• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    河套灌区西部浅层地下水咸化机制

    曾邯斌 苏春利 谢先军 潘洪捷 纪倩楠 陶彦臻

    曾邯斌, 苏春利, 谢先军, 潘洪捷, 纪倩楠, 陶彦臻, 2021. 河套灌区西部浅层地下水咸化机制. 地球科学, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259
    引用本文: 曾邯斌, 苏春利, 谢先军, 潘洪捷, 纪倩楠, 陶彦臻, 2021. 河套灌区西部浅层地下水咸化机制. 地球科学, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259
    Zeng Hanbin, Su Chunli, Xie Xianjun, Pan Hongjie, Ji Qiannan, Tao Yanzhen, 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259
    Citation: Zeng Hanbin, Su Chunli, Xie Xianjun, Pan Hongjie, Ji Qiannan, Tao Yanzhen, 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259

    河套灌区西部浅层地下水咸化机制

    doi: 10.3799/dqkx.2020.259
    基金项目: 

    内蒙古自治区河套灌区盐碱地生物修复与综合开发研究 2019046338

    详细信息
      作者简介:

      曾邯斌(1996-), 男, 硕士, 主要研究方向为水文地球化学与水文地质学.ORCID: 0000-0002-2867-5144.E-mail: 694639624@qq.com

      通讯作者:

      苏春利, E-mail: chl.su@cug.edu.cn

    • 中图分类号: P641

    Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area

    • 摘要: 浅层地下水水位埋深浅、含盐量高,是导致河套灌区土壤次生盐渍化的重要原因.以河套灌区西部地区为研究区,通过对浅层地下水的水化学和氢氧同位素特征分析以及水文地球化学模拟,探讨了灌区浅层地下水的补给来源和主控水-岩作用过程,并定量估算了蒸发作用对浅层地下水含盐量的影响.研究区内浅层地下水为弱碱性咸水,pH为7.23~8.45,总溶解性固体(total dissolved solids,TDS)变化范围为371~7 599 mg/L;随着地下水咸化程度增大,水化学类型由HCO3-Na·Mg·Ca型向Cl-Na型过渡.引黄灌溉和大气降水是浅层地下水的主要补给来源,径流过程中浅层地下水受蒸发作用和植物蒸腾作用影响,地下水化学组分主要来源于蒸发盐溶解和硅酸盐风化水解,并受强烈的蒸发作用和离子交换作用影响.水文地球化学模拟和主成分分析结果显示,蒸发作用和岩盐溶解作用对区内浅层地下水咸化贡献最大,石膏和白云石等矿物的溶解、硅酸盐的水解、Na-Ca离子交换以及局部地形起伏对地下水咸化过程也有较大贡献.

       

    • 图  1  研究区位置、采样点分布以及浅层地下水TDS分布

      Fig.  1.  Location of the study area, distribution of sampling sites and TDS distribution of shallow groundwater in the study area

      图  2  研究区浅层地下水Durov图

      Fig.  2.  Durov diagram of shallow groundwater in the study area

      图  3  研究区浅层地下水δD、δ18O组成与TDS关系

      Fig.  3.  Relationship between δD, δ18O compositions and TDS of shallow groundwater in the study area

      图  4  研究区浅层地下水Cl-、δ18O和K+、δ18O与TDS关系

      Fig.  4.  Relationship between Cl- concentrations and δ18O values, K+ concentrations, δ18O values and TDS

      图  5  研究区浅层地下水主要离子与TDS关系

      Fig.  5.  Relationship between main ions and TDS of shallow groundwater in the study area

      图  6  研究区浅层地下水Ca2+/Na+与HCO3-/Na+(a)、HCO3-+SO42--Ca2+-Mg2+与Na+-Cl-(b)的关系

      Fig.  6.  Relationship between Ca2+/Na+ and HCO3-/Na+ (a), HCO3-+SO42--Ca2+-Mg2+ and Na+-Cl- (b) of shallow groundwater in the study area

      图  7  研究区浅层地下水TDS与SI关系

      Fig.  7.  Relationship between TDS and SI of shallow groundwater in the study area

      表  1  研究区浅层地下水主要水化学指标统计

      Table  1.   Statistics for the hydrochemical indexes of shallow groundwater from the study area

