Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods
-
摘要: 为探讨含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响,基于非均质含水层砂箱实验,分别用传统等效均质模型、克立金插值和水力层析刻画含水层渗透系数场,并探讨了先验信息对水力层析结果的影响.将不同方法估算的渗透系数场用以预测地下水流和溶质运移过程,以此判断不同方法估算结果的优劣,分析含水层非均质性对地下水流和溶质运移的影响.结果表明:与克立金插值法相比,水力层析法可以更好地刻画含水层非均质性,较准确地预测地下水流和溶质运移过程;钻孔岩心渗透系数样本值作为先验信息可以提高水力层析法估算结果的精度;传统等效均质模型无法准确预测地下水流和溶质运移过程.含水层非均质性的增强将导致溶质污染羽分布形态和运移路径的空间变异性增强,并且优势通道直接决定溶质的分布及运移路径.Abstract: In order to investigate the effect of different hydraulic parameter estimation methods of the heterogenous aquifer on predicting groundwater flow and solute transport simulation, based on the laboratory heterogeneous aquifer sandbox, conventional equivalent homogeneous model, kriging and hydraulic tomography are used to characterize heterogeneity of the sandbox aquifer. The role of priori information on improving hydraulic tomography inversion is discussed. The K estimated by different methods are used to predict the process of steady-state groundwater flow and solute transport, which evaluates the merits and demerits of different K estimation methods. Afterwards, we investigate the effect of aquifer heterogeneity on groundwater flow and solute transport. The results reveal that compared with kriging, hydraulic tomography can get higher precision to characterize aquifer heterogeneity and predict the process of groundwater flow and solute transport. The K values from 40 core samples are used as prior information of hydraulic tomography can promote the accuracy of K estimates. The conventional equivalent homogeneous model cannot accurately predict the process of groundwater flow and solute transport in heterogeneous aquifer. The enhancement of aquifer heterogeneity will lead to the enhancement of the spatial variability of tracer distribution and migration path, and the dominant channel directly determines the migration path and tracer distribution.
-
表 1 非稳定流达西实验渗透系数计算结果
Table 1. The results of hydraulic conductivity by Darcy experiments of unsteady-state flow
砂样粒径(mm) 渗透系数(cm/s) 总孔隙度 砂层编号 0.10~0.25 0.018 0 0.389 2 4, 14 0.25~0.40 0.078 8 0.377 0 1, 7, 10, 15, 17 0.30~0.60 0.139 5 0.371 2 3, 6, 8, 13, 16, 18 0.60~1.00 0.335 3 0.373 7 2, 5, 11, 19 1.00~4.00 0.852 7 0.378 8 9, 12 -
[1] Bear, J., 1979. Hydraulics of Groundwater. McGraw Hill, New York. [2] Berg, S. J., Illman, W. A., 2015. Comparison of Hydraulic Tomography with Traditional Methods at a Highly Heterogeneous Site. Groundwater, 53(1): 71-89. https://doi.org/10.1111/gwat.12159 [3] Bohling, G. C., Butler, J. J. Jr., Zhan, X., et al., 2007. A Field Assessment of the Value of Steady Shape Hydraulic Tomography for Characterization of Aquifer Heterogeneities. Water Resources Research, 43: W05430. https://doi.org/10.1029/2006WR004932 [4] Bruggeman, G. A., 1972. The Reciprocity Principle in Flow through Heterogeneous Porous Media. Developments in Soil Science, 2(2): 136-149. https://doi.org/10.1016/S0166-2481(08)70535-X [5] Butler, J. J. Jr., Liu, W. Z., 1993. Pumping Tests in Nonuniform Aquifers: The Radially Asymmetric Case. Water Resources Research, 29(2): 259-269. https://doi.org/10.1029/92WR02128 [6] Chen, C. X., Lin, M., Cheng, J. M., 2011. Groundwater Dynamics. China University of Geosciences Press, Wuhan (in Chinese). [7] Chen, X. L., Wen, Z., Hu, J. S., et al., 2016. Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations. Earth Science, 41(4): 701-710 (in Chinese with English abstract). [8] Gong, S. R., Liu, C. P., Wang, Q., 2006. Digital Image Processing and Analysis. Tsinghua University Press, Beijing (in Chinese). [9] Illman, W. A., Liu, X., Takeuchi, S., et al., 2009. Hydraulic Tomography in Fractured Granite: Mizunami Underground Research Site, Japan. Water Resources Research, 45: W01406. https://doi.org/10.1029/2007WR006715 [10] Illman, W. A., Zhu, J., Craig, A. J., et al., 2010. Comparison of Aquifer Characterization Approaches through Steady State Groundwater Model Validation: A Controlled Laboratory Sandbox Study. Water Resources Research, 46: W04502. https://doi.org/10.1029/2009WR007745 [11] Jiang, L. Q., Sun, R. L., Wang, W. M., et al., 2017. Comparison of Hydraulic Tomography and Kriging for Estimating Hydraulic Conductivity of a Heterogeneous Aquifer. Earth Science, 42(2): 307-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702012.htm [12] Kalman, R. E., 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1): 35-45. doi: 10.1115/1.3662552 [13] Liu, X., Illman, W. A., Craig, A. J., et al., 2007. Laboratory Sandbox Validation of Transient Hydraulic Tomography. Water Resources Research, 43: W05404. https://doi.org/10.1029/2006WR005144 [14] Shi, X. Q., Jiang, B. L., Bian, J. Y., et al., 2009. Geological Statistics for Estimating the Spatial Variability of Hydraulic Conductivity in the Third Confined Aquifer of Shanghai City. Geotechnical Investigation & Surveying, 37(1): 36-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC200901011.htm [15] Shi, X. Q., Wu, J. C., Wu, J. F., et al., 2012. Effects of the Heterogeneity of Multiple Correlated Random Parameters on Solute Tansport. Advances in Water Science, 23(4): 509-515 (in Chinese with English abstract). doi: 10.1080/17461391.2010.536584?scroll=top&needAccess=true [16] Shi, X. Q., Wu, J. C., Yuan, Y. S., et al., 2005. Study on the Spatial Variability of Hydraulic Conductivity. Advances in Water Science, (2): 210-215 (in Chinese with English abstract). [17] Song, G., Wan, L., Hu, F. S., et al., 2005. Indicator Kriging of Spatial Distribution of Permeability of Aquifer. Earth Science Frontiers, 12(Suppl. ): 146-151 (in Chinese with English abstract). http://www.cqvip.com/QK/98047X/20051/15513676.html [18] Tang, X. C., 2006. Wavelet Analysis and Application. Chongqing University Press, Chongqing (in Chinese). [19] Tsang, C. F., 2000. Simulation of Groundwater Flow and Solute Transport in Heterogeneous Media-Problems and Challenges. Earth Science, 25(5): 443-450 (in Chinese with English abstract). [20] Wang, J. S., 2013. The Effect of Model Uncertainty on the Characterization of Hydraulic Parameters Using Hydraulic Tomography (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [21] Wang, K. J., Xiong, X. Y., Ren, Z., 2010. Highly Efficientmean Filtering Algorithm. Application Research of Computer, 27(2): 434-438 (in Chinese with English abstract). http://www.oalib.com/paper/1619454 [22] Wang, Y. X., 2007. Groundwater Contamination. Higher Education Press, Beijing (in Chinese). [23] Xiang, J., Yeh, T.C. J., Lee, C.H., et al., 2009. A Simultaneous Successive Linear Estimator and a Guide for Hydraulic Tomography Analysis. Water Resources Research, 45: W02432. https://doi.org/10.1029/2008WR007180 [24] Xiao, M. G., Chen, X. J., Liu, B. C., 2003. Hydrogeology Parameter Calculation in Water Gushing Test of Constant Drawdown Yield in Infinite Confined Aquifer Where Gushing in the Main Hole is Observed from Several Other Holes. Earth Science, 28(5): 575-578 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX200305017.htm [25] Yeh, T.C. J., Liu, S., 2000. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resources Research, 36(8): 2095-2105. https://doi.org/10.1029/2000WR900114 [26] Zhao, Z., Illman, W. A., Yeh, T. C. J., et al., 2015. Validation of Hydraulic Tomography in an Unconfined Aquifer: A Controlled Sandbox Study. Water Resources Research, 51: 4137-4155. https://doi.org/10.1002/2015WR016910 [27] Zhu, J., Yeh, T. C. J., 2006. Analysis of Hydraulic Tomography Using Temporal Moments of Drawdown Recovery Data. Water Resources Research, 42: W02403. https://doi.org/10.1029/2005WR004309 [28] 陈崇希, 林敏, 成建梅, 2011. 地下水动力学. 武汉: 中国地质大学出版社. [29] 陈晓恋, 文章, 胡金山, 等, 2016. 解析法与数值法在水电站防渗墙效果评价中的运用. 地球科学, 41(4): 701-710. doi: 10.3799/dqkx.2016.059 [30] 龚声蓉, 刘纯平, 王强, 2006. 数字图像处理与分析. 北京: 清华大学出版社. [31] 蒋立群, 孙蓉琳, 王文梅, 等, 2017. 水力层析法与克立金法估算非均质含水层渗透系数场比较. 地球科学, 42(2): 307-314. doi: 10.3799/dqkx.2017.023 [32] 施小清, 姜蓓蕾, 卞锦宇, 等, 2009. 以地质统计方法推估上海第三承压含水层渗透系数的分布. 工程勘察, 37(1): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200901011.htm [33] 施小清, 吴吉春, 吴剑锋, 等, 2012. 多个相关随机参数的空间变异性对溶质运移的影响. 水科学进展, 23(4): 509-515. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201204008.htm [34] 施小清, 吴吉春, 袁永生, 2005. 渗透系数空间变异性研究. 水科学进展, (2): 210-215. doi: 10.3321/j.issn:1001-6791.2005.02.010 [35] 宋刚, 万力, 胡伏生, 等, 2005. 含水层渗透性空间分布的指示克里格估值. 地学前缘, 12(Suppl. ): 146-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S100O.htm [36] 唐晓初, 2006. 小波分析及其应用. 重庆: 重庆大学出版社. [37] Tsang, C. F., 2000. 非均质介质中地下水流动与溶质运移模拟——问题与挑战. 地球科学, 25(5): 443-450. doi: 10.3321/j.issn:1000-2383.2000.05.001 [38] 王江思, 2013. 模型不确定性对水力层析法刻画含水层非均质性的影响研究(硕士学位论文). 武汉: 中国地质大学. [39] 王科俊, 熊新炎, 任桢, 2010. 高效均值滤波算法. 计算机应用研究, 27(2): 434-438. doi: 10.3969/j.issn.1001-3695.2010.02.008 [40] 王焰新, 2007. 地下水污染与防治. 北京: 高等教育出版社. [41] 肖明贵, 陈学军, 刘宝臣, 2003. 无限承压含水层中主孔涌水多孔观测定降深井流试验水文地质参数计算. 地球科学, 28(5): 575-578. doi: 10.3321/j.issn:1000-2383.2003.05.018