Paleoclimatic Evolution during Late Triassic-Early-Middle Jurassic in South Guangdong of South China Continental Margin and Its Responses to the Tectonic Regime Transition
-
摘要: 华南早中生代构造体制转换对粤南地区古气候演化产生了深远影响,但对其内在联系的研究尚有不足.本文以粤南地区上三叠统—下、中侏罗统小坪组、金鸡组、桥源组为研究对象,采集各组泥岩样品进行了X-射线荧光光谱主量元素和ICP-MS微量、稀土元素测试,并开展了沉积特征和古生物特征综合分析.测试表明,小坪组凤岗段泥岩样品CIA(75.7~81.3)、Sr/Cu(0.83~21.3)、Rb/Sr(2.32~12.8)、Mg/Ca(0.57~2.50)和Sr/Ba(0.04~0.19)均指示该区晚三叠世早期为温湿气候,δCe(0.93~0.95)指示弱氧化环境,间接反映该时期为温湿气候;小坪组马安段泥岩样品CIA(77.5~82.2)、Sr/Cu(8.41~13.3)、Rb/Sr(2.08~5.83)、Mg/Ca(0.79~3.10)和Sr/Ba(0.06~0.26)指示该区晚三叠世晚期为干热气候,δCe(1.04~1.05)指示还原环境,间接反映该时期为干热气候;金鸡组、桥源组泥岩样品CIA(77.1~82.3)、Sr/Cu(1.51~4.38)、Rb/Sr(2.16~12.1)、Mg/Ca(0.84~2.94)和Sr/Ba(0.04~0.24)指示该区早侏罗世—早、中侏罗世以温湿气候为主,短暂出现干热气候,δCe(0.92~1.00)指示弱还原—弱氧化环境,间接反映该时期气候以温湿为主,短暂出现干热.将研究区与周缘地区古气候进行对比,晚三叠世—早、中侏罗世粤南及其围区古气候都经历了由温湿(晚三叠世早期)—干热(晚三叠世晚期)—温湿为主,短暂出现干热(早侏罗世—早、中侏罗世)的转变,这一具有相同演化趋势的古气候转变,正是对该时期华南经历了由特提斯构造域向古太平洋构造域转换的响应.Abstract: The Early Mesozoic tectonic regime transition in South China had a profound impact on the paleoclimate evolution in southern Guangdong,but the study of its internal relationship is still insufficient. In order to understand the response relationship,the mudstone samples collected from Xiaoping Formation,Jinji Formation and Qiaoyuan Formation in South Guangdong in Upper Triassic-Lower-Middle Jurassic were used for the main element analyses by X-ray fluorescence spectrometry,ICP-MS trace and rare earth element tests,combined with the comprehensive analysis of sedimentary and paleontological characteristics. According to the tests,the CIA (75.7-81.3),Sr/Cu (0.83-21.30),Rb/Sr (2.32-12.80),Mg/Ca (0.57-2.50) and Sr/Ba (0.04-0.19) of mudstone samples from Xiaoping Formation in Fenggang indicate that it was in a warm and humid climate in the Early Triassic,and the redox index δCe(0.93-0.95) indicates a weak oxidation environment,indirectly reflecting the warm and humid climate; The CIA (77.5-82.2),Sr/Cu (8.41-13.30),Rb/Sr (2.08-5.83),Mg/Ca (0.79-3.10) and Sr/Ba (0.06-0.26) of mudstone samples from Xiaoping Formation in Ma'an indicate that it was in a hot and dry climate in the Late Triassic,and the redox index δCe(1.04-1.05) indicates a reduction environment,indirectly reflecting the dry and hot climate; The CIA (77.1-82.3),Sr/Cu (1.51-4.38),Rb/Sr (2.16-12.10),Mg/Ca (0.84-2.94) and Sr/Ba (0.04-0.24) of mudstone samples from Jinji and Qiaoyuan formations indicate that the paleoclimate of Early Jurassic-Early-Middle Jurassic was mainly warm and humid,with a brief time of hot and dry climate. And the redox index δCe (0.92-1.00) indicates a weak reduction-weak oxidation environment,indirectly reflecting the paleoclimate was mainly warm and humid,with a brief time of hot and dry climate. Compared with other areas in South China continental margin,the paleoclimate underwent the same change of warm and humid (the early of Late-Triassic)-dry and heat (the late of Late-Triassic)-mainly warm and humid,dry and hot for a brief time (Early Jurassic-Early-Middle Jurassic). This evolution of paleoclimate in South Guangdong from Late Triassic to Early-Middle Jurassic is exactly in response to the transition from Tethys tectonic domain to paleo-Pacific tectonic domain.
