• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响

    蒋立群 孙蓉琳 梁杏

    蒋立群, 孙蓉琳, 梁杏, 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268
    引用本文: 蒋立群, 孙蓉琳, 梁杏, 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268
    Jiang Liqun, Sun Ronglin, Liang Xing, 2021. Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268
    Citation: Jiang Liqun, Sun Ronglin, Liang Xing, 2021. Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268

    含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响

    doi: 10.3799/dqkx.2020.268
    基金项目: 

    国家自然科学基金项目 41772268

    国家自然科学基金项目 41102155

    中国地质调查局计划项目 121201001000150121

    详细信息
      作者简介:

      蒋立群(1990-), 男, 博士研究生, 主要从事地下水流系统、水文地质参数反演等研究.ORCID: 0000-0002-8257-8644.E-mail: jiangliqun@cug.edu.cn

      通讯作者:

      孙蓉琳, ORCID: 0000-0001-5523-198X.E-mail: sunronglin@cug.edu.cn

    • 中图分类号: P641

    Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods

    • 摘要: 为探讨含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响,基于非均质含水层砂箱实验,分别用传统等效均质模型、克立金插值和水力层析刻画含水层渗透系数场,并探讨了先验信息对水力层析结果的影响.将不同方法估算的渗透系数场用以预测地下水流和溶质运移过程,以此判断不同方法估算结果的优劣,分析含水层非均质性对地下水流和溶质运移的影响.结果表明:与克立金插值法相比,水力层析法可以更好地刻画含水层非均质性,较准确地预测地下水流和溶质运移过程;钻孔岩心渗透系数样本值作为先验信息可以提高水力层析法估算结果的精度;传统等效均质模型无法准确预测地下水流和溶质运移过程.含水层非均质性的增强将导致溶质污染羽分布形态和运移路径的空间变异性增强,并且优势通道直接决定溶质的分布及运移路径.

       

    • 图  1  实验砂箱和非均质含水层

      a.砂箱概化图及水平井编号;b.非均质含水层砂箱正面及砂层编号;c.非均质含水层砂箱背面及水平井编号

      Fig.  1.  Laboratory sandbox and the synthetic heterogeneous aquifer

      图  2  20号井抽水实验的降深时间曲线和稳定时刻观测水位等值线图

      a.降深时间曲线;b.稳定时刻观测水位等值线图.黑色点表示观测井,白色点表示抽水井

      Fig.  2.  Drawdown time curves and contour plot of steady-state observed head of the pumping test at the No.20 well

      图  3  “真实”渗透系数场分区场和估算渗透系数场

      a.砂箱“真实”渗透系数分区场;b.克立金插值法估算场;c.水力层析反演场;d.有先验信息后的水力层析反演场. 黑色点表示观测井,白色点表示抽水井

      Fig.  3.  The true K distributions and the estimated K fields

      图  4  不同的估算渗透系数场的模拟降深与实测降深散点图

      a.传统等效均质模型;b.克立金插值法估算场;c.水力层析反演场;d.有先验信息后的水力层析反演场

      Fig.  4.  Scatter plots of the simulated and the measured drawdown based on the different estimated K fields

      图  5  溶质运移实验和模拟第30 min时刻的溶质浓度分布

      a.实测运移路径照片;b.“真实”渗透系数模型;c.传统等效均质模型;d.克立金插值法估算场;e.水力层析反演场;f.有先验信息后的水力层析反演场.黑色点表示注水井,白色点表示抽水井,白色带箭头的线表示地下水流线

      Fig.  5.  Concentration distributions from tracer transport experiment and simulation at t=30 min

      图  6  溶质运移实验和模拟第60 min时刻的溶质浓度分布

      a.实测运移路径照片;b.“真实”渗透系数模型;c.传统等效均质模型;d.克立金插值法估算场;e.水力层析反演场;f.有先验信息后的水力层析反演场.黑色点表示注水井,白色点表示抽水井,白色带箭头的线表示地下水流线

      Fig.  6.  Concentration distributions from tracer transport experiment and simulation at t=60 min

      表  1  非稳定流达西实验渗透系数计算结果

      Table  1.   The results of hydraulic conductivity by Darcy experiments of unsteady-state flow

