Feasibility of Prospecting Based on PMGRA Gas Geochemical Survey in Shallow Covered Area of Liaodong Area
-
摘要: 气体能携带深部矿化信息沿着岩石裂隙和断裂带迁移至地表,因此气体地球化学方法可以用于寻找覆盖层以下的隐伏断裂和矿体.基于便携式多组分气体快速分析仪(PMGRA),应用气体地球化学方法对辽东地区五龙金矿区和青城子地区开展了探索性的试验研究,并辅以相应的土壤地球化学测量进行对比.结果显示,异常区气体的浓度衬值非常大;在部分气体异常区,沿着构造倾向方向,具有CO2异常峰值出现在H2S、SO2和CH4之前的特点.在辽东浅覆盖区,气体和土壤地球化学测量均能反映隐伏构造和矿体;而在覆盖较厚地区,气体地球化学测量对断裂和矿体反映更明显,受覆盖层的类型和厚度影响较小.本次试验结果初步显示了基于PMGRA气体地球化学测量方法在浅覆盖区具有一定的可行性.Abstract: Gas can carry deep mineralization information migrated to the surface along the rock fissures and fault zones. Therefore, gas geochemical methods can be used to find hidden faults and ore bodies below the cover layer. Based on the Portable Multi-Component Gas Rapid Analyzer (PMGRA) geochemical method, exploratory experimental studies were carried out in Wulong gold mining area and Qingchengzi area, Liaodong area, and supplemented by corresponding soil geochemical surveys for comparison. The results show that the concentration of the gas in the abnormal area is very large, with the abnormal peaks of CO2 appearing before H2S, SO2 and CH4 in part of the gas anomaly area, along the structural dip direction. In the shallow covered area of Liaodong, both gas and soil geochemical surveys can reflect hidden structures and ore bodies. However, in the thicker covered area, gas geochemical surveys can more clearly reflect the faults and ore bodies, and are less affected by the type and thickness of the cover layer. The results of this test initially show the feasibility of PMGRA geochemical survey method in shallow covered area.
-
Key words:
- PMGRA /
- shallow covered area /
- Wulong gold deposit /
- Qingchengzi area /
- Liaodong area /
- geochemistry
-
表 1 P1剖面气体和土壤数据参数统计
Table 1. Parameter statistics of gas and soil geochemical data in P1 profile
元素 样品数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值 H2S 24 0.009 0.515 0.036 0.083 0.124 0.07 2.31 1.48 14.31 SO2 24 0.289 3.729 0.654 0.953 0.877 1.28 1.46 0.92 5.70 CH4 24 550 2 200 1 113 1 113 456.9 2 027 1.00 0.41 1.98 CO2 24 6 000 99 000 17 434 20 833 18 788 35 240 1.19 0.90 5.68 Au 17 1.9 233 18.6 38 59.8 55.1 44.70 1.58 12.53 Ag 17 0.021 4.781 0.218 0.648 1.192 0.60 10.80 1.84 21.93 As 17 3.2 121 37.124 37.1 35.2 107.47 8.44 0.95 3.26 Hg 17 24 50 34.529 35 7 48.12 2.88 0.20 1.45 Cu 17 9.3 17.3 12.824 12.8 2.7 18.23 0.75 0.21 1.35 Pb 17 30.4 52.1 40 40.4 6.3 53.1 2.13 0.16 1.30 Zn 17 36.2 66.8 49 49.5 9.1 67.8 0.73 0.18 1.36 W 17 0.96 6.7 2.7 2.9 1.46 4.99 3.10 0.49 2.48 Sn 17 0.2 7.5 0.69 1.7 2.1 1.6 0.80 1.28 10.87 Mo 17 0.23 3.39 0.59 0.97 0.94 1.08 1.56 0.97 5.75 Bi 17 0.21 28.5 0.63 3.34 7.66 1.08 18.5 2.30 45.24 Mn 17 96 425 256 256 97 450 0.44 0.38 1.66 Cr 17 67.2 116 89.4 89.4 14.2 117.9 1.94 0.16 1.30 Co 17 5.2 13.1 7.6 7.9 2.1 10.9 0.79 0.26 1.72 Ni 17 29.3 57.4 39.0 40.1 6.7 49.5 1.61 0.17 1.47 B 17 19 114 61.8 62 26 113.6 2.90 0.42 1.84 F 17 330 947 629 629 157 942 1.30 0.25 1.51 注:背景值为剔除特异值后的平均值,异常下限为背景值加两倍标准离差,气体的富集系数为平均值与背景值的比值,元素的富集系数为平均值与中国东部元素丰度(迟清华和鄢明才,2007)的比值,变异系数为标准离差与平均值的比值,气体或元素的衬值为最大值与背景值的比值.气体的浓度单位为10-6;土壤数据中除Au、Hg的含量单位为10-9,其余元素的含量单位为10-6. 表 2 P2剖面气体和土壤数据参数统计
