Distribution and Genesis of Shallow High-Iodine Groundwater in Southern Margin of Tarim Basin: A Case Study of Plain Area in Minfeng County, Xinjiang
-
摘要: 塔里木盆地位于欧亚大陆腹地,远离海洋,地下水是塔里木盆地南缘重要的供水水源,查明该区浅层地下水中碘(I-)的分布及成因至关重要.基于新疆塔里木盆地南缘的民丰县平原区44组浅层地下水水样,综合运用水化学图解法、数理统计法和GIS技术,分析潜水和浅层承压水水化学特征、碘的空间分布及高碘地下水的成因.结果表明:民丰县平原区浅层地下水中碘的富集和贫乏共存;潜水和浅层承压水I-含量范围分别为≤730 μg/L和≤183μg/L,潜水水样中缺碘水、适碘水、高碘水和超高碘水占比分别为19.4%、69.4%、5.6%和5.6%,浅层承压水水样中缺碘水、适碘水和高碘水占比分别为12.5%、75.0%和12.5%,潜水中缺碘水和超高碘水均高于承压水.从山前倾斜平原到细土平原,地下水中I-含量呈明显上升趋势.高碘水和超高碘水水化学类型主要为Cl·SO4-Na型和Cl-Na型.除水文地质条件和偏碱性的地下水环境外,研究区潜水碘主要受强烈的蒸发浓缩作用、第四系全新统沼泽堆积物和矿物溶解沉淀的影响,浅层承压水碘主要受矿物溶解沉淀及还原环境的影响.Abstract: Tarim Basin is located in the hinterland of Eurasia, far away from the sea. Groundwater is an important source of water supply in the southern margin of Tarim Basin. Based on the 44 groups of shallow groundwater samples from the plain area of Minfeng County in the southern margin of Tarim Basin, Xinjiang Uygur Autonomous Region, the hydrochemical characteristics of unconfined groundwater and shallow confined groundwater, the spatial distribution of iodine and the causes of the high-iodine groundwater were analyzed by using the hydrochemical graphic method, mathematical statistics method and geographic information system (GIS) techniques. The results show that iodine enrichment and iodine deficiency coexist in groundwater in plain area of Minfeng County. The I- contents in unconfined groundwater and shallow confined groundwater were ≤ 730 μg/L and ≤ 183 μg/L respectively. The proportions of iodine deficient water, suitable iodine water, high iodine water and ultra-high iodine water in unconfined groundwater samples were 19.4%, 69.4%, 5.6% and 5.6%, respectively. The proportions of iodine deficient groundwater, suitable iodine water and high iodine water in shallow confined groundwater samples were 12.5%, 75.0% and 12.5%, respectively. From the sloping plain in front of the mountain to the plain in the fine earth, the I- content in the groundwater increased obviously. The main hydrochemical types of high iodine groundwater and ultra-high iodine groundwater are Cl·SO4-Na and Cl-Na. In addition to the hydrogeological conditions and alkaline groundwater environment, iodine content in unconfined groundwater is mainly affected by strong evaporation and concentration, Quaternary Holocene swamp deposits and mineral dissolution precipitation, and the shallow confined groundwater is mainly affected by mineral dissolution precipitation and reduction environment.