      砂样粒径(mm) 渗透系数(cm/s) 总孔隙度 砂层编号
      0.10~0.25 0.018 0 0.389 2 4, 14
      0.25~0.40 0.078 8 0.377 0 1, 7, 10, 15, 17
      0.30~0.60 0.139 5 0.371 2 3, 6, 8, 13, 16, 18
      0.60~1.00 0.335 3 0.373 7 2, 5, 11, 19
      1.00~4.00 0.852 7 0.378 8 9, 12
      下载: 导出CSV
    • [1] Bear, J., 1979. Hydraulics of Groundwater. McGraw Hill, New York.
      [2] Berg, S. J., Illman, W. A., 2015. Comparison of Hydraulic Tomography with Traditional Methods at a Highly Heterogeneous Site. Groundwater, 53(1): 71-89. https://doi.org/10.1111/gwat.12159
      [3] Bohling, G. C., Butler, J. J. Jr., Zhan, X., et al., 2007. A Field Assessment of the Value of Steady Shape Hydraulic Tomography for Characterization of Aquifer Heterogeneities. Water Resources Research, 43: W05430. https://doi.org/10.1029/2006WR004932
      [4] Bruggeman, G. A., 1972. The Reciprocity Principle in Flow through Heterogeneous Porous Media. Developments in Soil Science, 2(2): 136-149. https://doi.org/10.1016/S0166-2481(08)70535-X
      [5] Butler, J. J. Jr., Liu, W. Z., 1993. Pumping Tests in Nonuniform Aquifers: The Radially Asymmetric Case. Water Resources Research, 29(2): 259-269. https://doi.org/10.1029/92WR02128
      [6] Chen, C. X., Lin, M., Cheng, J. M., 2011. Groundwater Dynamics. China University of Geosciences Press, Wuhan (in Chinese).
      [7] Chen, X. L., Wen, Z., Hu, J. S., et al., 2016. Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations. Earth Science, 41(4): 701-710 (in Chinese with English abstract).
      [8] Gong, S. R., Liu, C. P., Wang, Q., 2006. Digital Image Processing and Analysis. Tsinghua University Press, Beijing (in Chinese).
      [9] Illman, W. A., Liu, X., Takeuchi, S., et al., 2009. Hydraulic Tomography in Fractured Granite: Mizunami Underground Research Site, Japan. Water Resources Research, 45: W01406. https://doi.org/10.1029/2007WR006715
      [10] Illman, W. A., Zhu, J., Craig, A. J., et al., 2010. Comparison of Aquifer Characterization Approaches through Steady State Groundwater Model Validation: A Controlled Laboratory Sandbox Study. Water Resources Research, 46: W04502. https://doi.org/10.1029/2009WR007745
      [11] Jiang, L. Q., Sun, R. L., Wang, W. M., et al., 2017. Comparison of Hydraulic Tomography and Kriging for Estimating Hydraulic Conductivity of a Heterogeneous Aquifer. Earth Science, 42(2): 307-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702012.htm
      [12] Kalman, R. E., 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1): 35-45. doi: 10.1115/1.3662552
      [13] Liu, X., Illman, W. A., Craig, A. J., et al., 2007. Laboratory Sandbox Validation of Transient Hydraulic Tomography. Water Resources Research, 43: W05404. https://doi.org/10.1029/2006WR005144
      [14] Shi, X. Q., Jiang, B. L., Bian, J. Y., et al., 2009. Geological Statistics for Estimating the Spatial Variability of Hydraulic Conductivity in the Third Confined Aquifer of Shanghai City. Geotechnical Investigation & Surveying, 37(1): 36-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC200901011.htm
      [15] Shi, X. Q., Wu, J. C., Wu, J. F., et al., 2012. Effects of the Heterogeneity of Multiple Correlated Random Parameters on Solute Tansport. Advances in Water Science, 23(4): 509-515 (in Chinese with English abstract). doi: 10.1080/17461391.2010.536584?scroll=top&needAccess=true
      [16] Shi, X. Q., Wu, J. C., Yuan, Y. S., et al., 2005. Study on the Spatial Variability of Hydraulic Conductivity. Advances in Water Science, (2): 210-215 (in Chinese with English abstract).
      [17] Song, G., Wan, L., Hu, F. S., et al., 2005. Indicator Kriging of Spatial Distribution of Permeability of Aquifer. Earth Science Frontiers, 12(Suppl. ): 146-151 (in Chinese with English abstract). http://www.cqvip.com/QK/98047X/20051/15513676.html
