• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩溶水系统结构和水文响应机制的定量识别方法——以三峡鱼迷岩溶水系统为例

    王泽君 周宏 齐凌轩 王纪元 燕子琪

    王泽君, 周宏, 齐凌轩, 王纪元, 燕子琪, 2020. 岩溶水系统结构和水文响应机制的定量识别方法——以三峡鱼迷岩溶水系统为例. 地球科学, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261
    引用本文: 王泽君, 周宏, 齐凌轩, 王纪元, 燕子琪, 2020. 岩溶水系统结构和水文响应机制的定量识别方法——以三峡鱼迷岩溶水系统为例. 地球科学, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261
    Wang Zejun, Zhou Hong, Qi Lingxuan, Wang Jiyuan, Yan Ziqi, 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261
    Citation: Wang Zejun, Zhou Hong, Qi Lingxuan, Wang Jiyuan, Yan Ziqi, 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261

    岩溶水系统结构和水文响应机制的定量识别方法——以三峡鱼迷岩溶水系统为例

    doi: 10.3799/dqkx.2020.261
    基金项目: 

    中国地质调查局项目 DD20160304

    中国地质调查局项目 DD20190824

    详细信息
      作者简介:

      王泽君(1996-), 男, 硕士研究生, 主要从事岩溶水文地质方面的研究.ORCID:0000-0002-0859-3.E-mail:wangzejun@cug.edu.cn

      通讯作者:

      周宏, E-mail:zhouhong@cug.edu.cn

    • 中图分类号: P641.1

    Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area

    • 摘要: 岩溶水系统结构复杂难以刻画,介质结构对地下水文特征的控制机制不清.以三峡鱼迷岩溶水系统为研究对象,利用人工示踪试验和地下水动态监测技术,建立了对流-弥散模型和扩散模型,求取了标准衰减曲线,构建了电导率和流量的高斯混合分布模型.结果表明:该系统中存在“单源单汇”、“单源多汇”和“多源单汇”3种地下水循环模式;水文事件的响应阶段地下水运动以对流为主,管道流占优势,衰减阶段则以扩散为主,裂隙流和孔隙流占优势;鱼泉洞在丰、枯水期分别识别出5种和6种地下水径流组分,以电导率180 μS/cm和流量0.6 m3/s为界,低电导率和大流量组分为快速流,其平均时间贡献占比为3.5%,径流量占比为19%.岩溶水系统中,管道和溶洞是快速流的储蓄和运移空间,空间尺寸大、开放性强、易受降雨影响;裂隙和孔隙是慢速流的储蓄和运移空间,空间尺寸小、开放性弱、对降雨有一定调蓄作用.研究可为岩溶水系统结构识别和水文机制研究提供参考,为岩溶流域水文地质调查提供理论依据.

       

    • 图  1  研究区水文地质略图

      Fig.  1.  Schematic hydrological map of the study area

      图  2  鱼泉洞水文地质剖面

      Fig.  2.  Schematic hydrogeological cross-section for YQD spring

      图  3  某岩溶水系统电导率和流量频率分布

      镶图为电导率和流量的时间序列

      Fig.  3.  The frequency distribution of conductance and discharge

      图  4  示踪试验浓度历时曲线及模拟结果

      Fig.  4.  Breakthrough curves for tacers, Eq.1 was used in dispersion model (blue), Eq.2 was used in diffusion model (black)

      图  5  鱼泉洞、迷宫泉标准衰减曲线

      Fig.  5.  Standard recession curves for YQD spring and MGQ spring

      图  6  鱼泉洞、迷宫泉中快、慢速流组分占比与降雨量的关系

      Fig.  6.  Relationships between runoff components and precipitation for YQD spring and MGQ spring

      图  7  鱼泉洞电导率和流量高斯混合模型模拟结果

      虚线为电导率和流量频率实际分布形态;实线为高斯混合分布拟合结果.图中左上角镶图为电导率或流量的时间序列, 横坐标为时间(年-月)

      Fig.  7.  Frequency distributions of conductivity and discharge for YQD spring (dashed lines) and fitting normally distributed populations (solid lines). Time series of conductivity and discharge were shown as insets

      图  8  鱼泉洞快速流、慢速流的平均电导率时间占比(a)和平均流量时间占比(b)