-
图 1 民丰县采样点分布及水文地质图
地下水类型(200 mm管径降深5 m,涌水量单位为m3/d):Ⅰ. 松散岩类孔隙水潜水,①1 000~5 000水量丰富,②100~1 000水量中等,③10~100水量贫乏,④ < 10水量极其贫乏,⑤ < 250水量不均匀;Ⅱ. 松散岩类孔隙水承压水,⑥100~1000水量中等;Ⅲ. 碎屑岩类裂隙孔隙水,⑦ < 10;Ⅳ. 基岩裂隙水层状岩类或轻变质岩类裂隙水,⑧10~100;Ⅴ. 基岩裂隙水块状岩类裂隙水,⑨10~100;⑩冻结层水
Fig. 1. Distribution of sampling points and hydrogeological diagram of Minfeng County
表 1 研究区浅层地下水水化学指标统计分析结果
Table 1. Results of statistical analysis on hydrochemical index of shallow groundwater in the study area
指标 潜水(n=36) 浅层承压水(n=8) 最大值 最小值 均值 中值 最大值 最小值 均值 中值 I- 734.00 ND. 85.94 50.00 183.00 ND. 64.13 50.00 pH 8.90 7.12 8.09 8.21 8.48 7.29 8.09 8.25 TDS 41 282.73 351.10 4 674.16 1 799.98 25 818.17 522.57 5 691.81 1 029.33 TH 6 549.30 156.60 1 037.24 588.55 3 786.30 108.60 1 086.29 521.40 K+ 776.41 3.19 74.52 21.21 710.01 8.37 127.96 12.73 Na+ 13 582.08 35.99 1 214.60 418.41 8 848.90 65.26 1571.89 136.18 Ca2+ 702.10 20.06 140.03 103.37 396.20 25.98 149.98 74.27 Mg2+ 1 307.97 15.54 167.03 49.47 690.70 3.66 172.88 51.09 Cl- 14 348.64 49.18 1 531.47 401.41 12 364.63 91.54 2 160.06 190.26 SO42- 9 889.67 122.70 1 315.89 555.73 3 607.56 177.19 1 256.69 446.18 HCO3- 3 954.03 36.62 415.99 219.30 1 933.05 85.45 460.55 164.88 As 0.09 ND. 0.01 0.01 0.04 ND. 0.01 0.01 F- 23.23 ND. 3.02 1.46 16.20 0.55 3.88 1.82 Mn2+ 0.53 ND. 0.08 0.05 1.20 ND. 0.19 0.05 注:ND.为未检出;I-单位为μg/L,其余单位为mg/L. 表 2 浅层地下水旋转因子载荷矩阵
Table 2. Matrix of rotated factor loadings of shallow groundwater
因子 潜水 承压水 F1 F2 F3 F1 F2 HCO3- 0.974 0.016 0.129 0.989 0.121 As 0.970 0.061 0.035 0.881 0.029 Na+ 0.933 0.311 0.136 0.961 0.184 I- 0.923 0.311 0.149 0.973 0.022 TDS 0.873 0.464 0.116 0.933 0.331 Cl- 0.855 0.476 0.140 0.961 0.181 SO42- 0.820 0.562 0.066 0.519 0.840 Ca2+ 0.014 0.912 -0.195 -0.110 0.766 Mg2+ 0.523 0.827 0.042 0.090 0.971 F- 0.342 0.650 0.276 0.217 0.934 Mn2+ 0.074 -0.055 -0.877 0.111 0.120 pH 0.395 -0.067 0.758 0.214 -0.022 -
[1] Barikmo, I., Henjum, S., Dahl, L., et al., 2011. Environmental Implication of Iodine in Water, Milk and Other Foods Used in Saharawi Refugees Camps in Tindouf, Algeria. Journal of Food Composition and Analysis, 24(4-5): 637-641. https://doi.org/10.1016/j.jfca.2010.10.003 [2] Cai, K.Y., Zheng, A., 2013. Study on the Prevalence of Hypothyroidism during Early Pregnant Women in Excess and Sufficient Water Iodine Area in Xuzhou. Journal of Frontiers of Medicine, (11): 63-64 (in Chinese with English abstract). [3] Cai, L., Hu, C., Chen, Z.H., et al., 2019. Distribution and Genesis of High Fe and Mn Groundwater in the Northeast of the Jianghan Plain. Hydrogeology & Engineering Geology, 46(4): 18-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201904004.htm [4] Cao, F.X., Zhu, Q.J., 2006. Application Effect of EH-4 System in Groundwater Exploration in the Southern Edge of Tarim Basin. Site Investigation Science and Technology, (5): 61-64 (in Chinese with English abstract). [5] Chen, J.L., Yang, H.X., Liu, W., 2017. Study on the Total Iodine and Iodine Speciation Characteristics in Xilingol League, Inner Mongolia and Tacheng Xinjiang High Iodine Area by High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry. Rock