• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    孙吴-嘉荫盆地晚白垩世地层物源及构造背景

    贾啸宇 高福红 修铭 刘国卿

    贾啸宇, 高福红, 修铭, 刘国卿, 2021. 孙吴-嘉荫盆地晚白垩世地层物源及构造背景. 地球科学, 46(7): 2379-2390. doi: 10.3799/dqkx.2020.252
    引用本文: 贾啸宇, 高福红, 修铭, 刘国卿, 2021. 孙吴-嘉荫盆地晚白垩世地层物源及构造背景. 地球科学, 46(7): 2379-2390. doi: 10.3799/dqkx.2020.252
    Jia Xiaoyu, Gao Fuhong, Xiu Ming, Liu Guoqing, 2021. Provenance and Tectonic Setting of the Late Cretaceous Strata in Sunwu-Jiayin Basin. Earth Science, 46(7): 2379-2390. doi: 10.3799/dqkx.2020.252
    Citation: Jia Xiaoyu, Gao Fuhong, Xiu Ming, Liu Guoqing, 2021. Provenance and Tectonic Setting of the Late Cretaceous Strata in Sunwu-Jiayin Basin. Earth Science, 46(7): 2379-2390. doi: 10.3799/dqkx.2020.252

    孙吴-嘉荫盆地晚白垩世地层物源及构造背景

    doi: 10.3799/dqkx.2020.252
    基金项目: 

    国家自然科学基金项目 41272075

    详细信息
      作者简介:

      贾啸宇(1996-), 女, 硕士研究生, 主要从事岩石学方面研究.ORCID: 0000-0002-8168-1151.E-mail: jiaxy18@mails.jlu.edu.cn

      通讯作者:

      高福红, ORCID: 0000-0001-6722-623X.E-mail: gaofh@jlu.edu.cn

    • 中图分类号: P588

    Provenance and Tectonic Setting of the Late Cretaceous Strata in Sunwu-Jiayin Basin

    • 摘要: 为揭示孙吴-嘉荫盆地晚白垩世富饶组和太平林场组的物源特征及其构造背景,对两组样品进行了碎屑锆石LA-ICP-MS U-Pb定年和地球化学特征研究.富饶组碎屑锆石55个测点产生以下年龄峰值:65 Ma、280 Ma和496 Ma,太平林场组碎屑锆石78个测点产生以下年龄峰值:98 Ma,189 Ma,240 Ma和488 Ma,表明富饶组和太平林场组具有混合物源的特征.Al2O3/TiO2平均值分别为41.42和29.31,结合主量、微量及稀土元素特征和碎屑锆石峰值年龄,确定富饶组和太平林场组物源主要为晚中生代长英质火成岩和沉积岩.地球化学和区域构造演化特征共同揭示富饶组和太平林场组物源区构造背景为活动大陆边缘,区域内晚中生代岩浆事件、佳木斯地块北部麻山群及广泛分布的古生代花岗岩为盆地晚白垩世地层提供了沉积物源.

       

    • 图  1  研究区地质简图

      Fig.  1.  Geological sketch map of the study area

      图  2  富饶组和太平林场岩性柱状图及采样位置

      Fig.  2.  Column diagrams of the Furao and Taipinglinchang formations showing lithology and sampling locations

      图  3  富饶组和太平林场组野外露头和样品显微照片

      Fig.  3.  Outcrop photographs and photomicrographs of samples from the Furao and Taipinglinchang formations

      图  4  样品JY-4-1代表性锆石阴极发光图像

      Fig.  4.  CL images of the representative zircons from the sample JY-4-1

      图  5  样品JY-4-1锆石LA-ICP-MS U-Pb谐和图

      Fig.  5.  Zircon LA-ICP-MS U-Pb concordia diagrams for the sample JY-4-1

      图  6  样品JY-6-1代表性锆石阴极发光图像

      Fig.  6.  CL images of the representative zircons from the sample JY-6-1

      图  7  样品JY-6-1锆石LA-ICP-MS U-Pb谐和图

      Fig.  7.  Zircon LA-ICP-MS U-Pb concordia diagrams for the sample JY-6-1

      图  8  富饶组和太平林场组风化特征

      Fig.  8.  Diagrams of weathering characteristics for the Furao and Taipinglinchang formations

      图  9  富饶组和太平林场组样品稀土元素球粒陨石标准化曲线

      Fig.  9.  Chondrite-normalized REE patterns of samples from the Furao and Taipinglinchang formations