      Fig.  8.  The average conductivity and time proportion of fast flow and slow flow (a) and the average discharge and time proportion of fast flow and slow flow (b)

      图  9  鱼泉洞径流量计算结果

      Fig.  9.  Calculated runoff of YQD spring based on Gaussian mixture models

      表  1  基于示踪试验求得的部分水力参数及径流通道参数

      Table  1.   Calculated hydraulic parameter and flow channel parameters based on tracer tests

      项目 猪粪池-鱼泉洞 猪粪池-迷宫泉 汪家大淌-迷宫泉 庙坪-鱼泉洞
      投放时间 06-04 06-04 06-04 08-08
      示踪剂 罗丹明 罗丹明 荧光增白剂 荧光增白剂
      最大流速(m/h) 372 608 850 287
      平均流速(m/h) 158 242 203 40.680
      管道储水量(m3) 199 880 61 305 139 550 62 616
      管道横截面积(m2) 62.242 17.541 22.635 11.132
      管道平均直径(m) 4.451 2.363 2.684 1.882
      佩克莱数 13.397 20.299 9.216 42.223
      雷诺数 340 710 278 490 265 360 37 317
      注:最大流速=水平距离/初次检测时间,平均流速=平面距离/示踪剂平均滞留时间; 投放时间均为2017年.
      下载: 导出CSV

