks from Darongshan, South China: Implications for Ultrahigh-Temperature Metamorphism and S-Type Granite Generation. Lithos, 308/309: 168-180. https://doi.org/10.1016/j.lithos.2018.03.004 [44] Xu, Y.G., He, B., Luo, Z.Y., et al., 2013. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201301003.htm [45] Zhang, B.Y., Zhang, H.X., Zhao, Z.H., et al., 2003. Permian Island-Arc Basalt in West Guangdong and East Guangxi Tectonic Belt, South China: Implications for the Paleotethys. Journal of Nanjing University (Natural Science Edition), 39(1): 46-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ200301006.htm [46] Zhang, Z.C., Hou, T., Li, H.M., et al., 2014. Enrichment Mechanism of Iron in Magmatic-Hydrothermal System. Acta Petrologica Sinica, 30(5): 1189-1204(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201405001.htm [47] Zhao, L., Guo, F., Fan, W.M., et al., 2010. Crustal Evolution of the Shiwandashan Area in South China: Zircon U-Pb-Hf Isotopic Records from Granulite Enclaves in Indo-Sinian Granites. Chinese Science Bulletin, 55(15): 1489-1498(in Chinese with English abstract). doi: 10.1360/csb2010-55-15-1489 [48] Zhong, D.L., Wu, G.Y., Ji, J.Q., et al., 1998. The Discovery of Ophiolite in Southeastern Yunnan Province. Chinese Science Bulletin, 43(13): 1365-1370(in Chinese). doi: 10.1360/csb1998-43-13-1365 [49] Zhong, Y.T., He, B., Mundil, R., et al., 2014. CA-TIMS Zircon U-Pb Dating of Felsic Ignimbrite from the Binchuan Section: Implications for the Termination Age of Emeishan Large Igneous Province. Lithos, 204(3): 14-19. https://doi.org/10.1016/j.lithos.2014.03.005 [50] Zhou, D., Long, W.G., Wang, L., et al., 2017. Geochronology and Lu-Hf Isotope of Early Paleozoic Zhuya-Shiban Gabbros in Yunkai Terrane, South China. Geological Bulletin of China, 36(5): 726-737(in Chinese with English abstract). http://www.researchgate.net/publication/319008616_Geochronology_and_Lu-_Hf_isotope_of_Early_Paleozoic_Zhuya-_Shiban_gabbros_in_Yunkai_terrane_South_China [51] Zhou, M.F., Zhao, J.H., Qi, L., et al., 2006. Zircon U-Pb Geochronology and Elemental and Sr-Nd Isotope Geochemistry of Permian Mafic Rocks in the Funing Area, SW China. Contributions to Mineralogy and Petrology, 151(1): 1-19. https://doi.org/10.1007/s00410-005-0030-y [52] Zhu, R.X., Xu, Y.G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Scientia Sinica (Terrae), 49(9): 1346-1356(in Chinese). doi: 10.1360/N072018-00282 [53] 陈新跃, 王岳军, 范蔚茗, 等, 2011. 海南五指山地区花岗片麻岩锆石LA-ICP-MS U-Pb年代学特征及其地质意义. 地球化学, 40(5): 454-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105006.htm [54] 陈泽超, 林伟, Faure, M., 等, 2013. 越南东北部早古生古代构造事件的年代学约束. 岩石学报, 29(5): 1825-1840. [55] 程顺波, 付建明, 陈希清, 等, 2012. 