      项目 A组 B组 C组 D组
      300 mg/L < TDS < 500 mg/L(n=3) 500 mg/L < TDS < 1 000 mg/L(n=13) 1 000 mg/L < TDS < 2 000 mg/L(n=31) 2 000 mg/L < TDS(n=27)
      最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值
      pH 7.40 7.93 7.75 7.75 8.45 7.88 7.23 8.37 7.81 7.36 8.08 7.67
      EC(mS/cm) 0.69 0.72 0.70 0.92 1.60 1.26 1.66 2.98 2.14 3.07 10.32 5.03
      TDS(mg/L) 371 434 404 503 953 766 1 019 1 817 1 287 2 061 7 599 3 356
      K+(mg/L) 1.74 3.15 2.21 2.21 3.96 3.16 0.91 6.14 3.49 2.47 13.74 6.05
      Na+(mg/L) 44.9 99.8 71.0 89.7 227.9 140.9 176.8 521.2 325.7 316.8 2 308.1 959.7
      Ca2+(mg/L) 16.3 67.1 44.9 24.3 123.6 81.2 6.9 182.5 74.8 17.5 205.5 104.6
      Mg2+(mg/L) 21.8 36.3 29.6 36.9 72.4 53.0 11.1 123.1 66.5 39.5 553.4 174.2
      HCO3-(mg/L) 357 455 395 269 519 411 283 1 026 627 368 1 407 875
      SO42-(mg/L) 15.6 29.3 20.9 80.9 224.9 159.6 109.9 451.9 255.6 162.9 2 262.0 581.5
      NO3-(mg/L) 0.60 2.43 1.52 0.53 3.77 1.84 0.84 31.08 4.36 2.22 67.46 7.48
      Cl-(mg/L) 30.3 46.9 36.4 75.0 167.4 120.7 138.7 446.9 243.3 401.1 3 808.7 1 180.4
      下载: 导出CSV

      表  2  研究区浅层地下水氢氧同位素数据

      Table  2.   Hydrogen and oxygen isotope data of shallow groundwater in the study area

      样品 δD(‰) δ18O(‰) TDS (mg/L) 高程(m) 井深(m) 样品 δD(‰) δ18O(‰) TDS (mg/L) 高程(m) 井深(m)
      LH-2 -50.7 -5.6 1 035.1 1030.8 13.5 H-47 -70.6 -8.5 1 293.2 1 039.9 -
      H-15 -78.9 -10.4 2 662.3 1 027.4 11.4 H-48 -75.6 -9.4 4 115.4 1 030.7 -
      H-17 -77.4 -10.5 1 426.6 1 031.9 2.6 H-53 -77.9 -9.7 6 406.1 1 030.8 -
      H-18 -82.4 -11.2 2 863.7 1033.1 2.5 H-54 -76.7 -9.0 7 598.6 1 026.4 2.4
      H-19 -83.4 -10.6 4 083.6 1 036.1 1.7 LH-56 -78.2 -10.1 1 136.7 1 037.4 -
      H-20 -78.9 -10.0 7 029.4 1 025.6 2.5 LH-57 -75.3 -10.0 1 019.4 1 033.9 5.1
      H-21 -72.7 -8.9 3 999.5 1 027.9 - LH-60 -67.9 -8.0 794.1 1 036.1 -
      H-22 -79.9 -9.8 4 601.6 1 031.2 - LH-61 -76.8 -10.1 1 278.2 1 031.0 2.2
      H-25 -65.9 -7.8 3 680.5 1 028.3 8.0 H-63 -74.2 -10.0 1 261.2 1 027.8 -
      H-26 -71.7 -9.8 1 035.4 1 029.1 2.1 LH-65 -78.6 -10.3 2 266.5 1 031.8 -
      H-28 -78.0 -10.5 1 330.2 1 030.9 - LH-66 -73.8 -10.1 1 170.3 1 034.7 -
      LH-34 -78.5 -9.9 2 358.4 1 033.1 2.9 LH-69 -79.7 -11.0 1 179.8 1 030.1 2.2
      H-40 -65.6 -7.6 1 143.3 1 034.3 1.1 LH-70 -78.9 -11.1 872.9 1 026.5 2.7
      H-41 -71.8 -8.8 1 221.7 1 031.2 2.2 LH-71 -81.3 -11.0 665.5 1 034.3 3.0
      H-42 -66.2 -7.5 1 553.1 1 030.4 - LH-72 -71.0 -9.7 1 089.7 1 034.1 -
      H-46 -68.2 -8.2 2 193.8 1 031.8 1.2 LH-73 -70.9 -9.4 2 225.8 1 030.6 -
      下载: 导出CSV