-
Key words:
- South Guangdong /
- South China continental margin /
- Early Mesozoic /
- paleoclimate /
- tectonic regime /
- response /
- geochemistry
-
图 1 广东地区地质略图和实测剖面位置
底图据舒良树等(2004)修改
Fig. 1. Geological sketch map and measured section location map of South Guangdong
表 1 典型样品的粒度分析特征
Table 1. Granularity analysis characteristics of typical samples
样品号 Φ5 Φ16 Φ25 Φ50 Φ75 Φ84 Φ95 Mz σi SK KG MA⁃15 2.23 2.51 2.65 2.83 3.08 3.15 3.30 2.83 0.32 ⁃0.06 1.02 ZS⁃17 1.76 2.04 2.17 2.41 2.62 2.71 2.90 2.39 0.34 ⁃0.12 1.04 OYS⁃4 0.80 1.01 1.10 1.30 1.54 1.63 1.84 1.31 0.31 0.05 0.97 注:Φ5代表累积曲线上百分含量达到5%时对应的粒径(Φ值),依此同理. 表 2 粤南地区泥岩样品常量(%)、微量(10-6)及稀土元素(10-6)含量和元素比值
Table 2. Content and element ratio of main elements (%), trace elements (10-6) and rare elements (10-6) in the mudstone samples of South Guangdong
时代 晚三叠世 早侏罗世 早‒中侏罗世 层位 西安叠坪小坪组 阳春荔枝
山金鸡组三水欧阳
山桥源组样品号 FG-1 FG-2 FG-3 FG-4 FG-8 FG-9 FG-10 FG-11 MA-18 MA-19 MA-23 LZS-11 LZS-12 LZS-15 O-1 O-2 O-3 SiO2 64.9 66.9 65.1 66.3 56.3 55.8 57.2 69.1 61.7 61.5 60.1 63.5 61.2 63.2 34.1 34.1 34.8 Al2O3 21.8 21.2 21.9 21.2 19.4 18.8 20.6 18.2 24.5 24.4 23.0 20.2 22.8 20.2 12.4 13.4 13.1 TFe2O3 0.92 0.62 0.72 0.65 7.44 8.36 6.39 2.92 1.10 1.15 1.50 4.06 3.08 4.00 29.6 29.6 30.0 CaO 1.12 0.76 0.38 0.57 1.41 0.86 0.83 0.18 1.03 0.38 0.29 0.34 0.51 1.18 1.06 0.93 1.35 MgO 0.64 0.78 0.66 0.60 1.20 1.29 0.99 0.45 0.81 0.82 0.90 1.00 1.10 1.03 1.13 1.24 1.14 K2O 5.66 5.53 5.80 5.56 4.73 4.58 5.31 3.83 4.45 4.59 6.13 4.41 4.92 4.69 1.83 1.82 1.78 Na2O 0.19 0.13 0.16 0.15 0.37 0.40 0.49 0.17 0.25 0.30 0.26 0.12 0.13 0.13 0.13 0.12 0.13 TiO2 0.70 0.70 0.70 0.60 0.60 0.60 0.60 0.60 0.76 0.64 0.48 0.70 0.70 0.76 0.30 0.30 0.12 P2O5 0.15 0.10 0.08 0.15 0.15 0.15 0.05 0.15 0.15 0.05 0.08 0.06 0.05 0.08 0.22 0.25 0.3 MnO 0.01 0.01 0.01 0.01 0.09 0.12 0.08 0.01 0.01 0.01 0.01 0.06 0.04 0.05 0.26 0.27 0.25 Sr 26.9 28.3 31.4 25.1 137.0 120.0 106.0 61.0 158.0 156.0 57.1 21.9 51.7 33.9 60.5 63.7 61.2 Cu 11.10 11.40 11.30 30.10 9.25 10.10 4.99 22.40 11.90 12.30 6.79 14.50 11.80 9.24 22.00 22.80 21.40 Zr 325.9 312.0 332.0 315.0 196.0 190.0 76.2 365.0 255.0 246.0 125.0 267.0 300.0 336.0 120.0 119.0 118.0 Th 32.3 29.5 32.7 29.3 22.4 21.1 20.2 26.6 19.2 18.0 18.6 14.2 16.7 14.5 11.4 11.9 11.7 U 7.65 6.07 8.06 7.35 3.68 4.51 2.53 5.59 3.62 3.30 3.71 2.53 