Table 2. Parameter statistics of gas and soil geochemical data in P2 profile
元素 数据个数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值 H2S 16 0.011 > 1 0.082 0.188 0.334 0.23 2.29 1.78 12.20 SO2 16 0.379 > 4 0.93 1.44 1.58 2.0 1.55 1.09 4.30 CH4 16 495 3 600 1 164 1 317 819 2 298 1.13 0.62 3.09 CO2 16 13 000 96 000 30 733 34 812 20 334 55 855 1.13 0.58 3.12 Au 16 0.9 4.6 2.62 2.6 1.1 4.8 3.10 0.41 1.76 Ag 16 0.038 0.204 0.076 0.088 0.044 0.134 1.47 0.50 2.68 As 16 8.1 21.5 12.3 12.8 3.6 18.2 2.90 0.28 1.75 Hg 16 38 70 49 51 9 65 4.20 0.18 1.43 Cu 16 7 13.7 10.1 10.1 2 14.1 0.60 0.20 1.36 Pb 16 19.4 35.4 27.6 27.6 4.3 36. 1 1.45 0.15 1.28 Zn 16 45.2 78.5 56.5 57.8 9.3 72.3 0.85 0.16 1.39 W 16 1.6 2.98 2.2 2.18 0.45 3.1 2.20 0.21 1.35 Sn 16 1 3.3 1.9 2 0.7 3.3 0.95 0.34 1.74 Mo 16 0.28 1.71 0.8 0.8 0.48 1.8 1. 30 0.60 2.14 Bi 16 0.28 0.86 0.52 0.52 0.17 0.87 2.91 0.33 1.65 Mn 16 165 456 305 305 82 469 0.53 0.27 1.50 Cr 16 58.7 102 75 77.1 11.5 95 1.68 0.15 1.36 Co 16 5.2 12.8 8.2 8.5 1.9 11.4 0.85 0.22 1.56 Ni 16 20.6 44.2 28.6 29.5 7.1 40.9 1.18 0.24 1.55 B 16 9 28 13.0 16 6 18.9 0.75 0.36 2.15 F 16 400 543 480 481 48 576 0.99 0.10 1.13 注:背景值、异常下限、富集系数、变异系数、衬值的计算方法同表 1;气体的浓度和元素的含量单位同表 1. 表 3 P3剖面气体和土壤数据参数统计
Table 3. Parameter statistics of gas and soil geochemical data in P3 profile
元素 样品数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值 H2S 57 0.012 0.804 0.145 0.199 0.13 0.40 1.37 1.02 5.54 SO2 57 0.407 > 5 1.744 1.857 1.07 3.88 1.06 0.65 2.87 CH4 57 907.7 3 622.3 1 947.15 1 947.15 708.65 3 364.45 1.00 0.36 1.86 CO2 57 800 19 900 2 914.4 4 901.1 1 623.01 6 160.37 1.68 0.96 6.83 Au 43 0.6 263 11.44 22.6 17.26 45.95 26.57 2.38 11.64 Ag 43 0.02 4.07 0.32 0.61 0.38 1.08 10.10 1.57 6.67 As 43 9.5 200 31.65 43.3 22.01 75.68 9.84 1.03 4.62 Hg 43 35 77 51.37 51 10.97 73.32 4.28 0.21 1.51 Cu 43 13.3 66.4 22.16 23.5 4.57 31.29 1.38 0.35 2.83 Pb 43 19.1 98.6 37.23 38.7 9.95 57.13 2.03 0.35 2.55 Zn 43 43.3 177 67.39 71.3 10.19 87.77 1.05 0.30 2.48 W 43 2.64 22.7 4.1 5.09 1.08 6.25 5.25 0.77 4.46 Sn 43 0.2 6.5 1.36 1.7 1.01 3.37 0.79 0.90 3.82 Mo 43 0.14 2.95 0.38 0.54 0.24 0.87 0.88 1.12 5.46 Bi 43 0.26 1.16 0.48 0.5 0.09 0.67 2.75 0.28 2.32 Mn 43 228 751 439.51 440 122.25 684.00 0.76 0.28 1.71 Cr 43 56.9 91.8 73.91 73.9 8.81 91.53 1.61 0.12 1.24 Co 43 8.9 19.4 14.15 14.2 2.15 18.45 1.42 0.15 1.37 Ni 43 39.5 65.3 49.25 49.6 5.03 59.32 1.98 0.11 1.32 B 43 23 162 62.3 70 23.72 109.74 3.35 0.48 2.31 F 43 359 971 620.44 620 137.59 895.62 1.28 0.22 1.13 注:背景值、异常下限、富集系数、变异系数、衬值的计算方法同表 1;气体的浓度和元素的含量单位同表 1. 表 4 P4剖面气体地球化学数据参数统计
Table 4. Parameter statistics of gas geochemical data in P4 profile
元素 样品数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值 H2S 23 0.005 > 1 0.03 0.09 0.02 0.07 3.00 2.31 33.33 SO2 23 0.123 > 5 0.54 0.73 0.33 1.19 1.35 1.35 9.26 CH4 23 683.8 4 550 1 415.47 1 678.34 399.05 2 213.58 1.19 0.57 3.21 CO2 23 4 000 75 000 15 400 21 304.35 7 653.00 30 706.00 1.38 0.82 4.87 注:背景值、异常下限、富集系数、变异系数、衬值的计算方法同表 1;气体的浓度单位同表 1. -
