Multiple-Stage Structural Superimposition of Cretaceous-Paloegene Deformation in West Hill of Beijing: An Example from the Ordovician Carbonate Rocks in Huangyuan, Zhoukoudian
-
摘要: 北京西山中新生代多期次变形强烈,是探讨华北板块构造演化的重要窗口.构造解析及EBSD组构分析表明,黄院奥陶系发育4个期次变形,第2期NE-SW向挤压变形为主体构造样式.第1期为顶面指向SEE的简单剪切,透入性面理S1已基本置换层理S0,伴生110°~120°缓倾拉伸线理;自北向南,第2期变形可划分为纵弯褶皱亚带和逆冲剪切亚带,褶皱倒伏趋势和剪切条带显示上盘向SW逆冲;第3期为沿面理S2发生的NNW向正断层式滑脱,第4期为近N-S向陡倾正断层系.依据卷入变形的闪长岩脉最年轻锆石U-Pb年龄峰值(~116 Ma),结合区域地质资料,认为:(1)黄院奥陶系第1期SEE向剪切时代为早白垩世晚期;(2)第2期晚白垩世NE-SW向挤压变形形成于燕山运动晚期,可能与蒙古-鄂霍茨克洋关闭之后的陆陆汇聚相关.Abstract: The West Hill of Beijing experienced multiple stages of deformation since Mesozoic,and is considered as an important window to decipher the tectonic evolution of the North China block. Structural analyses and the EBSD data show that the Ordovician carbonate rocks in Huangyuan of Zhoukoudian is characterized by four stages of deformation,among which the D2 NE-SW-striking compressional structures shaped the main structural style. The D1 is represented by top-to-the-SEE (110°-120°) shearing bands and the penetrative stretching lineation L1,and the pervasive foliation S1 has replaced the sedimentary bedding S0. From north to south,the D2 deformation can be subdivided into two subzones including buckle fold and ductile shear zone,showing a consistent kinematics of top-to-the-SE thrusting as indicated by the fold vergence and shearing bands,respectively. The D3 is featured by the NWW-directed normal slipping superimposed on the foliation S2,and the D4 displays nearly N-S-trending high-angle normal faults. According to the youngest zircon U-Pb age peak (~116 Ma) of a diorite intrusion,it infers that the D1 happened in the late Early Cretaceous,and the D2 occurred in the Late Cretaceous,i.e.,the Late Yanshanian stage,probably as a response to the continental-continental collision after the closure of the Mongol-Okhotsk Ocean.
-
Key words:
- West Hill of Beijing /
- multiple-stage deformation /
- structure /
- Ordovician /
- Cretaceous /
- structural geology
-
图 2 黄院金子沟地区宏观构造样式及各地质点构造要素吴氏网投影
a.金子沟东侧自然剖面AA′;b.Google地图显示的观察点和自然剖面位置, GPS点位详见附表 1;c.金子沟西侧自然剖面BB′;d~e.D005观察点马家沟组灰岩D2期近EW向纵弯褶皱及岩层面上所显示的矿物拉伸线理L1,近水平断面显示有D1期倾竖型流变褶皱,白色岩层为大理岩化灰岩,表面存在连续分布的片状绢云母;f.D006观察点马家沟组泥晶灰岩中的闪长岩脉石香肠,岩脉边界存在热接触变质,灰岩发生大理岩化
Fig. 2. Macro structural style and polar stereographic projection net for each geological element in Jinzigou, Zhoukoudian
图 3 下奥陶统马家沟组各期次构造变形特征
a.显示D2期指向SW的逆冲运动特征,闪长岩脉石香肠化,并发育有P、R等次级破裂;b.显示灰岩中较为透入的逆冲剪切面理S2,其中的闪长岩脉石香肠为锆石定年样品;c~d.为D3期沿剪切面理S2发生的NNW向的正断层式滑动;e.为图 2b中岩层近EW向横截面,黑色脉体褶皱及碎斑系显示D1期上盘向E的剪切滑动;f.为向西陡倾的高角度正断层,切割(B)中闪长岩香肠体为矩形块体,沿断层面形成小型牵引褶皱
Fig. 3. Structural characteristics of each deformation phase in Majiagou Formation (Lower Ordovician)
图 4 下奥陶统亮甲山组各期次变形特征
a.泥晶灰岩形成的D2期逆冲剪切面理S2,白色方解石脉石香肠化,次级破裂R显示上盘向南西的逆冲,面理中夹有白云质灰岩形成同斜褶皱,下部的白云质灰岩层出现一组雁列式张裂T(图 4c);b.面理S2伴生的方解石香肠体,发育两组里德尔剪裂;d.为一组NWW倾向的高角度正断层,伴生有雁列式的张裂脉
Fig. 4. Structural characteristics of each deformation phase in Liangjiashan Formation (Lower Ordovician)
图 5 下奥陶统冶里组多期次变形特征
图a显示两期次变形的叠加,下部硅质条带石香肠化,小型叠瓦构造指示D2期上盘SW向的逆冲剪切,上部泥晶灰岩形成的S-C组构显示D3期沿面理S2向NNW滑脱;图b为面理S2的近EW向截面,方解石不对称香肠显示D1期上盘SEE向的剪切;图c为图d的垂向截面,显示D3期沿面理S2朝NNW向滑脱形成S-C组构,S构造面发生微弱滑动,改造面理S2为“Z”形弯曲(图 5d).图d~e为面理S2显示的SEE向透入性拉伸线理;图f为面理S2对S1置换形成的褶劈理.图b, 图d和图f显示的露头位于金子沟东侧
Fig. 5. Structural characteristics of each deformation phase in Yeli Formation (Lower Ordovician)
图 7 奥陶系灰岩的显微变形特征
a. D001观察点冶里组灰岩定向薄片,白色方解石条带发生不对称石香肠化,显示上盘向W的剪切(构造指向发生了逆转,见图 6);b.D006点马家沟组灰岩定向薄片,面理S2与动态重结晶方解石颗粒瞬时拉伸应变轴(ISA2)的关系显示上盘向SW的逆冲.c, d.D002观察点马家沟组灰岩定向薄片,石英脉条带出现了普遍的亚颗粒化