2.78 2.62 2.61 2.71 2.65 Sc 17.30 13.80 15.70 11.40 16.00 14.50 5.66 16.00 16.80 15.90 17.40 14.40 16.60 13.60 19.30 20.20 19.40 V 103.0 95.0 106.0 95.2 117.0 111.0 104.0 105.0 142.0 141.0 160.0 136.0 151.0 132.0 113.0 116.0 115.0 Cr 81.9 75.1 82.8 72.5 81.0 72.2 77.0 76.9 114.0 112.0 118.0 93.4 107.0 91.0 60.3 61.2 60.4 B 69.7 59.3 64.4 59.6 55.1 52.9 33.1 67.8 156.0 119.0 72.0 74.1 87.2 89.4 41.1 79.1 35.2 Ga 44.6 40.8 44.6 39.1 42.1 37.3 39.9 34.2 42.0 40.6 50.4 33.6 42.6 34.5 22.1 22.3 22.4 Rb 344 320 354 323 317 280 301 223 334 324 333 265 292 239 135 138 140 Ba 696 650 725 658 717 639 710 469 609 609 1 033 504 713 526 256 263 264 Co 0.31 0.24 0.30 0.19 22.10 25.00 17.70 4.00 1.63 1.61 2.11 1.45 1.38 1.59 10.00 10.90 10.70 Ni 7.68 5.79 8.29 10.10 57.20 61.20 51.10 19.10 29.20 29.80 23.10 14.80 10.50 8.25 34.30 40.60 36.80 La 86.60 81.80 95.70 80.90 50.90 50.10 45.30 63.40 79.60 78.90 37.40 47.60 74.60 51.80 31.78 32.35 32.15 Ce 173.0 163.0 194.0 159.0 100.0 98.0 89.8 121.0 148.0 145.0 72.7.0 89.2 146.0 106.0 64.0 64.4 64.3 Pr 19.10 18.30 21.80 17.70 10.90 10.70 9.83 13.00 15.10 14.70 7.78 9.74 15.40 10.80 7.26 7.35 7.35 Nd 74.1 74.8 88.1 69.7 42.7 41.6 38.4 50.6 58.8 56.7 30.8 38.0 60.5 42.2 30.1 30.4 30.5 Sm 13.70 14.40 16.80 12.80 8.41 8.32 7.43 9.52 10.60 10.30 6.07 5.86 10.50 6.89 6.59 6.84 6.67 Eu 2.08 2.24 2.63 1.96 1.48 1.45 1.42 1.44 2.38 2.26 1.24 1.04 1.99 1.23 1.16 1.23 1.23 Gd 10.80 11.90 13.60 10.50 7.94 8.05 6.90 8.99 10.20 9.25 5.79 4.49 8.45 5.47 7.24 7.81 7.39 Tb 1.62 1.76 1.97 1.56 1.41 1.46 1.19 1.57 1.59 1.38 1.07 0.87 1.31 0.99 1.36 1.45 1.37 Dy 7.92 8.47 9.44 7.52 7.54 7.62 5.81 8.78 8.09 6.27 5.11 4.14 6.13 4.72 7.22 7.81 7.30 Ho 1.56 1.61 1.78 1.48 1.58 1.60 1.24 1.89 1.64 1.30 1.13 0.98 1.27 1.06 1.55 1.63 1.60 Er 4.01 4.08 4.43 3.75 4.19 4.20 3.11 5.24 4.19 3.26 2.89 2.60 3.31 2.89 4.18 4.42 4.30 Tm 0.58 0.58 0.62 0.53 0.60 0.61 0.46 0.78 0.58 0.47 0.42 0.41 0.50 0.47 0.60 0.62 0.62 Yb 3.63 3.54 3.87 3.30 3.85 3.82 2.83 4.98 3.55 2.85 2.67 2.63 3.30 3.16 3.77 4.07 3.98 Lu 0.57 0.58 0.61 0.55 0.61 0.61 0.48 0.78 0.58 0.48 0.46 0.46 0.56 0.55 0.64 0.66 0.67 CIA 75.7 76.7 77.5 77.2 74.9 76.3 75.7 81.3 81.0 82.2 77.5 80.5 80.4 77.1 80.5 82.3 80.1 ∑REE 399 387 456 371 243 238 214 291 345 333 175 208 333 238 168 171 169 LREE/HREE 12.00 