[1] Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry:Exploration, Environment, Analysis, 4(1):7-32. https://doi.org/10.1144/1467-7873/03-019 [2] Chi, Q. H., Yan, M. C., 2007. Handbook of Elemental Abundance for Applied Geochemistry. Geological Publishing House, Beijing, 1-148 (in Chinese). [3] Fridman, A. I., 1990. Application of Naturally Occurring Gases as Geochemical Pathfinders in Prospecting for Endogenetic Deposits. Journal of Geochemical Exploration, 38(2):1-11. https://doi.org/10.1016/0375-6742(90)90090-W [4] Gosar, M., Šajn, R., Teršič, T., 2016. Distribution Pattern of Mercury in the Slovenian Soil:Geochemical Mapping Based on Multiple Geochemical Datasets. Journal of Geochemical Exploration, 167:38-48. https://doi.org/10.1016/j.gexplo.2016.05.005 [5] Güleç , N., Hilton, D. R., 2016. Turkish Geothermal Fields as Natural Analogues of CO2 Storage Sites:Gas Geochemistry and Implications for CO2 Trapping Mechanisms. Geothermics, 64:96-110. https://doi.org/10.1016/j.geothermics.2016.04.008 [6] Hale, M., 2010. Gas Geochemistry and Deeply Buried Mineral Deposits:The Contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London. Geochemistry:Exploration, Environment, Analysis, 10(3):261-267. https://doi.org/10.1144/1467-7873/09-236 [7] Han, Z. X., Liao, J. G., Zhang, Y. L., et al., 2017. Review of Deep-Penetrating Geochemical Exploration Methods. Advances in Earth Science, 32(8):828-838 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201708006.htm [8] Hinkle, M. E., Ryder, J. L., Sutley, S. J., et al., 1990. Production of Sulfur Gases and Carbon Dioxide by Synthetic Weathering of Crushed Drill Cores from the Santa Cruz Porphyry Copper Deposit near Casa Grande, Pinal County, Arizona. Journal of Geochemical Exploration, 38(1/2):43-67. https://doi.org/10.1016/0375-6742(90)90092-o [9] Hou, Z. Q., Zheng, Y. C., Geng, Y. S., 2015. Metallic Refertilization of Lithosphere along Cratonic Edges and Its Control on Au, Mo and REE Ore Systems. Mineral Deposits, 34(4):641-674 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201504001.htm [10] Li, D. D., Wang, Y. W., Zhang, Z. C., et al., 2019, Characteristics of Metallotectonics and Ore-Forming Structural Plane in Baiyun Gold Deposit, Liaoning. Journal of Geomechanics, 25(Suppl.1):10-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1003.htm [11] Li, W., Liu, C. H., He, G. W., et al., 2017. The Application of Soil Mercury Survey Method to the Exploration of Concealed Mineral Resources in Yinnao, Yudu Area. Geophysical and Geochemical Exploration, 41(5):840-845 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201705008.htm [12] Liu, J., Wang, S. L., Li, T. G., et al., 2018. Geochronology and Isotopic Geochemical Characteristics of Wulong Gold Deposit in Liaoning Province. Mineral Deposits, 37(4):712-728 (in Chinese with English abstract). [13] Lombardi, S., Voltattorni, N., 2010. Rn, He and CO2 Soil Gas Geochemistry for the Study of Active and Inactive