and Mineral Analysis, 36(6): 631-640 (in Chinese with English abstract). [6] Cui, W.J., Meng, L., Yu, J., 2017. Investigation Analysis of Iodine Deficiency and Iodine Nutrition Related Thyroid Disease in Lli. Xinjiang Medical Journal, 47(6): 627-629 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJYI201706018.htm [7] Ding, C.H., 2008. The Structurally Feature and Petroleum Geologic Evaluation in the Southeast Region of Tarim Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [8] Gao, C.R., Liu, W.B., Feng, C.E., et al., 2014. Research on the Formation Mechanism of High Arsenic Groundwater in Arid and Semi-Arid Regions: A Case Study of Hetao Plain in Inner Mongolia, China. Earth Science Frontiers, 21(4): 13-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201404003.htm [9] Gibbs, R.J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.172.3985.870 [10] He, X.Q., 2015. Meta-Statistical Analysis. China Renmin University Press, Beijing (in Chinese). [11] Kassim, I. A. R., Moloney, G., Busili, A., et al., 2014. Iodine Intake in Somalia is Excessive and Associated with the Source of Household Drinking Water. The Journal of Nutrition, 144(3): 375-381. https://doi.org/10.3945/jn.113.176693 [12] Li, J. X., Wang, Y. X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China: Evidence from Hydrochemistry and Fluorescence Characteristics. Science of the Total Environment, 468-469: 738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092 [13] Li, J. X., Wang, Y. X., Xie, X. J., et al., 2013. Hydrogeochemistry of High Iodine Groundwater: A Case Study at the Datong Basin, Northern China. Environmental Science: Processes & Impacts, 15(4): 848-859. https://doi.org/10.1039/c3em30841c [14] Li, J. X., Wang, Y. X., Xie, X. J., et al., 2016. Effects of Water-Sediment Interaction and Irrigation Practices on Iodine Enrichment in Shallow Groundwater. Journal of Hydrology, 543: 293-304. https://doi.org/10.1016/j.jhydrol.2016.10.002 [15] Li, L., Zhou, J.L., Qi, W.Q., et al., 2018. Hydrochemical Characteristics and Formation Reasons of Shallow Groundwater in Oasis Area of Hotan River Basin, Xinjiang. Journal of Water Resources and Water Engineering, 29(3): 14-20 (in Chinese with English abstract). [16] Liu, M., 2007. Study on Groundwater Spatiotemporal Distribution Law and Its Environmental Effects in Hotan Oasis (Dissertation). Xi'an University of Technology, Xi'an (in Chinese with English abstract). [17] Lu, X.Y., 2018. The Main Control Factors Coal Accumulation and Favorable Area Selection of Middle and Lower Jurassic in Southeastern Xinjiang (Dissertation). Xinjiang University, Urumqi (in Chinese with English abstract). [18] Lü, M.J., Ren, J.F., Wang, M.J., 2007. Investigation on Goiter in Children Aged 8-10 Years in High Iodide Areas in Binzhou, Shandong. Journal of Environment and Health, 24(8): 614-615 (in Chinese with English abstract). [19] Lü, S.M., Xu, D., Zhong, Z.S., et al., 2007. Research on Factors Affecting Children's Iodine Nutrition and Thyroid Goiter in Iodine Excessive Regions. Chinese