10.90 11.50 11.70 7.75 7.51 8.73 7.83 22.80 22.60 22.60 11.60 12.40 11.30 5.31 5.01 5.22 HREE 30.7 32.5 36.4 29.2 27.7 28.0 22.0 33.0 30.4 25.3 19.5 16.6 24.8 19.3 26.6 28.5 27.2 La/Yb 304.00 281.00 319.00 290.00 165.00 161.00 187.00 154.00 256.00 299.00 157.00 18.10 22.60 16.40 8.42 7.93 8.07 (La/Yb)N 15.40 15.00 16.00 15.90 8.56 8.47 10.40 8.60 15.10 18.70 9.43 11.70 14.60 10.60 5.45 5.13 5.22 δEu 0.52 0.52 0.52 0.51 0.55 0.54 0.60 0.47 0.70 0.71 0.64 0.63 0.65 0.61 0.52 0.52 0.54 δCe 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.93 1.04 1.04 1.05 0.92 0.96 1.00 0.94 0.93 0.93 m 2.96 3.69 3.00 2.83 6.19 6.88 4.78 2.46 3.31 3.36 3.91 4.96 4.83 5.11 9.08 9.29 8.68 Sr/Cu 2.43 2.48 2.78 0.83 14.80 11.90 21.30 2.73 13.30 12.70 8.41 1.51 4.38 3.67 2.75 2.80 2.87 V/Cr 1.26 1.26 1.28 1.31 1.44 1.54 1.35 1.37 1.25 1.26 1.36 1.46 1.41 1.45 1.87 1.90 1.90 Ni/Co 24.8 24.1 27.6 52.9 2.59 2.45 2.89 4.78 18.0 18.5 11.0 10.2 7.64 5.19 3.42 3.74 3.45 Mg/Ca 0.57 1.03 1.74 1.05 0.85 1.50 1.19 2.50 0.79 2.16 3.10 2.94 2.16 0.87 1.07 1.33 0.84 Sr/Ba 0.04 0.04 0.04 0.04 0.19 0.19 0.15 0.13 0.26 0.26 0.06 0.04 0.07 0.06 0.24 0.24 0.23 B/Ga 1.56 1.45 1.44 1.52 1.31 1.42 0.83 1.98 3.72 2.92 1.43 2.21 2.05 2.59 1.86 3.54 1.57 Rb/Sr 12.80 11.30 11.30 12.90 2.32 2.33 2.83 3.66 2.11 2.08 5.83 12.10 5.65 7.05 2.23 2.16 2.28 注:δEu=Eun/[(Smn)(Gdn)]1/2、δCe=Cen/[(Lan)(Prn)]1/2,下标n为球粒陨石标准化值(Taylor and Mclennan, 1985).下标N为北美页岩标准化值(Haskin and Haskin, 1966).CIA=[(A12O3)/(A12O3+CaO*+Na2O+K2O)]×100(Young and Nesbitt, 1999),CaO*为硅酸盐矿物中的CaO成分. 表 3 泥岩样品常量、微量元素古气候判别指标
Table 3. Paleoclimate discrimination indexes of major and trace elements in mudstone samples
指标 样品范围 指示意义 CIA 74.9~82.3 寒冷干燥(60~70) 温暖湿润(70~80) 炎热干燥(80~100) Sr/Cu 1.51~21.3 温湿气候(1.5~7.0) 炎热干燥(>10) 表 4 泥岩样品氧化还原指标判别
Table 4. Redox index discrimination of the mudstone samples
指标 样品范围 氧化环境 还原环境 δCe 0.92~1.05 < 0.95 > 1 δEu 0.47~0.70 较小 较大 表 5 晚三叠世‒早、中侏罗世化石分布及古气候指示意义
Table 5. Fossil distribution of Late Triassic⁃Early⁃Middle Jurassic and Paleoclimatic indication significance
时代 地层 化石类型 古气候指示意义 早‒中侏罗世 桥源组 苏铁杉科Podozamites
蚌壳蕨科Coniopteris
紫萁科Todites温湿气候 早侏罗世 金鸡组 双扇蕨科Clathoropteris
合囊蕨科Marattiopsis
海相双壳类Retroceramus heyuanensis
海相双壳类Parainoceramus matsumotoi温湿气候 本内苏铁目Otozamites bechei
鳞叶型松柏Brachyphyllum sp.干热气候 晚三叠世 小坪组马安段 江西蛤属Jiangxiella sp.