Fig. 7. Microscopic deformational features of Ordovician limestones
表 1 周口店金子沟奥陶系变形期次划分
Table 1. Summary of deformation phases in Jinzigou, Zhoukoudian
期次 变形样式 运动学/应力场 构造相 时间 D1 近EW剪切条带,面理S1,100°~120°SE向拉伸线理 上盘向SEE滑动 韧性变形-流变 130~110 Ma D2 近EW向纵弯褶皱、逆冲型韧性剪切带,面理S2 NNE-SSW向挤压,指向SW的逆冲 韧性变形为主 晚白垩世 D3 沿面理S2的NNW向伸展滑动 上盘NNW向正断式滑动 脆-韧性 晚白垩世 D4 近NS向陡倾的正断层系 近EW向伸展 脆性变形为主 白垩纪末-新生代(70~60 Ma) -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Beijing Bureau of Geology and Mineral Resources, 1991. Regional Geology of Beijing Municipality. Geological Publishing House, Beijing (in Chinese). [3] Cai, X.L., Zhu, J.S., Cao, J.M., et al., 2005. Three-Dimensional Structural and Dynamic Types of the Continental Margin Lithosphere in Southeast China. Marine Geology & Quaternary Geology, 25(3): 25-34(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HYDZ200503004.htm [4] Cao, S.Y., Neubauer, F., Bernroider, M., et al., 2013. The Lateral Boundary of a Metamorphic Core Complex: The Moutsounas Shear Zone on Naxos, Cyclades, Greece. Journal of Structural Geology, 54: 103-128. https://doi.org/10.1016/j.jsg.2013.07.002 [5] Davis, G.A., Wang, C., Zheng, Y.D., et al., 1998. The Enigmatic Yinshan Fold-and-Thrust Belt of Northern China: New Views on Its Intraplate Contractional Styles. Geology, 26(1): 43-46. https://doi.org/10.1130/0091-7613(1998)026<0043:teyfat>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0043:teyfat>2.3.co;2 [6] Davis, G.A., Zheng, Y.D., Wang, C., et al., 2001. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China. Memoirs-Geological Society of America, 194: 171-194. http://ci.nii.ac.jp/naid/10011069689 [7] Dong, S.W., Zhang, Y.Q., Li, H.L., et al., 2019. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia—Commemorating 90th Years of the "Yanshan Orogeny". Science China Earth Sciences, 49(6): 913-938(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201812015 [8] Dong, S.W., Zhang, Y.Q., Long, C.X., et al., 2007. Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11): 1449-1461(in Chinese with English abstract). [9] He, B., Xu, Y.G., Paterson, S., 2009. Magmatic Diapirism of the Fangshan Pluton, Southwest of Beijing, China. Journal of Structural Geology, 31(6): 615-626. https://doi.org/10.1016/j.jsg.2009.04.007 [10] Lin, W., Wang, J., Liu, F., et al., 2013. Late Mesozoic Extension Structures on the North China Craton and Adjacent Regions and Its Geodynamics. Acta Petrologica Sinica, 29(5): 1791-1810(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252019057.html [11] Liu, J.L., Guan, H.M., Ji, M., et al., 2006. The Late Mesozoic Metamorphic Core Complex and Its Constrains to the Mechanism of Lithospheric Thinning in North China. Progress in Nature Science, 16(1): 21-26 (in Chinese). doi: 10.1080/10020070612331343188 [12] Liu, S.F., Gurnis, M., Ma, P.F., et al., 2017. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma. Earth-Science Reviews, 175: 114-142. https://doi.org/10.1016/j.earscirev.2017.10.012 [13] Shan, W.L., Song, H.L., Fu, Z.R., et al., 1991. Principals, Methods and Practices of Structural Analysis. China University of Geosciences Press, Wuhan (in Chinese). [14] Shan, Y.H., Gong, F.X., Lin, G., et al., 2006. Discussion on Mesozoic Extensional Structures of the Fangshan Tectonic Dome and Their Subsequent Reworking during Collisional Accretion of the North China Block. Journal of the Geological Society, 163(6): 1051-1055. https://doi.org/10.1144/0016-76492006-026 [15] Shu, T., Xu, H.J., Zhang, J.F., et al., 2019. Deformation Characteristics and Time of Taipingshan Folds in Fangshan Area, Beijing: Implications for Early Cretaceous Compressional Tectonics of North China Craton. Earth Science, 44(5): 1734-1748(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905024.htm [16] Song, H.L., 1987. The Primary Study of the Structural Sequences in South Part of the West Hills of Beijing. Earth Science, 12(1): 15-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198701002.htm [17] Song, H.L., 1996. Characteristics of Fangshan Metamorphic Core Complex, Beijing and a Discussion about Its Origin. Geoscience, 10(2): 149-158(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ602.001.htm [18] Wan, T.F., 2004. Rotation of the Jurassic Crust and Transformation of the Lithosphere of Eastern China. Geological Bulletin of China, 23(9): 966-972(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2021.htm [19] Wang, Y., Li, J.Y., 2007. Thermochronological Constraints on the Formation of ESE110°-120° Stretching Lineations at Nanjiao Area, West Hills of Beijing. Acta Petrologica Sinica, 23(3): 617-624(in Chinese with English abstract). http://www.researchgate.net/publication/288619784_Thermochronological_constraints_on_the_formation_of_ESE110_-_120_stretching_lineations_at_Nanjiao_area_West_Hills_of_Beijing [20] Wang, Y., Zhou, L., Li, J., 2011. Intracontinental Superimposed Tectonics: A Case Study in the Western Hills of Beijing, Eastern China. Geological Society of America Bulletin, 123(5/6): 1033-1055. https://doi.org/10.1130/b30257.1 [21] Wenk, H.R., Takeshita, T., Bechler, E., et al., 1987. Pure Shear and Simple Shear Calcite Textures. Comparison of Experimental, Theoretical and Natural Data. Journal of Structural Geology, 9(5/6): 731-745. https://doi.org/10.1016/0191-8141(87)90156-8 [22] Wong, W.H., 1929. The Mesozoic Orogenic Movement in Eastern China. Bulletin of the Geological Society of China, 8(1): 33-44. https://doi.org/10.1111/j.1755-6724.1929.mp8001004.x [23] Wong, W.H., 1927. Crustal Movements and Igneous Activities in Eastern China since Mesozoic Time. 1. Bulletin of the Geological Society of China, 6(1): 9-37. https://doi.org/10.1111/j.1755-6724.1927.mp6001002.x [24] Xu, H.J., Wang, G.Q., Shu, T., et al., 2020. The Characteristics and Formation Mechanisms of Tectonic Assemblages in Nanguan, Beijing. Earth Science (online)(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.147 [25] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2006. Mesozoic Extensional Structures of the Fangshan Tectonic Dome and Their Subsequent Reworking during Collisional Accretion of the North China Block. Journal of the Geological Society, 163(1): 127-142. https://doi.org/10.1144/0016-764904-154 [26] Yan, D.P., Zhou, M.F., Zhao, D.G., et al., 2011. Origin, Ascent and Oblique Emplacement of Magmas in a Thickened Crust: An Example from the Cretaceous Fangshan Adakitic Pluton, Beijing. Lithos, 123(1-4): 102-120. https://doi.org/10.1016/j.lithos.2010.11.015 [27] Yang, Y.T., Guo, Z.X., Song, C.C., et al., 2015. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 28(3): 1096-1116. https://doi.org/10.1016/j.gr.2014.09.010 [28] Zhai, M.G., Zhu, R.X., Liu, J.M., et al., 2003. The Key Time Intervals of the Mesozoic Tectonic Transformation in Eastern North China. Science in China (Ser. D), 33(10): 913-920(in Chinese). [29] Zhang, C.H., Zhang, Y., Li, H.L., et al., 2006. Late Mesozoic Thrust Tectonics Framework in the Western Part of Yanshan Orogenic Belt and Western Hills of Beijing: Characteristics and Significance. Earth Science Frontiers, 13(2): 165-183(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602019.htm [30] Zhao, W.X., 2003. The Field-work Methodologies and High Technology Applied in Field Geological Practice Teaching at Zhoukoudian. China University of Geosciences Press, Wuhan (in Chinese). [31] Zhao, Y., Xu, G., Zhang, S.H., et al., 2004a. Yanshanian Movement and Conversion of Tectonic Regimes in East Asia. Earth Science Frontiers, 11(3): 319-328(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403042.htm [32] Zhao, Y., Zhang, S.H., Xu, G., et al., 2004b. Major Tectonic Event in the Yanshanian Intraplate Deformation Belt in the Jurassic. Geological Bulletin of China, 23(9): 854-863(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252292530.html [33] Zhu, G., Chen, Y., Jiang, D., et al., 2015. Rapid Change from Compression to Extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan Metamorphic Core Complex. Tectonophysics, 656: 91-110. https://doi.org/10.1016/j.tecto.2015.06.009 [34] Zhu, R.X., Xu, Y.G., Zhu, G., et al., 2012. Destruction of North China Craton. Scientia Sinica Terrae, 42(8): 1135-1159(in Chinese with English abstract). doi: 10.1360/zd-2012-42-8-1135 [35] 北京市地质矿产局, 1991. 北京市区域地质志. 北京: 地质出版社. [36] 蔡学林, 朱介寿, 曹家敏, 等, 2005. 中国东南大陆边缘带岩石圈三维结构-动力学型式. 海洋地质与第四纪地质, 25(3): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200503004.htm [37] 董树文, 张岳桥, 李海龙, 等, 2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造: 纪念"燕山运动"90周年. 中国科学(地球科学), 49(6): 913-938. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201906002.htm [38] 董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001 [39] 林伟, 王军, 刘飞, 等, 2013. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论. 岩石学报, 29(5): 1791-1810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305025.htm [40] 刘俊来, 关会梅, 纪沫, 等, 2006. 华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束. 自然科学进展, 16(1): 21-26. doi: 10.3321/j.issn:1002-008X.2006.01.004 [41] 单文琅, 宋鸿林, 傅昭仁, 等, 1991. 构造变形分析的理论、方法和实践. 武汉: 中国地质大学出版社. [42] 舒坦, 续海金, 章军锋, 等, 2019. 北京房山地区太平山褶皱的变形特征和形成时代: 华北克拉通早白垩世挤压构造的意义. 地球科学, 44(5): 1734-1748. doi: 10.3799/dqkx.2018.119 [43] 宋鸿林, 1987. 北京西山南部构造序列初探. 地球科学, 12(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198701002.htm [44] 宋鸿林, 1996. 北京房山变质核杂岩的基本特征及其成因探讨. 现代地质, 10(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ602.001.htm [45] 万天丰, 2004. 侏罗纪地壳转动与中国东部岩石圈转型. 地质通报, 23(9): 966-972. doi: 10.3969/j.issn.1671-2552.2004.09.021 [46] 王瑜, 李锦轶, 2007. 北京西山南窖地区南东东110°~120°拉伸线理形成时间的年代学制约. 岩石学报, 23(3): 617-624. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703011.htm [47] 续海金, 王国庆, 舒坦, 等, 2020. 北京南观地区构造组合特征及成因机制. 地球科学. https://doi.org/10.3799/dqkx.2020.147 [48] 翟明国, 朱日祥, 刘建明, 等, 2003. 华北东部中生代构造体制转折的关键时限. 中国科学(D辑: 地球科学), 33(10): 913-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200310000.htm [49] 张长厚, 张勇, 李海龙, 等, 2006. 燕山西段及北京西山晚中生代逆冲构造格局及其地质意义. 地学前缘, 13(2): 165-183. doi: 10.3321/j.issn:1005-2321.2006.02.015 [50] 赵温霞, 2003. 周口店地质及野外地质工作方法与高新技术应用. 武汉: 中国地质大学出版社. [51] 赵越, 徐刚, 张拴宏, 等, 2004a. 燕山运动与东亚构造体制的转变. 地学前缘, 11(3): 319-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403042.htm [52] 赵越, 张拴宏, 徐刚, 等, 2004b. 燕山板内变形带侏罗纪主要构造事件. 地质通报, 23(9): 854-863. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2005.htm [53] 朱日祥, 徐义刚, 朱光, 等, 2012. 华北克拉通破坏. 中国科学(地球科学), 42(8): 1135-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208002.htm -
dqkxzx-46-4-1467-附表1-2.docx