Faults. Applied Geochemistry, 25(8):1206-1220. https://doi.org/10.1016/j.apgeochem.2010.05.006 [14] Ma, Y. B., Bagas, L., Xing, S. W., et al., 2016. Genesis of the Stratiform Zhenzigou Pb-Zn Deposit in the North China Craton:Rb-Sr and C-O-S-Pb Isotope Constraints. Ore Geology Reviews, 79:88-104. https://doi.org/10.1016/j.oregeorev.2016.05.009 [15] Mann, A. W., Birrell, R. D., Fedikow, M. A. F., et al., 2005. Vertical Ionic Migration:Mechanisms, Soil Anomalies, and Sampling Depth for Mineral Exploration. Geochemistry:Exploration, Environment, Analysis, 5(3):201-210. https://doi.org/10.1144/1467-7873/03-045 [16] Mann, A. W., Birrell, R. D., Mann, A. T., et al., 1998. Application of the Mobile Metal Ion Technique to Routine Geochemical Exploration. Journal of Geochemical Exploration, 61(1):87-102. https://doi.org/10.1016/S0375-6742(97)00037-X [17] McCarthy, J. H., Lambe, R. N., Dietrich, J. A., 1986. A Case Study of Soil Gases as an Exploration Guide in Glaciated Terrain; Crandon Massive Sulfide Deposit, Wisconsin. Economic Geology, 81(2):408-420. https://doi.org/10.2113/gsecongeo.81.2.408 [18] Oakes, B. W., Hale, M., 1987. Dispersion Patterns of Carbonyl Sulphide above Mineral Deposits. Journal of Geochemical Exploration, 28(1/2/3):235-249. https://doi.org/10.1016/0375-6742(87)90050-1 [19] Polito, P. A., Clarke, J. D. A., Bone1, Y., et al., 2002. A CO2-O2-Light Hydrocarbon-Soil-Gas Anomaly above the Junction Orogenic Gold Deposit:A Potential, Alternative Exploration Technique. Geochemistry:Exploration, Environment, Analysis, 2(4):333-344. https://doi.org/10.1144/1467-787302-035 [20] Reid, A. R., Rasmussen, J. D., 1990. The Use of Soil-Gas CO2 in the Exploration for Sulfide-Bearing Breccia Pipes in Northern Arizona. Journal of Geochemical Exploration, 38(1/2):87-101. https://doi.org/10.1016/0375-6742(90)90094-q [21] Wan, W., Chen, Z. Y., Cheng, Z. Z., et al., 2019. Pilot Study of CO2 Gas Measurement Method for Mineral Exploration in Hilly Areas. Geophysical and Geochemical Exploration, 43(1):70-76 (in Chinese with English abstract). [22] Wang, M. Q., Gao, Y. Y., Zhang, D. E., et al., 2006. Breakthrough in Mineral Exploration Using Geogas Survey in the Basin Area of Northern Qilian Region and Its Significance. Geophysical & Geochemical Exploration, 30(1):7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200601002.htm [23] Wang, M. Z., Ji, Z. J., Liang, Q. F., et al., 2011. Ore-Controlling Structure Characteristics and Ore Prospecting in Wulong Gold Deposit, Liaoning Province. Geology and Mineral Resources of South China, 27(3):191-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC201103004.htm [24] Wang, X. Q., 1998. Deed Penetration Exploration Geochemistry. Geophysical & Geochemical Exploration, 22(3):166-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH199803001.htm [25] Wang, X. Q., Ye, R., 2011. Findings of Nanoscale Metal Particles:Evidence for Deep-Penetrating Geochemistry. Acta Geoscientica Sinica, 32(1):7-12 (in Chinese with English abstract). http://www.oalib.com/paper/1560340 [26] Wang, X. Q., Zhang, B. M., Xin, L., et al., 2016. Geochemical Challenges of Diverse Regolith-Covered Terrains for Mineral Exploration in China. Ore Geology Reviews, 73:417-431. doi: 10.1016/j.oregeorev.2015.08.015 [27] Wang, Y. W., Xie, H. J., Li, D. D., et al., 2017. Prospecting Prediction of Ore Concentration Area Exemplified by Qingchengzi Pb-Zn-Au-Ag Ore Concentration Area, Eastern Liaoning Province. Mineral Deposits, 36(1):1-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201701001.htm [28] Xiao, S. Y., Zhu, G., Zhang, S., et al., 2018. Structural Processes and Dike Emplacement Mechanism in the Wulong Gold Field, Eastern Liaoning. Chinese Science Bulletin, 63(28):3022-3036 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-KXTB2018Z2011.htm [29] Xu, L., Yang, J. H., Zeng, Q. D., et al., 2020. Pyrite Rb-Sr, Sm-Nd and Fe Isotopic Constraints on the Age and Genesis of the Qingchengzi Pb-Zn Deposits, Northeastern China. Ore Geology Reviews, 117:103324. https://doi.org/10.1016/j.oregeorev.2020.103324 [30] Yang, Y. C., Li, Y. J., He, J. P., et al., 2017. Application of Geochemical Soil Survey in the Gongpoquan Gold Deposit at Mazongshan, Gansu Province. Geology and Exploration, 53(4):715-730 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201704011.htm [31] Yu, B., Zeng, Q. D., Frimmeld, H. E., et al., 2018. Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Ore Geology Reviews, 102:313-337. https://doi.org/10.1016/j.oregeorev.2018.09.016 [32] Zeng, Q. D., Chen, R. Y., Yang, J. H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7):1939-1963 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.01 [33] Zeng, X., Chen, Y. R., Lin, L. B., et al., 2016. The Feasibility of Applying Integrated Hydrocarbon and Mercury Method to Ore Prospecting in Alluvial Coverage Area. Geology in China, 43(2):607-616 (in Chinese with English abstract). http://www.researchgate.net/publication/311434079_The_feasibility_of_applying_integrated_hydrocarbon_and_mercury_method_to_ore_prospecting_in_alluvial_coverage_area [34] Zhang, B. M., Wang, X. Q., 2018. Theory and Technology of Nanogeochemistry for Mineral Exploration. Earth Science, 43(5):1503-1517 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201805012.htm [35] Zhang, J., Cheng, Z. Z., Lun, Z. Y., et al., 2016. Soil Air Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulfide Measurements as a Guide to Concealed Mineralization. Geological Science and Technology Information, 35(4):12-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201604003.htm [36] Zhang, P., Kou, L. L., Zhao, Y., et al., 2020. Genesis of the Wulong Gold Deposit, Liaoning Province, NE China:Constrains from Noble Gases, Radiogenic and Stable Isotope Studies. Geoscience Frontiers, 11(2):547-563. https://doi.org/10.1016/j.gsf.2019.05.012 [37] Zhang, P., Zhao, Y., Kou, L. L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10):3297-3313 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910010.htm [38] Zhang, Z. Q., Wang, G., Carranza, E. J. M., et