菊石J.elliptica干热气候 小坪组凤岗段 大网羽叶属Anthrophyopsis crassineruis
莲座蕨目Bernoullia zeiller
叉羽叶属Ptilozamites chinensis
鳞羊齿属Lepidopteris ottonis温湿气候 表 6 粤南及围区晚三叠世‒早、中侏罗世古气候特征
Table 6. Paleoclimate characteristics of areas around south Guangdong in Late Triassic⁃Early⁃Middle Jurassic
时代 地区 华南陆缘 南海东
北部粤南 粤东⁃粤中 闽西南 广西 云南 贵州 江西 湖南 礼乐滩地区 潮汕凹陷 早、中侏罗世 温湿气候 温湿气候(短暂出现干热气候)1, 3 温湿气候4 温湿气候(短暂出现干热气候)6, 7 温湿气候11 早侏罗世 温湿气候(短暂出现干热气候) 干热气候(短暂出现温湿气候)1, 3 温湿气候向干热气候转变4, 5 温湿气候6 温湿气候向干热气候转变7 温湿气候向干热气候转变7 温湿气候向干热气候转变7 温湿气候向干热气候转变7 晚三叠世 温湿气候向干热气候转变 温湿气候向干热气候转变1, 2 温湿气候(晚期短暂出现干热)4 温湿气候(晚期出现干热)8 温湿气候(短暂出现干热)9 温湿气候10 注:资料来源:1. 许中杰,2010;2. 邵磊等,2007;3. 王永栋等,2014;4. 许中杰等,2012;5. 曹宝森等,1989;6. 江媚等,2015;7. 邓胜徽等,2017;8. 周统顺,1999;9. 曹洪升,1992;10. Kudrass et al., 1986 ;11. 吴国瑄等,2007. -
[1] Bureau of Geology and mineral resources of Guangdong Province, 1988. Regional Geological Records of Guangdong Province. Geological Publishing House, Beijing, 180-198 (in Chinese). [2] Cao, B. S., Liang, S. J., Zhang, Z. M., et al., 1989. A Preliminary Study on Jurassic Biostratigraphy in Fujian Province. Geology of Fujian, 8(3): 198-216 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDZ198903006.htm [3] Cao, H. S., 1992. Late Triassic Strata and Flora in Western Guizhou. Guizhou Geology, 9(1): 26-40 (in Chinese with English abstract). [4] Chen, H. Z., Sun, Z., Zhou, D., 2003. Distributions of Mesozoic Lithofacies and Marine Strata in South China. Journal of Tropical Oceanography, 22(2): 74-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY200302007.htm [5] Chen, J., Wang, Y. J., Chen, Y., et al., 2000. Geochemical Characterization of Rb and Sr in the Chinese Loess Stratigraphy and Its Implications for Paleomonsoon Climate. Acta Geologica Sinica (English Edition), 4(2): 279-288. https://doi.org/10.1111/j.1755-6724.2000.tb00462.x [6] Chen, L. Q., Li, P. C., Guo, F. S., et al., 2019. Facies Analysis and Paleoclimate Implications of the Late Cretaceous Danxia Formation in the Danxia Basin, Northern Guangdong Province, South China. Acta Sedimentologica Sinica, 37(1): 17-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201901002.htm [7] Deng, S. H., Lu, Y. Z., Zhao, Y., et al., 2017. The Jurassic Palaeoclimate Regionalization and Evolution of China. Earth Science Frontiers, 24(1): 106-142 (in Chinese with English abstract). [8] Dong, S. W., Zhang, Y. Q., Long, C. X., et al., 2008. Jurassic Tectonic Revolution in China and New Interpretation of the "Yanshan Movement". Acta Geologica Sinica (English Edition), 82(2): 334-347. https://doi.org/10.1111/j.1755-6724.2008.tb00583.x [9] Douglas, P. M. J., Brenner, M., Curtis, J. H., 2016. Methods and Future Directions for Paleoclimatology in the Maya Lowlands. Global and Planetary Change, 138: 3-24. https://doi.org/10.1016/j.gloplacha.2015.07.008 [10] Du, X. J., 2015. Characteristics of Jurassic Plant Fossils and Floras in North China and the Implication of Paleoclimate Change (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [11] Feng, L. J., Chu, X. L., Zhang, T. G., et al., 2006. Liantuo Sandstones: Sedimentary Records under Cold Climate before the Nanhua Big Glaciations. Acta Petrologica Sinica, 22(9): 2387-2393 (in Chinese with English abstract). http://www.oalib.com/paper/1473205 [12] Haskin, M. A., Haskin, L. A., 1966. Rare Earths in European Shales: A Redetermination. Science, 154(3748): 507-509. https://doi.org/10.1126/science.154.3748.507 [13] Hsü, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-C [14] Jiang, M., Liao, Z. H., Lu, A. K., et al., 2015. Sendimentary Environment and Lithofacies Palaeogeograpy of Mesozoic Strata in Northeast Guangxi. Journal of Guilin University of Technology, 35(Z): 56-58 (in Chinese). [15] Kudrass, H. R., Wiedicke, M., Cepek, P., et