Study on the Influencing Factors of Specific Yield of Unconfined Aquifer Using Laboratory Column Drainage Experiment
-
摘要: 给水度是重要的水文地质参数之一,为探讨潜水含水层给水度的影响因素,设计均质粗砂、均质细砂、上细下粗、上粗下细4种土柱的排水实验,按照一定间距分段降低地下水位,每段降深设计不同排水时间,求取不同水位埋深的给水度.当地下水位埋深小于支持毛细水高度,给水度受地下水位埋深影响显著,其关系可以用非线性函数来表示.排水时间越长,给水度越大,当土柱分段排水时间超过1 h,给水度值稳定.0.6~0.9 mm粒径的粗砂给水度大于0.2~0.4 mm的细砂;当地下水位在土层分界面下20 cm时,上细下粗土柱给水度显著增大,上粗下细土柱给水度显著减小.给水度的大小与地下水位埋深、排水时间、岩土颗粒和潜水面附近及之上非均质结构等因素有关.Abstract: Specific yield is one of the most important hydrogeological parameters of unconfined aquifer. In order to study the influencing factors of specific yield, the laboratory column drainage experiment was developed to estimate specific yield of homogeneous and stratified heterogeneous sand columns. The groundwater level was decreased according to segmentation of 2 cm or 5 cm and each section kept different drainage times to obtain the specific yield value of different depth to water table. When the depth to water table was within the capillary rise height, the relationship between specific yield and water table depth can be expressed by a nonlinear function. The specific yield value increased with the drainage time and it became constant when the drainage time of each drawdown section was more than one hour. Specific yield value of coarse sand with particle size 0.6-0.9 mm was always larger than that of fine sand with particle size 0.2-0.4 mm. When groundwater level was 20 cm under the layer interface, two different columnar structures of upper-coarse-lower-fine and vice versa exerted distinct impacts on the magnitude of specific yield. For shallow unconfined aquifer, specific yield varied with the initial depth to water table, duration of drainage, soil texture and heterogeneity near the water table.
-
Key words:
- specific yield /
- soil column drainage /
- depth to water table /
- drainage time /
- heterogeneity /
- hydrogeology
-
表 1 实验土柱结构和排水时间
Table 1. Experimental soil column structure and drainage time
土柱编号 土柱结构 土柱装样长度 分段排水时间设计 1 均质粗砂 120 cm 5 min、10 min、20 min、30 min、1 h、2 h、3 h 2 均质细砂 100 cm 5 min、10 min、20 min、30 min、1 h、2 h、3 h 3 上细下粗 细65 cm,粗65 cm 30 min、1 h、2 h、3 h 4 上粗下细 粗50 cm,细70 cm 30 min、1 h、2 h、3 h 表 2 实验用砂孔隙大小和相应的毛细上升高度
Table 2. Pore size of experimental sands and capillary rise height
砂粒类型 颗粒大小(mm) 孔隙大小(mm) 毛细上升高度(cm) 立方体孔腹 立方体孔喉 四面体孔喉 立方体孔腹 立方体孔喉 四面体孔喉 细砂 最小 0.2 0.146 0.083 0.031 20.49 36.23 96.77 最大 0.4 0.293 0.166 0.062 10.25 18.12 48.39 平均 0.3 0.220 0.124 0.047 13.66 24.15 64.52 粗砂 最小 0.6 0.439 0.248 0.093 6.83 12.08 32.26 最大 0.9 0.659 0.373 0.140 4.55 8.05 21.51 平均 0.75 0.549 0.311 0.116 5.46 9.66 25.81 表 3 不同排水时间土柱给水度与地下水位埋深的关系
Table 3. Relationship between specific yield and depth to water table for different drainage times
排水时间 细砂拟合式 粗砂拟合式 5 min Sy= 0.215/(1+e ((WTD-33.7)/(-9.332)))-0.008 Sy= 0.297/(1+e((WTD -14.63)/(-3.102)))-0.004 10 min Sy= 0.233/(1+e ((WTD-30.23)/(-8.358)))-0.010 Sy= 0.301/(1+e((WTD -14.26)/(-8.358)))-0.010 20 min Sy= 0.256/(1+e ((WTD-29.33)/(-9.22)))-0.012 Sy= 0.306/(1+e((WTD -14.08)/ (-2.786)))+0.001 30 min Sy= 0.286/(1+e ((WTD-26.44)/(-5.251)))+0.003 Sy= 0.309/(1+e ((WTD -13.63)/(-2.57)))+0.003 1 h Sy= 0.288/(1+e ((WTD -23.98)/(-2.645)))+0.005 Sy= 0.312/(1+e ((WTD -13.78)/(-2.011)))+0.034 2 h Sy= 0.290/(1+e ((WTD -26.31)/(-4.446)))+0.011 Sy= 0.334/(1+e ((WTD -14.47)/(-1.973)))+0.019 3 h Sy= 0.301/(1+e((WTD -24.89)/(-3.856)))-0.000 Sy= 0.344/(1+e ((WTD -12.65)/(-2.459)))+0.002 -