桂东北海洋山岩体锆石SHRIMP U-Pb定年和地球化学研究. 华南地质与矿产, 28(2): 132-140. doi: 10.3969/j.issn.1007-3701.2012.02.006 [56] 贾小辉, 王晓地, 杨文强, 等, 2012. 广西钦州地区那丽花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义. 地质通报, 31(1): 82-89. doi: 10.3969/j.issn.1671-2552.2012.01.009 [57] 焦淑娟, 郭敬辉, 彭松柏, 2013. 华南大容山-十万大山花岗岩体中石榴石成因以及麻粒岩包体变质作用研究. 岩石学报, 29(5): 1740-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305022.htm [58] 柯贤忠, 周岱, 龙文国, 等, 2018. 云开地块印支期变质-深熔作用: 混合岩、片麻岩锆石U-Pb年代学和Hf同位素证据. 地球科学, 43(7): 2249-2275. doi: 10.3799/dqkx.2018.574 [59] 李三忠, 臧艺博, 王鹏程, 等, 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm [60] 龙涛, 石坚, 包泽民, 等, 2015. 边缘效应和几何效应对SHRIMP IIe MC氧同位素分析精度影响. 分析化学, 43(12): 1888-1894. doi: 10.11895/j.issn.0253-3820.150581 [61] 彭松柏, 金振民, 刘云华, 等, 2006. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景. 地球科学, 31(1): 110-120. doi: 10.3321/j.issn:1000-2383.2006.01.014 [62] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 [63] 宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [64] 王坤, 董欢, 曹永华, 等, 2017. 中基性岩浆的不混溶作用及存在的问题. 地质论评, 63(3): 739-757. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201703014.htm [65] 王磊, 龙文国, 周岱, 等, 2016. 桂东南大容山晚二叠世花岗岩锆石U-Pb年龄和Sr-Nd-Hf同位素特征及其地质意义. 地质通报, 35(8): 1291-1303. doi: 10.3969/j.issn.1671-2552.2016.08.010 [66] 王祥东, 徐德明, 王磊, 等, 2020. 云开地块印支期构造热事件叠加改造: 来自片麻岩中多矿物U-Pb年代学的证据. 地球科学, 45(5): 1653-1675. doi: 10.3799/dqkx.2019.151 [67] 汪洋, 邓晋福, 2003. 广西南部三叠纪强过铝质火成岩岩石化学特征的动力学意义. 地质地球化学, 31(4): 35-42. doi: 10.3969/j.issn.1672-9250.2003.04.006 [68] 谢才富, 朱金初, 丁式江, 等, 2006. 琼中海西期钾玄质侵入岩的厘定及其构造意义. 科学通报, 51(16): 1944-1954. doi: 10.3321/j.issn:0023-074X.2006.16.014 [69] 徐畅, 王岳军, 张玉芝, 等, 2019. 云开池垌志留纪辉长岩体的年代学、地球化学特征及构造意义. 地球科学, 44(4): 1202-1215. doi: 10.3799/dqkx.2018.592 [70] 徐义刚, 何斌, 罗震宇, 等, 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39. doi: 10.3969/j.issn.1007-2802.2013.01.002 [71] 张伯友, 张海祥, 赵振华, 等, 2003. 两广交界处岑溪二叠纪岛弧型玄武岩及其古特提斯性质的讨论. 南京大学学报(自然科学版), 39(1): 46-54. doi: 10.3321/j.issn:0469-5097.2003.01.006 [72] 张招崇, 侯通, 李厚民, 等, 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报, 30(5): 1189-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201405001.htm [73] 赵亮, 郭锋, 范蔚茗, 等, 2010. 广西十万大山地壳演化: 来自印支期花岗岩中麻粒岩包体锆石U-Pb年代学及Hf同位素记录. 科学通报, 55(15): 1489-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201015012.htm [74] 钟大赉, 吴根耀, 季建清, 等, 1998. 滇东南发现蛇绿岩. 科学通报, 43(13): 1365-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199813003.htm [75] 周岱, 龙文国, 王磊, 等, 2017. 云开地区早古生代竹雅-石板辉长岩锆石U-Pb定年与Lu-Hf同位素特征. 地质通报, 36(5): 726-737. doi: 10.3969/j.issn.1671-2552.2017.05.005 [76] 朱日祥, 徐义刚, 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学(地球科学), 49(9): 1346-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909003.htm -
dqkxzx-46-4-1295-附表1-3.docx