      表  3  旋转成分矩阵

      Table  3.   Rotated component matrix

      指标 F1 F2 F3
      Na+ 0.947 0.057 -0.086
      K+ 0.772 0.356 -0.126
      Ca2+ 0.190 0.865 -0.033
      Mg2+ 0.795 0.528 -0.002
      Cl- 0.918 0.129 -0.025
      SO42- 0.504 0.596 -0.113
      HCO3- 0.734 0.032 0.021
      Si -0.010 0.732 0.032
      采水井地面高程 -0.495 0.167 0.645
      采水井水位 0.128 -0.128 0.912
      方差贡献率(%) 47.332 15.159 12.033
      累计方差贡献率(%) 47.332 62.529 74.562
      下载: 导出CSV

      表  4  逆向模拟水样数据

      Table  4.   Sample data used in inverse simulation

      水样编号 pH Cl- SO42- K+ Na+ Ca2+ Mg2+ HCO3- 水化学类型 高程(m) 水位(m)
      LH-5 8.02 78 113 3.05 103 41.8 39.2 280 HCO3-Na·Mg 1 037.2 5.3
      LH-35 7.83 111 150 3.24 109 81.2 36.9 382 HCO3-Na·Ca·Mg 1 035.9 4.8
      H-14 8.06 196 198 2.9 400 27.9 37.3 611 HCO3·Cl-Na 1 029.9 3.7
      H-38 7.78 447 234 5.4 521 63.5 66.6 911 HCO3·Cl-Na 1 030.0 3.5
      注:*.除指明外,单位为mg/L.
      下载: 导出CSV

