Impacts of Basement Lithology on Reservoir of Lacustrine Carbonate and Clastic Mixed-Deposition in Member l of Shahejie Formation, Bohai Sea Area
-
摘要: 渤海湾盆地渤海海域沙一段发育湖相碳酸盐岩与碎屑岩混积岩,勘探实践表明,湖相混积岩在深埋条件下可以保持较高的物性,产能也较高,渤海海域目前发现的混积岩探明储量超过3×108 m3.研究通过地质条件比对,结合薄片、同位素、元素分析、物理模拟实验,提出火山岩基底条件是湖相混积岩规模发育的重要控制因素之一.火山岩基底包括中生界火山岩基底、古近系火山岩基底、以火山岩为母源的沉积体基底3种类型.模拟实验表明,火山岩中的暗色矿物大量水解,会导致周边水体富含矿物质,矿物质富集导致藻类等微生物勃发,进而形成以藻类为食的生物群落的发育,为生屑的大量富集提供了条件.扫描电镜下见白云岩化丝状蓝细菌及球状白云岩,证实在沙一段混积岩存在准同生生物白云岩化作用,早期白云岩化作用有利于储层物性的保持,让后期白云岩化作用有了成核基础,促进了后期白云岩化.火山岩岩屑(砾石)铸模孔和内部溶蚀孔占整体储集空间的10%~30%,对储层物性贡献较大.溶蚀模拟实验证实,火山岩的暗色矿物水解溶蚀可提供Mg2+离子,对埋藏白云岩化作用具有促进作用.Abstract: Lacustrine carbonate and clastic mixed-deposition is developed in member 1 of Shahehjie Formation of Bohai Sea area, Bohai Bay basin. Exploration practice indicates that lacustrine mixed-deposition at deep burial depths is higher in production capacity, with proved reserves of more than 3×108 m3, since it can retain higher physical properties. In this paper, it proposes that volcanic rock basement is one of the important factors of mixed-deposition scale development, based on the geological analyses, combined with thin section, isotope, and elemental analyses, and physical simulation experiment. Volcanic rocks in the basement consist of the following three types:the Mesozoic volcanic rock basement, Paleogene volcanic rock basement, and sedimentary bodies with provenance from the volcanic rocks. Simulation experiments show that the dark minerals in the volcanic rocks in the hydrolysis process can lead to enriched metal ions in surrounding waters, and as a result, microbes arise and microbial ecological community develops, which provides conditions to enrichment of bioclastics. The discovery of dolomization filamentous cyanobacteria and globular dolomite affirms the existence of penecontemporaneous biological dolomization in mixed-deposition. Early dolomization is advantageous to the reservoir property and the late dolomization, facilitating the nucleation for later dolomization. Volcanic rock lithic fragment (gravel) internal mould pores and dissolution pores account for 10%-30% of reservoir space, with significant contribution to reservoir property. Dark mineral dissolution simulation experiments confirm that volcanic hydrolysis solution can provide Mg2+ ions, which facilitates the burial dolomization.
-
图 9 湖相碳酸盐岩与碎屑岩混积岩储集空间类型及特征
a. L5-1-1Sa,3 370.00 m,表鲕状白云质中砂岩;b.云质砂砾岩,岩屑粒内溶蚀孔局部发育,呈斑块状,QHD29-2E-5井,3 384.55 m,扇三角洲砂砾岩;c.含生屑云质岩屑砂岩,火山岩砾石的大量溶蚀,粒间充填高岭石,颗粒边缘的白云石包壳保护了岩屑溶蚀孔,QHD29-2E-5井,3 371.00 m;d, e.流纹岩岩屑溶蚀实验前后对比,d为溶蚀实验前照片,e为溶蚀实验后照片,溶蚀后见大量溶蚀孔;f.被强烈胶结、交代的长石及岩屑,b7-2-2, 3 747.26 m
Fig. 9. The characteristics and pore types of the mixed-deposition
表 1 渤海沙一段泥岩含量及古水体环境
Table 1. The boron content of mudstone in the first member of Shahejie Formation in Bohai Sea and its paleowater environment
井号 深度(m) 层位 B(10-6) 当量硼 古盐度(‰) JZ20-2-1 2 113.0 沙一段 95 200.72 12.57 JZ20-2-1 2 123.0 沙一段 46 155.05 8.11 JZ20-2-5 2 310.0 沙一段 90 248.64 17.25 JZ20-2-5 2 330.0 沙一段 83 157.97 8.39 JZ20-2-13 2 879.7 沙一段 71 182.32 10.77 平均值 77 11.418 表 2 渤海海域混积岩与基底岩性的对应关系
Table 2. The corresponding relation of mixed-deposition and basement lithology, Bohai Sea area
构造名称 层位 日产油(m3/d) 构造地貌位置 基底岩性 渤中13-1 沙一段 360.1 远岸中生界火山岩基底隆起 中生界火山岩 锦州20-2 沙一段 208.4 远岸中生界火山岩基底隆起 中生界火山岩 锦州9-3 沙一段 / 远岸火山岩基底隆起 中生界火山岩 秦皇岛29-2东 沙一二段 104 8.0 陡坡带与近岸扇三角洲叠置 以中生界为母源的扇三角洲砂砾岩 曹妃甸2-1 沙一段 115.0 远岸海相碳酸盐岩基底隆起 新生界玄武岩与古生界碳酸盐岩 B7-2 沙一二段 30.0 倾末端近岸变质岩基底隆起 辫状河三角洲砂岩 绥中36-1 沙一段 / 远岸海相碳酸盐岩基底隆起 海相碳酸盐岩 秦皇岛36-3 沙一二段 360.0 陡坡带与近岸扇三角洲叠置 以中生界为母源的扇三角洲砂砾岩 L5-1 沙一段 1 023.0 远岸中生界火山岩基底隆起 中生界火山岩 渤中36-2 沙一二段 111.0 近岸与三角洲砂岩叠置 辫状河三角洲砂岩 秦皇岛30-1北 沙一段 60.0 远岸中生界火山岩基底隆起 中生界火山岩 曹妃甸5-5 沙一二段 致密无产能 远岸中生界碎屑岩 中生界碎屑岩 渤中29-4 沙一二段 / 近岸古生界碳酸盐岩基底隆起 古生界碳酸盐岩 蓬莱14-6 沙一二段 致密无产能 近岸与三角洲碎屑岩叠置 辫状河三角洲碎屑岩 表 3 主要火山岩矿物-水反应活化能