al., 1986. Mesozoic and Cainozoic Rocks Dredged from the South China Sea (Reed Bank Area) and Sulu Sea and Their Significance for Plate-Tectonic Reconstructions. Marine and Petroleum Geology, 3(1): 19-30. https://doi.org/10.1016/0264-8172(86)90053-X [16] Li, R. F., Ma, Y. S., Guo, T. L., et al., 2006. The Marine Character of the Sedimentation and Geochemistry of the Upper Triassic in the Chuxiong Basin, Yunnan. Acta Geologica Sinica, 80(3): 374-381 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE200603009&dbcode=CJFD&year=2006&dflag=pdfdown [17] Li, S. Z., Zang, Y. B., Wang, P. C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction. Earth Science Frontiers, 24(4): 213-225 (in Chinese with English abstract). [18] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1 [19] Liu, J., Zhang, J. Y., Ge, Y. K., et al., 2018. Tectonic Geomorphology: An Interdisciplinary Study of the Interaction among Tectonic Climatic and Surface Processes. Chinese Science Bulletin, 63(30): 3070-3088 (in Chinese with English abstract). doi: 10.1360/N972018-00498 [20] Liu, Y. X., Hu, W. X., Hu, G., 2014. Spores and Pollen Assemblages and Their Paleo-Climate Implication from the Early Cretaceous Dark Mudstone in Zhejiang and Fujian Provinces. Geological Journal of China Universities, 20(4): 590-601 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201404011.htm [21] Luo, W. D., Zhou, J., Li, X. J., et al., 2018. Morphology and Structure and Evolution of West Basin Canyon, South China Sea. Earth Science, 43(6): 2172-2183 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806029.htm [22] Ma, L., Chen, H. J., Ke, W., et al., 2004. Geotectonics and Marine Petroleum Geology in South China. Geological Publishing House, Beijing, 79-81 (in Chinese). [23] Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 [24] Niu, Z. J., Wang, Z. H., Zhang, R. J., et al., 2018. A Preliminary Study on Middle Ordovician Bivalves from Yunkai Area, Western Guangdong, South China. Earth Science, 43(7): 2195-2205 (in Chinese with English abstract). http://www.researchgate.net/publication/326220022_A_Preliminary_Study_on_Middle_Ordovician_Bivalves_from_Yunkai_Area_Western_Guangdong_South_China [25] Shao, L., You, H. Q., Hao, H. J., et al., 2007. Petrology and Depositional Environments of Mesozoic Strata in the Northeastern South China Sea. Geological Review, 53(2): 164-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200702004.htm [26] Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1-2): 29-48. https://doi.org/10.1016/S0009-2541(00)00362-4 [27] Shu, L. S., Yu, J. H., Jia, D., et al., 2008. Early Paleozoic Orogenic Belt in the Eastern Segment of South China. Geological Bulletin of China, 27(10): 1581-1593 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-zqyd200810002.htm [28] Shu, L. S., Zhou, X. M., Deng, P., et al., 2004. Geological Features and Tectonic Evolution of Meso-Cenozoic Basins in Southeastern China. Regional Geology of China, 23(Suppl. 2): 876-884 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2007.htm [29] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [30] Tewari, R., Chatterjee, S., Agnihotri, D., et al., 2015. Glossopteris Flora in the Permian Weller Formation of Allan Hills, South Victoria Land, Antarctica: Implications for Paleogeography, Paleoclimatology, and Biostratigraphic Correlation. Gondwana Research, 28(3): 905-932. https://doi.org/10.1016/j.gr.2015.02.003 [31] Tian, X. X., Luo, K. L., Tan, J. A., et al., 2005. Analysis on Palaeoclimate Neighbouring the Cretaceous and Paleogene Boundary in Jiayin Area, Heilongjiang Province. Journal of Palaeogeography, 7(3): 425-432 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/gdlxb200503013 [32] Torres, M. A., Joshua West, A., Li, G. J., 2014. Sulphide Oxidation and Carbonate Dissolution as a Source of CO2 over Geological Timescales. Nature, 507(7492): 346-349. https://doi.org/10.1038/nature13030 [33] Wang, S. J., Huang, X. Z., Tuo, J. C., et al., 1997. Evolutional Characteristics and Their Paleoclimate Significance of Trace Elements in the Hetaoyuan Formation, Biyang Depression. Acta Sedimentologica Sinica, 15(1): 66-71 (in Chinese with English abstract). http://www.researchgate.net/publication/285832371_Evolutional_characteristics_and_their_paleoclimate_significance_of_trace_elements_in_the_Hetaoyuan_Formation_Biyang_depression [34] Wang, Y. D., Wu, X. W., Yang, X. J., et al., 2014. The Discovery of Jurassic Plants in Shenzhen of Guangdong, Southern China and Related Significance. Chinese Science Bulletin, 59(19): 1874-1880(in Chinese with English abstract). doi: 10.1360/csb2014-59-19-1874 [35] Wu, G. X., Wang, R. J., Hao, H. J., et al., 2007. Microfossil Evidence for Development of Marine Mesozoic in the North of South China Sea. Marine Geology & Quaternary Geology, 27(1): 79-85 (in Chinese with English abstract). http://www.researchgate.net/publication/285738354_Microfossil_evidence_for_development_of_marine_Mesozoic_in_the_north_of_South_China_Sea [36] Xu, Z. J., 2010. Late Triassic-Middle Jurassic Sedimentation and Sea Level Change in the Northern Continental Margin of the South China Sea (Dissertation). Jilin University, Changchun, 37-48 (in Chinese with English abstract). [37] Xu, Z. J., Cheng, R. H., He, Y. Y., et al., 2019. Detrital Zircon U-Pb Dating and Its Geological Significance of Early Jurassic Lishan Formation in Southwestern Fujian of South China. Earth Science, 44(4): 1371-1388 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1020.htm [38] Xu, Z. J., Cheng, R. H., Zhang, L., et al., 2012. The Geochemistry Records of Sea-Level Relative Movement and Paleoclimatic Evolution of the South China Continental Margin in Late Triassic-Early-Middle Jurassic. Earth Science, 37(1): 113-124 (in Chinese with English abstract). http://www.researchgate.net/publication/287717651_The_geochemistry_records_of_sea-level_relative_movement_and_paleoclimatic_evolution_of_the_South_China_continental_margin_in_Late_Triassic-Early-Middle_Jurassic [39] Yang, Z. Y., He, B., 2013. Transform of Jurassic Tectonic Configuration of South China Block: Evidence from U-Pb Ages of Detrital Zircons. Geotectonica et Metallogenia, 37(4): 580-591 (in Chinese with English abstract). http://www.researchgate.net/publication/287035820_Transform_of_Jurassic_tectonic_configuration_of_South_China_block_Evidence_from_U-Pb_ages_of_detrital_zircons [40] Young, G. M., Nesbitt, H. W., 1999. Paleoclimatology and Provenance of the Glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A Chemostratigraphic Approach. Geological Society of America Bulletin, 111(2): 264-274. https://doi.org/10.1130/0016-7606(1999)1110264:papotg>2.3.co;2 doi: 10.1130/0016-7606(1999)1110264:papotg>2.3.co;2 [41] Zhang, Y. Q., Dong, S. W., Li, J. H., et al., 2012. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geoscientica Sinica, 33(3): 257-279 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQXB201203001&dbcode=CJFD&year=2012&dflag=pdfdown [42] Zhang, Y. Q., Xu, X. B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract). http://www.researchgate.net/publication/284573329_Deformation_record_of_the_change_from_Indosinian_collision-related_tectonic_system_to_Yanshanian_subduction-related_tectonic_system_in_South_China_during_the_Early_Mesozoic [43] Zhou, D., Sun, Z., Chen, H. Z., et al., 2005. Mesozoic Lithofacies, Paleo-Geography, and Tectonic Evolution of the South China Sea and Surrounding Areas. Earth Science Frontiers, 12(3): 204-218 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY200503029.htm [44] Zhou, T. S., 1999. Triassic Floras, Photogeographic Divisions and Palaeoclimate in China. Professional Papers of Stratigraphy and Palaeontology, 27: 212-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCGW199900016.htm [45] Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 [46] 广东省地质矿产局, 1988. 