      表  2  电导率和流量高斯混合模型模拟结果及鱼泉洞平均流量

      Table  2.   Gaussian mixture models and the mean annual discharge of YQD Spring

      组分 P1 P2 P3 P4 P P5 P6 P Qm(m3/s)
      电导率高斯混合模型
      时间贡献εe(%) 2017雨季 20.78 26.44 31.14 16.69 95.06 3.36 1.58 4.94 0.40
      2017枯季 23.15 27.92 34.40 13.25 98.72 1.28 / 1.28 0.23
      2018雨季 19.62 26.38 32.23 17.36 95.59 3.23 1.19 4.41 0.38
      数学期望μq(m3/s) 2017雨季 287.61 259.30 232.14 195.98 245.47 148.49 116.96 138.39 0.40
      2017枯季 351.65 299.57 261.37 222.32 287.33 151.07 / 151.07 0.23
      2018雨季 289.68 259.95 223.50 194.72 241.92 116.07 70.76 103.88 0.38
      流量高斯混合分布模型
      时间贡献εe(%) 2017雨季 24.96 30.07 31.02 11.33 97.38 0.70 1.92 2.62 0.40
      2017枯季 17.85 36.28 39.44 5.66 99.23 0.77 / 0.77 0.23
      2018雨季 24.79 31.09 36.06 6.34 98.28 0.79 0.93 1.72 0.38
      数学期望μq(m3/s) 2017雨季 0.16 0.28 0.38 0.60 0.36 2.22 3.12 2.67 0.40
      2017枯季 0.15 0.20 0.29 0.49 0.28 2.04 / 2.04 0.23
      2018雨季 0.17 0.23 0.39 0.53 0.33 1.98 2.75 2.37 0.38
      注:各研究期识别出的径流组分数量有所差异,“/”表示未出现该级次的径流组分.
      下载: 导出CSV
    • [1] Bicalho, C.C., Guilhe, C.B., Seidel, J.L., et al., 2012.Geochemical Evidence of Water Source Characterization and Hydrodynamic Responses in a Karst Aquifer.Journal of Hydrology, 450-451:206-218. https://doi.org/10.1016/j.jhydrol.2012.04.059
      [2] Civita, M.V., 2008.An Improved Method for Delineating Source Protection Zones for Karst Springs Based on Analysis of Recession Curve Data.Hydrogeology Journal, 16(5):855-869. https://doi.org/10.1007/s10040-008-0283-4
      [3] Eris, E., Wittenberg, H., 2015.Estimation of Baseflow and Water Transfer in Karst Catchments in Mediterranean Turkey by Nonlinear Recession Analysis.Journal of Hydrology, 530:500-507. https://doi.org/10.1016/j.jhydrol.2015.10.017
      [4] Field, M.S., 2002.The QTRACER2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems.U.S.Environmental Protection Agency, U.S.A..
      [5] Fiorillo, F., 2014.The Recession of Spring Hydrographs, Focused on Karst Aquifers.Water Resources Management, 28(7):1781-1805. https://doi.org/10.1007/s11269-014-0597-z
      [6] Goldscheider, N., Drew, D., 2007.Methods in Karst Hydrogeology.Taylor & Francis, London.
      [7] Guo, X.L., 2019.A Case Study on the Simulation of Precipitation and Runoff Process in Karst Basin Based on Modified SAC Model (Dissertation).China University of Geosciences, Wuhan, 3-9(in Chinese with English abstract).
      [8] Jakada, H., Chen, Z., Luo, M., et al., 2019.Watershed Characterization and Hydrograph Recession Analysis:A Comparative Look at a Karst vs.Non-Karst Watershed and Implications for Groundwater Resources in Gaolan River Basin, Southern China.Water, 11(4):743. https://doi.org/10.3390/w11040743
      [9] Kreft, A., Zuber, A., 1978.On the Phisical Meaning of the Dispersion Equation and Its Solution for Different Initial and Boundary Conditons.Chemical Engineering Science, 33(11):1471-1480. doi: 10.1016/0009-2509(78)85196-3
      [10] Lauber, U., Ufrecht, W., Goldscheider, N., 2014.Spatially Resolved Information on Karst Conduit Flow from In-Cave Dye Tracing.Hydrology and Earth System Sciences, 18(2):435-445. https://doi.org/10.5194/hess-18-435-2014
      [11] Liu, W., Wang, Z.J., Chen, Q.L., et al., 2020.An Interpretation of Water Recharge in Karst Trough Zone as Determined by High-Resolution Tracer Experiments in Western Hubei, China.Environmental Earth Sciences, 79(14):357. https://doi.org/10.1007/s12665-020-09056-6
      [12] Luo, M.M., Chen, Z.H., Zhou, H., et al., 2016.Identifying Structure and Function of Karst Aquifer System Using Multiple Field Methods in Karst Trough Valley Area, South China.Environmental Earth Sciences, 75:824. https://doi.org/10.1007/s12665-016-5630-5
      [13] Luo, M.M., Yin, D.C., Zhang, L., et al., 2015.Identifying Methods of Karst Aquifer System Structure in South China.Carsologica Sincia, 34(6):543-550(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201506002.htm
      [14] Lü, Q.B., Hu, X.N., Cao, J.H., et al., 2017.Aquifer Structure of Karst Areas Derived from Borehole Pumping and Tracer Tests.Carsologica Sincia, 36(5):727-735(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201705017.htm
      [15] Massei, N., Mahler, B.J., Bakalowicz, M., et al., 2007.Quantitative Interpretation of Specific Conductance Frequency Distributions in Karst.Ground Water, 45(3):288-293. https://doi.org/10.1111/j.1745-6584.2006.00291.x
      [16] Minvielle, S., Lastennet, R., Denis, A., et al., 2015.Characterization of Karst Systems Using SIc-Pco2 Method Coupled with PCA and Frequency Distribution Analysis.Application to Karst Systems in the Vaucluse County (Southeastern France).Environmental Earth Sciences, 74(12):7593-7604. https://doi.org/10.1007/s12665-015-4389-4