Table 3. The mineral-water reaction activation energy of mainly volcanic minerals
溶解作用 活化能Eθ(kJ/mol) 顽火辉石 50 斜方辉石 44 钙长石 35 镁橄榄石 38 石英 68~75 -
[1] Banks, D., Frengstad, B., 2006. Evolution of Groundwater Chemical Composition by Plagioclase Hydrolysis in Norwegian Anorthosites. Geochimica et Cosmochimica Acta, 70(6): 1337-1355. doi: 10.1016/j.gca.2005.11.025 [2] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2008. Microbes Produce Nanobacteria-Like Structures, Avoiding Cell Entombment. Geology, 36(8): 663-666. doi: 10.1130/g24755a.1 [3] Castenholz, R.W., 1988. Culturing Methods for Cyanobacteria. Methods in Enzymology. Elsevier, Amsterdam, 68-93. doi: 10.1016/0076-6879(88)67006-6 [4] Deng, Y.H., 1991. A Discussion on the Environment of Formation and the Characteristics of the Carbonate Rock in the Shahejie Group in the Liaodong Bay Basin. Petroleum Exploration and Development, 18(6): 32-39(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199106005.htm [5] Deng, Y.H., Zhang, F.M., 1990. Epidiagenesis of Carbonate Rocks in the First Subgroup of Shahejai Formation in Gikou Depresson. Acta Petrolei Sinica, 11(4): 33-40(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-syxb199004004.htm [6] Du, Y.H., 1990. Eogene Lacustrine Carbonate Rocks and Sedimentary Model in Bohai Bay Region. Oil & Gas Geology, 11(4): 376-392, T001, T002(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT199004004.htm [7] Garrels, R.M., MacKenzie, F.T., 1967. Origin of the Chemical Compositions of Some Springs and Lakes. American Chemical Society, 67: 222-242. doi: 10.1021/ba-1967-0067.ch010 [8] Huang, S.J., 2012.Carbonate Diagenesis. Geological Publishing House, Beijing(in Chinese). [9] Huang, Z.F., Liu, C.M., Liu, B., et al., 2009. Impact of Trace Elements Iron and Manganese on Algae Growth. Journal of Beijing Normal University (Natural Science), 45(5): 607-611(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200905032 [10] Jin, Q., Zhai, Q.L., 2003. Volcanic and Thermal-Water Activities and Hydrocarbon Generations in the Rift Basins, Eastern China. Chinese Journal of Geology, 38(3): 342-349(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200303008 [11] Kvenvolden, K.A., Simoneit, B., 1979.Hydrothermally Derived Petroleum: Examples from Guaymas Basin, Gulf of California, and Escanaba Trough, Northeast Pacific Ocean (1). AAPG Bulletin, 74(3):438-452. doi: 10.1306/0c9b22a9-1710-11d7-8645000102c1865d [12] Liu, C.L., 1998. Carbon and Oxygen Isotopic Compositions of Lacustrine Carbonates of the Shahejie Formation in the Dongying Depression and Their Paleolimnological Significance. Acta Sedimentologica Sinica, 16(3): 109-114(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800006560 [13] Lu, F.X., Sang, L.K., 2007. Petrology. Geological Publishing House, Beijing(in Chinese). [14] Pan, W.J., Wang, Q.B., Liu, S.L., et al., 2017. Origin of Lacustrine Bioclastic Dolostone in the Paleogene Shahejie Formation: A Case Study in Shijiutuo Area, Bohai Sea. Journal of Palaeogeography, 19(5): 835-848(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201705008.htm [15] Simoneit, B.R.T., 1993. Aqueous High-Temperature and High-Pressure Organic Geochemistry of Hydrothermal Vent Systems. Geochimica et Cosmochimica Acta, 57(14): 3231-3243. doi: 10.1016/0016-7037(93)90536-6 [16] Tang, L.J., Wan, G.M., Zhou, X.H., et al., 2008. Cenozoic Geotectonic Evolution of the Bohai Basin. Geological Journal of China Universities, 14(2): 191-198(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200802008 [17] Vasconcelos, C., McKenzie, J.A., Bernasconi, S., et al., 1995. Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 377(6546): 220-222. doi: 10.1038/377220a0 [18] Wang, Q.B., Liu, L., Niu, C.M., 2018. Impacts of the Freshwater Diagenetic Environment to the Mix-Deposition of Lacustrine Carbonate and Clastic at the Steep Slope of Shijiutuo Uplift, Bohai Bay Basin. Earth Science, 43(Suppl.2), 234-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2019.htm [19] Wang, Q.B., Liu, L., Niu, C.M., et al., 2019.The Geological Evidences and Impacts of Deep Thermal Fluid on Lacustrine Carbonate Reservoir in the Actic Area of the North Part of Bozhong Depression, Bohai Bay Basin. Earth Science, 44(8):2751-2760(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908019 [20] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018.High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10), 3526-3539(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [21] You, X.L., Sun, S., Zhu, J.Q., et al., 2011. Progress in the Study of Microbial Dolomite Model. Earth Science Frontiers, 18(4): 52-64(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201104005 [22] Zhao, W.Z., Shen, A.J., Qiao, Z.F., et al., 2018. Genetic Types and Distinguished Characteristics of Dolomite and the Origin of Dolomite Reservoirs. Petroleum Exploration and Development, 45(6): 923-935(in Chinese with English abstract). http://www.cqvip.com/QK/86352X/20186/80696568504849564854484850.html [23] Zhu, S.F., Zhu, X.M., Tao, W.F., et al., 2013. Origin of Dolomitic Reservoir Rock in the Permian Fengcheng Formation in Wu-Xia Area of the Junggar Basin. Geological Journal of China Universities, 19(1): 38-45(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201301007 [24] 邓运华, 1991.试论辽东湾坳陷沙河街组碳酸盐岩形成环境及其特征.石油勘探与开发, 18(6): 32-39. http://www.cnki.com.cn/Article/CJFDTotal-SKYK199106005.htm [25] 邓运华, 张服民, 1990.歧口凹陷沙一段下部碳酸盐岩储层的成岩后生作用研究.石油学报, 11(4): 33-40. http://www.cqvip.com/qk/95667X/199004/354697.html [26] 杜韫华, 1990.渤海湾地区下第三系湖相碳酸盐岩及沉积模式.石油与天然气地质, 11(4): 376-392, T001, T002. http://www.cnki.com.cn/Article/CJFD1990-SYYT199004004.htm [27] 黄思静, 2012.碳酸盐岩成岩作用.北京:地质出版社. [28] 黄振芳, 刘昌明, 刘波, 等, 2009.铁锰微量元素对淡水藻类的生长影响研究.北京师范大学学报(自然科学版), 45(5): 607-611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200905032 [29] 金强, 翟庆龙, 2003.裂谷盆地的火山热液活动和油气生成.地质科学, 38(3): 342-349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200303008 [30] 刘传联, 1998.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义.沉积学报, 16(3): 109-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800006560 [31] 路凤香, 桑隆康, 2007.岩石学.北京:地质出版社. [32] 潘文静, 王清斌, 刘士磊, 等, 2017.渤海海域石臼坨地区古近系沙河街组湖相生屑白云岩成因.古地理学报, 19(5): 835-848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201705006 [33] 汤良杰, 万桂梅, 周心怀, 等, 2008.渤海盆地新生代构造演化特征.高校地质学报, 14(2): 191-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200802008 [34] 王清斌, 刘立, 牛成民, 等, 2018.石臼坨凸起陡坡带大气淡水成岩环境对湖相混积岩储层的影响.地球科学, 43(增刊2):234-242. doi: 10.3799/dqkx.2018.138 [35] 王清斌, 刘立, 牛成民, 等, 2019.渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响.地球科学, 44(8):2751-2760. doi: 10.3799/dqkx.2018.347 [36] 解习农, 叶茂松, 徐长贵等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10):3526-3539. doi: 10.3799/dqkx.2018.277 [37] 由雪莲, 孙枢, 朱井泉, 等, 2011.微生物白云岩模式研究进展.地学前缘, 18(4): 52-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201104005 [38] 赵文智, 沈安江, 乔占峰, 等, 2018.白云岩成因类型、识别特征及储集空间成因.石油勘探与开发, 45(6):923-935. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201806002 [39] 朱世发, 朱筱敏, 陶文芳, 等, 2013.准噶尔盆地乌夏地区二叠系风城组云质岩类成因研究.高校地质学报, 19(1): 38-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201301007