广东省区域地质志. 北京: 地质出版社, 180-198. [47] 曹宝森, 粱诗经, 张志明, 等, 1989. 福建侏罗纪生物地层学初步研究. 福建地质, 8(3): 198-216. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ198903006.htm [48] 曹洪升, 1992. 黔西晚三叠世地层及植物群研究. 贵州地质, 9(1): 26-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199201003.htm [49] 陈汉宗, 孙珍, 周蒂, 2003. 华南中生代岩相变化及海相地层时空分布. 热带海洋学报, 22(2): 74-82. doi: 10.3969/j.issn.1009-5470.2003.02.008 [50] 陈留勤, 李鹏程, 郭福生, 等, 2019. 粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义. 沉积学报, 37(1): 17-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901002.htm [51] 邓胜徽, 卢远征, 赵怡, 等, 2017. 中国侏罗纪古气候分区与演变. 地学前缘, 24(1): 106-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201701008.htm [52] 都晓菁, 2015. 中国北方侏罗纪古植物化石与植物群特征及其对古气候演变的指示(硕士学位论文). 北京: 中国地质大学. [53] 冯连君, 储雪蕾, 张同钢, 等, 2006. 莲沱砂岩: 南华大冰期前气候转冷的沉积记录. 岩石学报, 22(9): 2387-2393. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609014.htm [54] 江媚, 廖志华, 卢安康, 等, 2015. 桂东北中生代地层沉积环境和岩相古地理分析. 桂林理工大学学报, 35(Z): 56-58. [55] 李儒峰, 马永生, 郭彤楼, 等, 2006. 云南楚雄盆地上三叠统沉积及地球化学的海相特征. 地质学报, 80(3): 374-381. doi: 10.3321/j.issn:0001-5717.2006.03.009 [56] 李三忠, 臧艺博, 王鹏程, 等, 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm [57] 刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201830003.htm [58] 刘友祥, 胡文瑄, 胡广, 2014. 浙闽地区早白垩世暗色岩系的孢粉组合与古气候特征. 高校地质学报, 20(4): 590-601. doi: 10.3969/j.issn.1006-7493.2014.04.011 [59] 罗伟东, 周娇, 李学杰, 等, 2018. 南海海盆盆西峡谷的形态与结构及形成演化. 地球科学, 43(6): 2172-2183. doi: 10.3799/dqkx.2017.615 [60] 马力, 陈焕疆, 克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社, 79-81. [61] 牛志军, 王志宏, 张仁杰, 等, 2018. 粤西云开地区中奥陶世双壳类动物群的发现及其意义初探. 地球科学, 43(7): 2195-2205. doi: 10.3799/dqkx.2018.538 [62] 邵磊, 尤洪庆, 郝沪军, 等, 2007. 南海东北部中生界岩石学特征及沉积环境. 地质论评, 53(2): 164-169. doi: 10.3321/j.issn:0371-5736.2007.02.003 [63] 舒良树, 于津海, 贾东, 等, 2008. 华南东段早古生代造山带研究. 地质通报, 27(10): 1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 [64] 舒良树, 周新民, 邓平, 等, 2004. 中国东南部中、新生代盆地特征与构造演化. 地质通报, 23(Z2): 876-884. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2007.htm [65] 田晓雪, 雒昆利, 谭见安, 等, 2005. 黑龙江嘉荫地区白垩系与古近系界线附近的古气候分析. 古地理学报, 7(3): 425-432. doi: 10.3969/j.issn.1671-1505.2005.03.013 [66] 王随继, 黄杏珍, 妥进才, 等, 1997. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义. 沉积学报, 15(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB701.011.htm [67] 王永栋, 吴向午, 杨小菊, 等, 2014. 广东深圳地区侏罗纪植物化石的发现及意义. 科学通报, 59(19): 1874-1880. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201419010.htm [68] 吴国瑄, 王汝建, 郝沪军, 等, 2007. 南海北部海相中生界发育的微体化石证据. 海洋地质与第四纪地质, 27(1): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200701014.htm [69] 许中杰, 2010. 南海北部陆缘晚三叠世-中侏罗世沉积与海平面变化(博士学位论文). 长春: 吉林大学, 37-48. [70] 许中杰, 程日辉, 何奕言, 等, 2019. 闽西南早侏罗世火山岩的锆石U-Pb年龄和Sr-Nd同位素特征及其地质意义. 地球科学, 44(4): 1371-1388. doi: 10.3799/dqkx.2018.201 [71] 许中杰, 程日辉, 张莉, 等, 2012. 华南陆缘晚三叠-早、中侏罗世海平面相对升降与古气候演化的地球化学记录. 地球科学, 37(1): 113-124. doi: 10.3799/dqkx.2012.011 [72] 杨宗永, 何斌, 2013. 华南侏罗纪构造体制转换: 碎屑锆石U-Pb年代学证据. 大地构造与成矿学, 37(4): 580-591. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304004.htm [73] 张岳桥, 董树文, 李建华, 等, 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm [74] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026 [75] 周蒂, 孙珍, 陈汉宗, 等, 2005. 南海及其围区中生代岩相古地理和构造演化. 地学前缘, 12(3): 204-218. doi: 10.3321/j.issn:1005-2321.2005.03.022 [76] 周统顺, 1999. 中国三叠纪植物群、植物地理分区及古气候. 地层古生物论文集. 27: 212-224.