al., 2019. Metallogenic Model of the Wulong Gold District, China, and Associated Assessment of Exploration Criteria Based on Multi-Scale Geoscience Datasets. Ore Geology Reviews, 114:103138. https://doi.org/10.1016/j.oregeorev.2019.103138 [39] Zhou, S. C., Liu, X. H., Tong, C. H., et al., 2014. Application Research of Geogas Survey in Prospecting Concealed Ore. Acta Geologica Sinica, 88(4):736-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201404025.htm [40] 迟清华, 鄢明才, 2007.应用地球化学元素丰度数据手册.北京:地质出版社, 1-148. [41] 韩志轩, 廖建国, 张聿隆, 等, 2017.穿透性地球化学勘查技术综述与展望.地球科学进展, 32(8):828-838. http://www.cqvip.com/QK/94287X/20178/673453133.html [42] 侯增谦, 郑远川, 耿元生, 2015.克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用.矿床地质, 34(4):641-674. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201504001.htm [43] 李德东, 王玉往, 张志超, 等, 2019.辽宁白云金矿床成矿构造与成矿结构面特征浅析.地质力学学报, 25(S1):10-12. http://www.cqvip.com/main/zcps.aspx?c=1&id=68907688504849578349484851 [44] 李伟, 刘翠辉, 贺根文, 等, 2017.壤中汞气测量在于都营脑隐伏矿产勘查中的应用.物探与化探, 41(5):840-845. http://www.cqvip.com/QK/95670X/201705/673300033.html [45] 刘军, 王树岭, 李铁刚, 等, 2018.辽宁省五龙金矿床成岩成矿年代学及同位素地球化学特征.矿床地质, 37(4):712-728. http://www.kcdz.ac.cn/kcdzen/ch/reader/view_abstract.aspx?file_no=20180402&flag=1 [46] 万卫, 陈振亚, 程志中, 等, 2019. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究.物探与化探, 43(1):70-76. http://d.old.wanfangdata.com.cn/Periodical_wtyht201901008.aspx [47] 汪明启, 高玉岩, 张得恩, 等, 2006.地气测量在北祁连盆地区找矿突破及其意义.物探与化探, 30(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200601002 [48] 王明志, 纪兆家, 梁群峰, 等, 2011.辽宁五龙金矿控矿构造分析及找矿方向.华南地质与矿产, 27(3):191-196. http://d.wanfangdata.com.cn/Periodical/hndzykc201103003 [49] 王学求, 1998.深穿透勘查地球化学.物探与化探, 22(3):166-169. http://www.cnki.com.cn/Article/CJFDTotal-WTYH199803001.htm [50] 王学求, 叶荣, 2011.纳米金属微粒发现——深穿透地球化学的微观证据.地球学报, 32(1):7-12. http://d.wanfangdata.com.cn/Periodical/dqxb201101002 [51] 王玉往, 解洪晶, 李德东, 等, 2017.矿集区找矿预测研究:以辽东青城子铅锌-金-银矿集区为例.矿床地质, 36(1):1-24. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201701001.htm [52] 肖世椰, 朱光, 张帅, 等, 2018.辽东五龙金矿区成矿期构造过程与岩脉就位机制.科学通报, 63(28):3022-3036. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2018Z2011.htm [53] 杨永春, 李元家, 何建平, 等, 2017.土壤地球化学测量在马鬃山公婆泉东金矿的应用.地质与勘探, 53(4):715-730. http://www.cnki.com.cn/Article/CJFDTotal-DZKT201704011.htm [54] 曾庆栋, 陈仁义, 杨进辉, 等, 2019.辽东地区金矿床类型、成矿特征及找矿潜力.岩石学报, 35(7):1939-1963. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201907001.htm [55] 曾旭, 陈远荣, 林立保, 等, 2016.烃汞综合气体测量法在冲洪积覆盖区找矿的可行性探讨.中国地质, 43(2):607-616. http://www.cqvip.com/QK/90050X/20162/668599244.html [56] 张必敏, 王学求, 2018.矿产勘查的纳米地球化学理论与方法.地球科学, 43(5):1503-1517. doi: 10.3799/dqkx.2018.409 [57] 张洁, 程志中, 伦知颍, 等, 2016.土壤中CO2、SO2和H2S气体测量:一种适用于覆盖区找矿的化探方法.地质科技情报, 35(4):12-17. http://www.cqvip.com/qk/93477a/201604/669489689.html [58] 张朋, 赵岩, 寇林林, 等, 2019.辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(10):3297-3313. doi: 10.3799/dqkx.2019.129 [59] 周四春, 刘晓辉, 童纯菡, 等, 2014.地气测量技术及在隐伏矿找矿中的应用研究.地质学报, 88(4):736-754. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201404025.htm