      表  5  逆向模拟结果

      Table  5.   The results of inverse simulation

      组分 LH-5→LH-35 H-14→H-38
      H2O(mol·L-1) - -4.67
      NaCl(mol·L-1) 0.000 701 0 0.006 119 0
      CaSO4(mol·L-1) 0.000 377 7 -
      CO2(g) 0.001 048 0 0.001 887 0
      CaCO3(mol·L-1) 0.000 592 9 -
      CaMg(CO3)2(mol·L-1) - 0.000 106 2
      NaX(mol·L-1) - 0.000 484 3
      CaX2(mol·L-1) - -0.000 242 1
      MgX2(mol·L-1) - -
      浓缩倍数 - 1.084
      注:*.正值表示溶解,负值表示沉淀,“-”表示未参与反应.
      下载: 导出CSV
    • [1] An, L.S., Zhao, Q.S., Ye, S.Y., et al., 2012. Hydrochemical Characteristics and Formation Mechanism of Shallow Groundwater in Yellow River Delta. Environmental Science, 33(2): 370-378(in Chinese with English abstract). http://www.oalib.com/paper/1588350
      [2] Chapagain, S.K., Pandey, V.P., Shrestha, S., et al., 2010. Assessment of Deep Groundwater Quality in Kathmandu Valley Using Multivariate Statistical Techniques. Water, Air & Soil Pollution, 210(1-4): 277-288. https://doi.org/10.1007/s11270-009-0249-8
      [3] Dou, X., Shi, H.B., Miao, Q.F., et al., 2019. Temporal and Spatial Variability Analysis of Soil Water and Salt and the Influence of Groundwater Depth on Salt in Saline Irrigation Area. Journal of Soil and Water Conservation, 33(3): 246-253(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQS201903037.htm
      [4] Du, J., Yang, P.L., Li, Y.K., et al., 2010. Analysis of Spatial and Temporal Variations of Groundwater Level and Its Salinity in Hetao Irrigation District. Transactions of the Chinese Society of Agricultural Engineering, 26(7): 26-31, 391(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103335130.html
      [5] Ellsworth, P.Z., Williams, D.G., 2007. Hydrogen Isotope Fractionation during Water Uptake by Woody Xerophytes. Plant and Soil, 291(1-2): 93-107. https://doi.org/10.1007/s11104-006-9177-1
      [6] Fan, B.L., Zhang, D., Tao, Z.H., et al., 2017. Compositions of Hydrogen and Oxygen Isotope Values of Yellow River Water and the Response to Climate. China Environmental Science, 37(5): 1906-1914(in Chinese with English abstract). http://www.researchgate.net/publication/319312906_Compositions_of_hydrogen_and_oxygen_isotope_values_of_Yellow_River_water_and_the_response_to_climate_change
      [7] Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/s0009-2541(99)00031-5
      [8] Huang, Q.Z., Xu, X., Lü, L.J., et al., 2018. Soil Salinity Distribution Based on Remote Sensing and Its Effect on Crop Growth in Hetao Irrigation District. Transactions of the Chinese Society of Agricultural Engineering, 34(1): 102-109(in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2018/00000034/00000001/art00014
      [9] Li, C.S., Wu, X.C., Sun, B., et al., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(Suppl. 1): 313-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1027.htm
      [10] Li, J.X., Su, C.L., Xie, X.J., et al., 2010. Application of Multivariate Statistical Analysis to Research the Environment of Groundwater: A Case Study at Datong Basin, Northern China. Geological Science and Technology Information, 29(6): 94-100(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201006016.htm
      [11] Li, M., Ning, L.B., Lu, T.M., 2015. Determination and the Control of Critical Groundwater Table in Soil Salinization Area. Journal of Irrigation and Drainage, 34(5): 46-50(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS201505009.htm
      [12] Li, Y.L., Wang, Y.X., Zhou, L.R., et al., 2002. Hydrogeochemical Modeling on Saturation of Minerals in Groundwater: A Case Study at Niangziguan, Northern China. Geological Science and Technology Information, 21(1): 32-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200201009.htm
      [13] Liu, J., Guo, H.L., Liu, F.L., et al., 2013. The Variations of Stable Isotopes (δD and δ18O) in the Precipitation in Baotou Area. Journal of Arid Land Resources and Environment, 27(5): 157-162(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHZH201305026.htm
      [14] Liu, Q.M., Cheng, Q.M., Wang, X., et al., 2016. Soil Salinity Inversion in Hetao Irrigation District Using Microwave Radar. Transactions of the Chinese Society of Agricultural Engineering, 32(16): 109-114(in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2016/00000032/00000016/art00016
      [15] Lu, J., Zhang, X.J., Ye, P.S., et al., 2020. Remote Sensing Monitoring of Salinization in Hetao Irrigation District Based on SI-MSAVI Feature Space. Remote Sensing for Land and Resources, 32(1): 169-175(in Chinese with English abstract).