Journal of Control of Endemic Diseases, 22(2): 136-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DYBF200702025.htm [20] Ma, J.Z., 2001. Groundwater Vulnerability Assessement for the South Rim of Tarim Basin. Journal of Desert Research, 21(2): 170-174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSS200102012.htm [21] Qian, H., Ma, Z.Y., Li, P.Y., 2012. Hydrogeochemistry. Geological Publishing House, Beijing (in Chinese). [22] Qian, K., Li, J. X., Xie, X. J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of the Total Environment, 601-602: 380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127 [23] Shen, H.M., 2019. Prevention and Practice of Water-Based High Iodine Hazard in China. People's Medical Publishing House, Beijing (in Chinese). [24] Tang, Q. F., Xu, Q., Zhang, F. C., et al., 2013. Geochemistry of Iodine-Rich Groundwater in the Taiyuan Basin of Central Shanxi Province, North China. Journal of Geochemical Exploration, 135: 117-123. https://doi.org/10.1016/j.gexplo.2012.08.019 [25] Tao, Z.D., 1990. The Endemic of Xinjiang and the Concerned Hydrogeochemitry. Arid Environmental Monitoring, 4(2): 89-91, 83 (in Chinese with English abstract). [26] Teng, W. P., Shan, Z. Y., Teng, X. C., et al., 2006. Effect of Iodine Intake on Thyroid Diseases in China. The New England Journal of Medicine, 354(26): 2783-2793. https://doi.org/10.1056/nejmoa054022 [27] Teng, W.P., Teng, X.C., 2006. Research Progress of Iodine and Thyroid Disease. Chinese Journal of Practical Internal Medicine, 26(20): 1569-1573 (in Chinese). [28] Voutchkova, D. D., Ernstsen, V., Kristiansen, S. M., et al., 2017. Iodine in Major Danish Aquifers. Environmental Earth Sciences, 76(13): 447-463. https://doi.org/10.1007/s12665-017-6775-6 [29] Wang, H.T., Zhou, J.L., Zeng, Y.Y., et al., 2019. Spatial Distribution and Enrichment Factors of Iodine in Drinking Groundwater in Kashgar Prefecture of Xinjiang. Journal of Xinjiang Agricultural University, 42(2): 145-150 (in Chinese with English abstract). [30] Wang, Y.T., Li, J.X., Xue, X.B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract). [31] Wang, Y.X., Su, C.L., Xie, X.J., et al., 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780 (in Chinese with English abstract). http://www.researchgate.net/publication/285107958_The_genesis_of_high_arsenic_groundwater_a_case_study_in_Datong_basin [32] Wu, C., Wu, X., Zhang, Y.S., et al., 2018. Distribution Characteristics and Genesis of High-Fluoride Groundwater in the Niuxin Mountain, Qinhuangdao. Earth Science Frontiers, 25(4): 307-315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201804032.htm [33] Xiong, H.G., Zhou, Z., 2007. The Selection and Practice of Eco-Environment Index in Typical Arid Region's PRED System-Take the Minfeng County in Xinjiang for Example. Journal of Arid Land Resources and Environment, 21(8): 2-6 (in Chinese with English abstract). [34] Xue, X.B., Li, J.X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921 (in Chinese with English