[1] Brooks, R.H., Corey, A.T., 1964. Hydraulic Properties of Porous Media. Colorado State University, Fort Collins. [2] Chen, X.H., Song, J.X., Wang, W.K., 2010. Spatial Variability of Specific Yield and Vertical Hydraulic Conductivity in a Highly Permeable Alluvial Aquifer. Journal of Hydrology, 388: 379-388. https://doi.org/10.1016/j.jhydrol.2010.05.017 [3] Cheng, D.H., Wang, Y.H., Duan, J.B., et al., 2015. A New Analytical Expression for Ultimate Specific Yield and Shallow Groundwater Drainage. Hydrological Processes, 29: 1905-1911. https://doi.org/10.1002/hyp.10306 [4] Cheng, D.W., Wang, W.K., Zhan, H.B., et al., 2020. Quantification of Transient Specific Yield Considering Unsaturated-Saturated Flow. Journal of Hydrology, 580: 1-11. https://doi.org/10.1016/j.jhydrol.2019.124043 http://www.sciencedirect.com/science/article/pii/S002216941930770X [5] Duke, H.R., 1972. Capillary Properties of Soils-Influence upon Specific Yield. Transactions of the ASAE, 15(4): 688-691. https://doi.org/10.13031/2013.37986 [6] Fan, J.L., Oestergaard, K.T., Guyot, A., et al., 2014. Estimating Groundwater Recharge and Evapotranspiration from Water Table Fluctuations under Three Vegetation Covers in a Coastal Sandy Aquifer of Subtropical Australia. Journal of Hydrology, 519: 1120-1129. https://doi.org/10.1016/j.jhydrol.2014.08.039 [7] Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ. [8] Gao, Y.F., Liang, D.W., Ren, S.C., 1990. A New Method of Determining the Specific Yield of Layered Soils in Shallow Layer under Surface. Earth Sciences, 15(2): 196-202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199002010.htm [9] Guo, M., Wan, J.W., Jiang, F., et al., 2017. Estimating Unconfined Aquifer Parameters Based on Groundwater Tidal Effect. Earth Science, 42(1): 155-160 (in Chinese with English abstract). [10] Lei, Z.D., Xie, S.C., Yang, S.X., et al., 1984. The Preliminary Investigation of the Specific Yield. Journal of Hydraulic Engineering, 2(5): 10-17 (in Chinese with English abstract). [11] Nachabe, M.H., 2002. Analytical Expressions for Transient Specific Yield and Shallow Water Table Drainage. Water Resources Research, 38(10): 1193-1198. https://doi.org/10.1029/2001WR001071. doi: 10.1029/2001WR001071 [12] Neuman, S.P., 1987. On Methods of Determining Specific Yield. Groundwater, 25(6): 679-684. https://doi.org/10.1111/j.1745-6584.1987.tb02208.x [13] Nwankwor, G.I., Cherry, J.A., Gilliam, R.W., 1984. A Comparative Study of Specific Yield Determinations for a Shallow Sand Aquifer. Groundwater, 22 (6): 764-772. https://doi.org/10.1111/j.1745-6584.1984.tb01445.x [14] Pei, Y.S., Li, X.D., Zhao, Y., et al., 2020. Research on Vertical Recharge and Specific Yield of Unconfined Aquifer at a Typical Area of North China Plain with a Deep Groundwater Table. South-to-North Water Transfers and Water Science & Technology, 18(1): 176-193 (in Chinese and English abstract). [15] Pozdniakov, S. P., Wang, P., Lekhov, V. A., 2019. An Approximate Model for Predicting the Specific Yield under Periodic Water Table Oscillations. Water Resources Research, 55: 6185-6197. https://doi.org/10.1029/2019WR025053 [16] Said, A., Nachabe, M., Ross, M., 2005. Methodology for Estimating Specific Yield in Shallow Water Environment Using Continuous Soil Moisture Data. Journal of Irrigation and Drainage Engineering, 131(6): 533-538. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:6(533) [17] Seraphin, P., Gonçalvès, J., Vallet-Coulomb, C., et al., 2018. Multi-Approach Assessment of the Spatial Distribution of the Specific Yield: Application to the Crau Plain Aquifer, France. Hydrogeology Journal, 26(4): 1221-1238. doi: 10.1007/s10040-018-1753-y [18] Shah, N., Ross, M., 2009. Variability in Specific Yield under Shallow Water Table Conditions. Journal of Hydrologic Engineering, 14(12): 1290-1298. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000121 [19] Wang, J., Liang, X., Jin, M.G., et al., 2020. Evaluation of Phreatic Evaporation in Manas River Basin Plain by Bromine Tracing Method. Earth Science, 45(3): 1050-1060 (in Chinese with English abstracts). [20] Wang, Y.H., Chen, D.H., Duan, J.B., 2014. Experimental Study of Relationship between Specific Yield and Buried Depth of Shallow Groundwater. Yangtze River, 45(5): 60-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RIVE201405020.htm [21] Worthington, S.R.H., Foley, A.E., Soley, R.W.N., 2019, Transient Characteristics of Effective Porosity and Specific Yield in Bedrock Aquifers, Journal of Hydrology, 578: 1-10. https://doi.org/10.1016/j.jhydrol.2019.124129 http://www.sciencedirect.com/science/article/pii/S0022169419308649 [22] Xu, X.T., Jian, W.B., Wu, N.S., et al., 2018. Unsaturated Seepage Characteristics of Slope under Rainfall Infiltration. Earth Science, 43(3): 922-932 (in Chinese with English abstracts). [23] Zhang, R.Q., Liang, X., Jin, M.G., et al, 2018. Fundamentals of Hydrogeology. Geological Publishing House, Beijing (in Chinese). [24] Zhang, W.Z., Cai, M.J., 1988. Experimental Study of Drainable Porosity of Loamy Soils and Its Numerical Simulation. Journal of the Wuhan Institute of Hydraulic and Electric Engineering, 2: 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSDD198802000.htm [25] 高云福, 梁定伟, 任书才, 1990. 确定浅部层状土给水度的一种新方法. 地球科学, 15(2): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199002010.htm [26] 郭敏, 万军伟, 江峰, 等, 2017. 用地下水潮汐效应确定潜水含水层水文地质参数. 地球科学, 42(1): 155-160. doi: 10.3799/dqkx.2017.012 [27] 雷志栋, 谢森传, 杨诗秀, 等, 1984. 土壤给水度的初步研究. 水利学报, 2(5): 10-17. doi: 10.3321/j.issn:0559-9350.1984.05.002 [28] 裴源生, 李旭东, 赵勇, 等, 2020. 华北典型地下水大深埋区潜水层垂向补给特征及其给水度. 南水北调与水利科技, 18(1): 176-193. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202001024.htm [29] 王健, 梁杏, 靳孟贵, 等, 2020. 运用溴离子示踪法评价玛纳斯河流域平原区潜水蒸发. 地球科学, 45(3): 1051-1060. doi: 10.3799/dqkx.2019.089 [30] 王玉红, 程东会, 段吉波, 2014. 浅层地下水给水度与水位埋深关系的试验研究. 人民长江, 45(5): 60-64. doi: 10.3969/j.issn.1001-4179.2014.05.016 [31] 许旭堂, 简文彬, 吴能森, 等, 2018. 降雨入渗影响下边坡中的非饱和渗流特性. 地球科学, 43(3): 922-932. doi: 10.3799/dqkx.2017.580 [32] 张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础. 北京: 地质出版社. [33] 张蔚榛, 蔡美娟, 1988. 均质壤土给水度的室内试验和数值模拟. 武汉水利电力学院学报, 2: 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198802000.htm