      [18] Tang, X. C., 2006. Wavelet Analysis and Application. Chongqing University Press, Chongqing (in Chinese).
      [19] Tsang, C. F., 2000. Simulation of Groundwater Flow and Solute Transport in Heterogeneous Media-Problems and Challenges. Earth Science, 25(5): 443-450 (in Chinese with English abstract).
      [20] Wang, J. S., 2013. The Effect of Model Uncertainty on the Characterization of Hydraulic Parameters Using Hydraulic Tomography (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [21] Wang, K. J., Xiong, X. Y., Ren, Z., 2010. Highly Efficientmean Filtering Algorithm. Application Research of Computer, 27(2): 434-438 (in Chinese with English abstract). http://www.oalib.com/paper/1619454
      [22] Wang, Y. X., 2007. Groundwater Contamination. Higher Education Press, Beijing (in Chinese).
      [23] Xiang, J., Yeh, T.C. J., Lee, C.H., et al., 2009. A Simultaneous Successive Linear Estimator and a Guide for Hydraulic Tomography Analysis. Water Resources Research, 45: W02432. https://doi.org/10.1029/2008WR007180
      [24] Xiao, M. G., Chen, X. J., Liu, B. C., 2003. Hydrogeology Parameter Calculation in Water Gushing Test of Constant Drawdown Yield in Infinite Confined Aquifer Where Gushing in the Main Hole is Observed from Several Other Holes. Earth Science, 28(5): 575-578 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX200305017.htm
      [25] Yeh, T.C. J., Liu, S., 2000. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resources Research, 36(8): 2095-2105. https://doi.org/10.1029/2000WR900114
      [26] Zhao, Z., Illman, W. A., Yeh, T. C. J., et al., 2015. Validation of Hydraulic Tomography in an Unconfined Aquifer: A Controlled Sandbox Study. Water Resources Research, 51: 4137-4155. https://doi.org/10.1002/2015WR016910
      [27] Zhu, J., Yeh, T. C. J., 2006. Analysis of Hydraulic Tomography Using Temporal Moments of Drawdown Recovery Data. Water Resources Research, 42: W02403. https://doi.org/10.1029/2005WR004309
      [28] 陈崇希, 林敏, 成建梅, 2011. 地下水动力学. 武汉: 中国地质大学出版社.
      [29] 陈晓恋, 文章, 胡金山, 等, 2016. 解析法与数值法在水电站防渗墙效果评价中的运用. 地球科学, 41(4): 701-710. doi: 10.3799/dqkx.2016.059
      [30] 龚声蓉, 刘纯平, 王强, 2006. 数字图像处理与分析. 北京: 清华大学出版社.
      [31] 蒋立群, 孙蓉琳, 王文梅, 等, 2017. 水力层析法与克立金法估算非均质含水层渗透系数场比较. 地球科学, 42(2): 307-314. doi: 10.3799/dqkx.2017.023
      [32] 施小清, 姜蓓蕾, 卞锦宇, 等, 2009. 以地质统计方法推估上海第三承压含水层渗透系数的分布. 工程勘察, 37(1): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200901011.htm
      [33] 施小清, 吴吉春, 吴剑锋, 等, 2012. 多个相关随机参数的空间变异性对溶质运移的影响. 水科学进展, 23(4): 509-515. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201204008.htm
      [34] 施小清, 吴吉春, 袁永生, 2005. 渗透系数空间变异性研究. 水科学进展, (2): 210-215. doi: 10.3321/j.issn:1001-6791.2005.02.010
      [35] 宋刚, 万力, 胡伏生, 等, 2005. 含水层渗透性空间分布的指示克里格估值. 地学前缘, 12(Suppl. ): 146-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S100O.htm
      [36] 唐晓初, 2006. 小波分析及其应用. 重庆: 重庆大学出版社.
      [37] Tsang, C. F., 2000. 非均质介质中地下水流动与溶质运移模拟——问题与挑战. 地球科学, 25(5): 443-450. doi: 10.3321/j.issn:1000-2383.2000.05.001
      [38] 王江思, 2013. 模型不确定性对水力层析法刻画含水层非均质性的影响研究(硕士学位论文). 武汉: 中国地质大学.
      [39] 王科俊, 熊新炎, 任桢, 2010. 高效均值滤波算法. 计算机应用研究, 27(2): 434-438. doi: 10.3969/j.issn.1001-3695.2010.02.008
      [40] 王焰新, 2007. 地下水污染与防治. 北京: 高等教育出版社.
      [41] 肖明贵, 陈学军, 刘宝臣, 2003. 无限承压含水层中主孔涌水多孔观测定降深井流试验水文地质参数计算. 地球科学, 28(5): 575-578. doi: 10.3321/j.issn:1000-2383.2003.05.018
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  471
    • HTML全文浏览量:  214
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-23
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回