abstract). http://www.researchgate.net/publication/325083892_Spatial_Distribution_and_Mobilization_of_Iodine_in_Groundwater_System_of_North_China_Plain_Taking_Hydrogeological_Section_from_Shijiazhuang_Hengshui_to_Cangzhou_as_an_Example [35] Zhang, E. Y., Wang, Y. Y., Qian, Y., et al., 2013. Iodine in Groundwater of the North China Plain: Spatial Patterns and Hydrogeochemical Processes of Enrichment. Journal of Geochemical Exploration, 135: 40-53. https://doi.org/10.1016/j.gexplo.2012.11.016 [36] Zhao, H.X., Xu, C.H., Chen, G.S., et al., 2014. Investigation and Analysis of Iodine Content Distribution and Condition of Drinking Water in Shangqiu City. Contemporary Medicine, 20(5): 162-163 (in Chinese). [37] 蔡可英, 郑昂, 2013. 徐州高碘及碘适宜地区妊娠早期妇女甲状腺功能减退症发病率的调查. 医药前沿, (11): 63-64. doi: 10.3969/j.issn.2095-1752.2013.11.054 [38] 蔡玲, 胡成, 陈植华, 等, 2019. 江汉平原东北部地区高铁锰地下水成因与分布规律. 水文地质工程地质, 46(4): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904004.htm [39] 曹福祥, 朱庆俊, 2006. 塔里木盆地南缘地下水勘查EH-4系统应用效果. 勘察科学技术, (5): 61-64. doi: 10.3969/j.issn.1001-3946.2006.05.017 [40] 陈俊良, 杨红霞, 刘崴, 2017. 高效液相色谱-电感耦合等离子体质谱法测定内蒙古锡盟和新疆塔城高碘地区地下水的总碘及碘形态特征. 岩矿测试, 36(6): 631-640. [41] 崔维江, 孟柳, 郁进, 2017. 新疆伊犁碘缺乏区及碘充足区相关甲状腺疾病调查分析. 新疆医学, 47(6): 627-629. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYI201706018.htm [42] 丁长辉, 2008. 塔里木盆地塔东南地区构造特征与石油地质条件评价(硕士学位论文). 长春: 吉林大学. [43] 高存荣, 刘文波, 冯翠娥, 等, 2014. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例. 地学前缘, 21(4): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404003.htm [44] 何晓群, 2015. 多元统计分析. 北京: 中国人民大学出版社. [45] 李玲, 周金龙, 齐万秋, 等, 2018. 新疆和田河流域绿洲区浅层地下水水化学特征及成因分析. 水资源与水工程学报, 29(3): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201803003.htm [46] 刘敏, 2007. 和田绿洲地下水时空分布规律及其生态环境效应研究(硕士学位论文). 西安: 西安理工大学. [47] 陆星宇, 2018. 新疆东南部中-下侏罗统聚煤主控因素分析与有利区优选(博士学位论文). 乌鲁木齐: 新疆大学. [48] 吕茂军, 任金凤, 王孟杰, 2007.2004年滨州市高碘地区8~10岁儿童的甲状腺肿大情况和尿碘水平. 环境与健康杂志, 24(8): 614-615. doi: 10.3969/j.issn.1001-5914.2007.08.019 [49] 吕胜敏, 徐栋, 种振水, 等, 2007. 高碘地区儿童碘营养甲状腺肿影响因素的研究. 中国地方病防治杂志, 22(2): 136-138. doi: 10.3969/j.issn.1001-1889.2007.02.023 [50] 马金珠, 2001. 塔里木盆地南缘地下水脆弱性评价. 中国沙漠, 21(2): 170-174. doi: 10.3321/j.issn:1000-694X.2001.02.012 [51] 钱会, 马致远, 李培月, 2012. 水文地球化学. 北京: 地质出版社. [52] 申红梅, 2019. 中国水源型高碘危害防治与实践. 北京: 人民卫生出版社. [53] 陶振德, 1990. 新疆地方病及相关水文地球化学. 干旱环境监测, 4(2): 89-91, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC199002011.htm [54] 滕卫平, 滕晓春, 2006. 碘与甲状腺疾病的研究进展. 中国实用内科杂志, 26(20): 1569-1573. doi: 10.3969/j.issn.1005-2194.2006.20.001 [55] 王红太, 周金龙, 曾妍妍, 等, 2019. 新疆喀什地区饮用地下水碘分布及其富集因素分析. 新疆农业大学学报, 42(2): 145-150. doi: 10.3969/j.issn.1007-8614.2019.02.011 [56] 王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261 [57] 王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033 [58] 吴初, 武雄, 张艳帅, 等, 2018. 秦皇岛牛心山高氟地下水分布特征及成因. 地学前缘, 25(4): 307-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804032.htm [59] 熊黑钢, 周哲, 2007. 典型干旱区PRED系统生态环境指标的选择与实践——以新疆民丰县为例. 干旱区资源与环境, 21(8): 2-6. doi: 10.3969/j.issn.1003-7578.2007.08.002 [60] 薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564 [61] 赵海霞, 徐春华, 陈观升, 等, 2014. 商丘市生活饮用水碘含量分布及病情调查分析. 当代医学, 20(5): 162-163. doi: 10.3969/j.issn.1009-4393.2014.05.119