      [17] Şen, Z., 2020.General Modeling of Karst Spring Hydrographs and Development of a Dimensionless Karstic Hydrograph Concept.Hydrogeology Journal, 28(2):549-559. https://doi.org/10.1007/s10040-019-02085-x
      [18] Su, C.L., Zhang, Y., Ma, Y.H., et al., 2019.Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City:Evidences from Hydrochemistry and 87Sr/86Sr Ratios.Earth Science, 44(9):2829-2838(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909002.htm
      [19] Wang, P.H., 2019.Study about a Typical Karst System in the Karst Fenglin Plain Area of South China (Dissertation).China University of Geosciences, Beijing, 28-30(in Chinese).
      [20] Wang, Z.J., Chen, Q.L., Yan, Z.Q., et al., 2019.Method for Identifying and Estimating Karst Groundwater Runoff Components Based on the Frequency Distributions of Conductivity and Discharge.Water, 11(12):2494. https://doi.org/10.3390/w11122494
      [21] Wang, Z.J., Zhou, H., Luo, M.M., et al., 2019.Variations in Discharge Processes and Runoff Components between Small Karst Watersheds and Non-Karst Watersheds in Southern China.Hydrogeology & Engineering Geology, 46(3):27-32, 39(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201903004.htm
      [22] Winston, W.E., Criss, R.E., 2004.Dynamic Hydrologic and Geochemical Response in a Perennial Karst Spring.Water Resources Research, 40(5):W05106. https://doi.org/10.1029/2004wr003054
      [23] Xie, G.W., 2019.A Methodological Research on the Identification of a Typical Karst Aquifer Media in Southwest China (Dissertation).Southwest University, Chongqing, 17-20(in Chinese with English abstract).
      [24] Yang, P.H., Zhang, Y., Tian, P., et al., 2016.A Methodological Research on the Identification of a Typical Karst Aquifer Media in the Paralleled Ridge-Valley of East Sichuan:A Case Study of Qingmuguan Karst Groundwater System, Chongqing.Journal of Southwest University (Natural Science Edition), 38(2):90-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNND201602015.htm
      [25] Ye, H.J., Zhang, R.X., Wu, P., et al., 2019.Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area.Earth Science, 44(9):2887-2898(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909007.htm
      [26] Yin, D.C., Luo, M.M., Zhou, H., et al., 2015.Water Resources Composition and Structure Characteristics of the Underground River System in the Karst Ridge-Trough in the Western Hubei Province.Hydrogeology & Engineering Geology, 42(3):13-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201503005.htm
      [27] Yuan, D.X., Zhang, C., 2008.Karst Dynamics Theory in China and Its Practice.Acta Geoscientica Sinica, 29(3):355-365(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqxb200803009.aspx
      [28] Zhang, L., Chen, Z.H., Zhou, H., et al., 2015.Investigation and Analysis of the Hydrogeological Characteristics of the Typical Karst Spring in the Xiangxi River Basin:Exemplified by the Bailong Spring in Xingshan County of Hubei.Hydrogeology & Engineering Geology, 42(2):31-37(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201502006.htm
      [29] 郭绪磊, 2019.基于SAC改进模型的岩溶流域降水-径流过程模拟研究(硕士学位论文).武汉: 中国地质大学, 3-9.
      [30] 罗明明, 尹德超, 张亮, 等, 2015.南方岩溶含水系统结构识别方法初探.中国岩溶, 34(6):543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201506002.htm
      [31] 吕全标, 胡晓农, 曹建华, 等, 2017.基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究.中国岩溶, 36(5):727-735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705017.htm
      [32] 苏春利, 张雅, 马燕华, 等, 2019.贵阳市岩溶地下水水化学演化机制:水化学和锶同位素证据.地球科学, 44(9):2829-2838. doi: 10.3799/dqkx.2019.214
      [33] 王朋辉, 2019.中国南方典型峰林平原岩溶水系统研究(博士学位论文).北京: 中国地质大学.
      [34] 王泽君, 周宏, 罗明明, 等, 2019.南方小型岩溶流域与非岩溶流域的释水过程及径流组分差异.水文地质工程地质, 46(3):27-32, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903004.htm
      [35] 谢国文, 2019.西南典型岩溶含水介质特征识别方法研究(硕士学位论文).重庆: 西南大学, 17-20.
      [36] 杨平恒, 张宇, 田萍, 等, 2016.川东平行岭谷典型岩溶含水介质特征的识别方法探讨:以重庆青木关地下水系统为例.西南大学学报(自然科学版), 38(2):90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201602015.htm
      [37] 叶慧君, 张瑞雪, 吴攀, 等, 2019.六盘水矿区关键带岩溶水水化学演化特征及驱动因子.地球科学, 44(9):2887-2898. doi: 10.3799/dqkx.2019.201
      [38] 尹德超, 罗明明, 周宏, 等, 2015.鄂西岩溶槽谷区地下河系统水资源构成及其结构特征.水文地质工程地质, 42(3):13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503005.htm
      [39] 袁道先, 章程, 2008.岩溶动力学的理论探索与实践.地球学报, 29(3):355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009
      [40] 张亮, 陈植华, 周宏, 等, 2015.典型岩溶泉水文地质条件的调查与分析:以香溪河流域白龙泉为例.水文地质工程地质, 42(2):31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502006.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  655
    • HTML全文浏览量:  158
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-16
    • 刊出日期:  2020-12-15

    目录

      /

      返回文章
      返回