      [16] Min, M.Z., Peng, X.J., Zhou, X.L., et al., 2007. Hydrochemistry and Isotope Compositions of Groundwater from the Shihongtan Sandstone-Hosted Uranium Deposit, Xinjiang, NW China. Journal of Geochemical Exploration, 93(2): 91-108. https://doi.org/10.1016/j.gexplo.2006.12.001
      [17] Nosrati, K., Eeckhaut, M.D., 2012. Assessment of Groundwater Quality Using Multivariate Statistical Techniques in Hashtgerd Plain, Iran. Environmental Earth Sciences, 65(1): 331-344. https://doiorg/10.1007/s12665-011-1092-y doi: 10.1007/s12665-011-1092-y
      [18] Su, C.L., Wang, Y.X., Xie, X.J., et al., 2015. An Isotope Hydrochemical Approach to Understand Fluoride Release into Groundwaters of the Datong Basin, Northern China. Environmental Science Processes & Impacts, 17(4): 791-801. https://doi.org/10.1039/c4em00584h
      [19] Wang, S.X., Dong, X.G., Wu, B., et al., 2012. Numerical Simulation and Control Mode of Soil Water and Salt Movement in Arid Salinization. Transactions of the Chinese Society of Agricultural Engineering, 28(13): 142-148(in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2012/00000028/00000013/art00023
      [20] Wang, X.Q., Gao, Q.Z., Lu, Q., et al., 2006. Salt-Water Balance and Dry Drainage Desalting in Hetao Irrigating Area, Inner Mongolia. Scientia Geographica Sinica, 26(4): 4455-4460(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dlkx200604012
      [21] Wang, Y.X., Su, C.L., Xie, X.J., et al., 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201003034.htm
      [22] Xue, X.B., Li, J.X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921(in Chinese with English abstract).
      [23] Xie, X.J., Wang, Y.X., Su, C.L., et al., 2012. Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. Journal of Hydrology, 424-425: 37-47. https://doi.org/10.1016/j.jhydrol.2011.12.017
      [24] Zou, C.Y., Bai, G.S., 2015. Formation Cause and Control Methods about Soil Salinization in Hetao Irrigation Area. Yellow River, 37(9): 143-148(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RMHH201509041.htm
      [25] Zhu, G.F., Li, Z.Z., Su, Y.H., et al., 2007. Hydrogeochemical and Isotope Evidence of Groundwater Evolution and Recharge in Minqin Basin, Northwest China. Journal of Hydrology, 333(2-4): 239-251. https://doi.org/10.1016/j.jhydrol.2006.08.013
      [26] 安乐生, 赵全升, 叶思源, 等, 2012. 黄河三角洲浅层地下水化学特征及形成作用. 环境科学, 33(2): 370-378. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201202007.htm
      [27] 窦旭, 史海滨, 苗庆丰, 等, 2019. 盐渍化灌区土壤水盐时空变异特征分析及地下水埋深对盐分的影响. 水土保持学报, 33(3): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201903037.htm
      [28] 杜军, 杨培岭, 李云开, 等, 2010. 河套灌区年内地下水埋深与矿化度的时空变化. 农业工程学报, 26(7): 26-31, 391. doi: 10.3969/j.issn.1002-6819.2010.07.005
      [29] 范百龄, 张东, 陶正华, 等, 2017. 黄河水氢、氧同位素组成特征及其气候变化响应. 中国环境科学, 37(5): 1906-1914. doi: 10.3969/j.issn.1000-6923.2017.05.038
      [30] 黄权中, 徐旭, 吕玲娇, 等, 2018. 基于遥感反演河套灌区土壤盐分分布及对作物生长的影响. 农业工程学报, 34(1): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201801014.htm
      [31] 李常锁, 武显仓, 孙斌, 等, 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(增刊1): 313-325. doi: 10.3799/dqkx.2018.206
      [32] 李俊霞, 苏春利, 谢先军, 等, 2010. 多元统计方法在地下水环境研究中的应用: 以山西大同盆地为例. 地质科技情报, 29(6): 94-100. doi: 10.3969/j.issn.1000-7849.2010.06.016
      [33] 李明, 宁立波, 卢天梅, 2015. 土壤盐渍化地区地下水临界深度确定及其水位调控. 灌溉排水学报, 34(5): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201505009.htm
      [34] 李义连, 王焰新, 周来茹, 等, 2002. 地下水矿物饱和度的水文地球化学模拟分析: 以娘子关泉域岩溶水为例. 地质科技情报, 21(1): 32-36. doi: 10.3969/j.issn.1000-7849.2002.01.008
      [35] 刘君, 郭华良, 刘福亮, 等, 2013. 包头地区大气降水δD和δ18O变化特征浅析. 干旱区资源与环境, 27(5): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201305026.htm
      [36] 刘全明, 成秋明, 王学, 等, 2016. 河套灌区土壤盐渍化微波雷达反演. 农业工程学报, 32(16): 109-114. doi: 10.11975/j.issn.1002-6819.2016.16.016
      [37] 卢晶, 张绪教, 叶培盛, 等, 2020. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究. 国土资源遥感, 32(1): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202001024.htm
      [38] 王水献, 董新光, 吴彬, 等, 2012. 干旱盐渍土区土壤水盐运动数值模拟及调控模式. 农业工程学报, 28(13): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201213024.htm
      [39] 王学全, 高前兆, 卢琦, 等, 2006. 内蒙古河套灌区水盐平衡与干排水脱盐分析. 地理科学, 26(4): 4455-4460. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200604011.htm
      [40] 王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033
      [41] 薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
      [42] 邹超煜, 白岗栓, 2015. 河套灌区土壤盐渍化成因及防治. 人民黄河, 37(9): 143-148. doi: 10.3969/j.issn.1000-1379.2015.09.038
    • 加载中
    图(7) / 表(5)
    计量
    • 文章访问数:  748
    • HTML全文浏览量:  323
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-09
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回