      图  10  富饶组和太平林场组样品稀土元素PAAS标准化曲线

      Fig.  10.  PAAS-normalized REE patterns of samples from the Furao and Taipinglinchang formations

      图  11  富饶组和太平林场组源岩类型判别图解

      Fig.  11.  Discrimination diagrams of source rock types of the Furao and Taipinglinchang formations

      图  12  富饶组碎屑锆石U-Pb年龄分布直方图

      Fig.  12.  U-Pb age distribution histogram of detrital zircons from the Furao Formation

      图  13  太平林场组碎屑锆石U-Pb年龄分布直方图

      Fig.  13.  U-Pb age distribution histogram of detrital zircons from the Taipinglinchang Formation

      图  14  富饶组和太平林场组沉积岩构造背景判别图解

      A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘

      Fig.  14.  Tectonic setting discriminate diagrams of sedimentary rocks of the Furao and Taipinglinchang Formations

      图  15  研究区沉积岩样品与不同构造背景砂岩稀土元素PAAS和球粒陨石标准化曲线对比

      Fig.  15.  Comparison of the PAAS-normalized and chondrite-normalized REE patterns of sedimentary rocks from the samples in the study area and sandstones from various tectonic settings

    • [1] Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192: 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      [2] Bai, J.K., Chen, J.L., Zhu, X.H., et al., 2018. Provenance Characteristics of Kalamaili Formation in Northeastern Margin of Junggar Basin: Constraints of Geochemistry and Detrital Zircon U-Pb Geochronology. Earth Science, 43(12): 4411-4426(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812012.htm
      [3] Bhatia, M.R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywacks and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1/2): 97-113. https://doi.org/10.1016/0037-0738(85)90025-9
      [4] Bi, J.H., Ge, W.C., Yang, H., et al., 2014. Petrogenesis and Tectonic Implications of Early Paleozoic Granitic Magmatism in the Jiamusi Massif, NE China: Geochronological, Geochemical and Hf Isotopic Evidence. Journal of Asian Earth Sciences, 96: 308-331. https://doi.org/10.1016/j.jseaes.2014.09.013
      [5] Cong, Z.C., Sun, F.Y., Wang, G., et al., 2016. Zircon U-Pb Age and Geochemistry of the Magmatic Rocks in the Jiamusi Massif, NE China and Their Tectonic Implications. Acta Petrologica Sinica, 32(4): 1141-1152(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201604014.htm
      [6] Cox, R., Lowe, D.R., Cullers, R.L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      [7] Cullers, R.L., 1994. The Chemical Signature of Source Rocks in Size Fractions of Holocene Stream Sediment Derived from Metamorphic Rocks in the Wet Mountains Region, Colorado, USA. Chemical Geology, 113: 327-343. https://doi.org/10.1016/0009-2541(94)90074-4
      [8] Fan, F., Cai, J.G., Gao, F.H., et al., 2009. A Study on the Transgression Characteristics of Source Rocks of the Taipinglinchang Formation in Sunwu-Jiayin Basin. Acta Sedimentologica Sinica, 27(4): 650-656(in Chinese).
      [9] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
      [10] Girty, G.H., Ridge, D.L., Knaack, C., et al., 1996. Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66(1): 107-118. https://doi.org/10.1306/D42682CA-2B26-11D7-8648000102C1865D
      [11] Hayashi, K.I., Fujisawa, H., Holland, H.D., et al., 1997. Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 16(19): 4115-4137. https://doi.org/10.1016/S0016-7037(97)00214-7
      [12] Heilongjiang Bureau of Geology and Mineral Resource, 2008. Lithostratigraphy of Heilongjiang Province. China University of Geosciences Press, Wuhan, 298(in Chinese).
      [13] Li, M., Feng, J., Xiao, M.Y., et al., 2012. Geochemical Characteristics and Tectonic Setting Significance of Early Cretaceous Volcanic Rocks in Sunwu-Jiayin Basin. Global Geology, 31(2): 255-261 (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=SJDZ201202003&dbcode=CJFD&year=2012&dflag=pdfdown
      [14] Li, X.H., Li, X.W., Chen, P.J., et al., 2004. SHRIMP Zircon U-Pb Age of Tuff from the Upper Part of the Furao Formation in Heilongjiang Province: an Age Closest to the Cretaceous/Tertiary Boundary. Chinese Science Bulletin, 49(8): 816-818(in Chinese). doi: 10.1360/csb2004-49-8-816
      [15] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257: 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [16] Ludwig, K.R., 2012. ISOPLOT 3.75: A Geochronological Toolkit for Microsoft Excel. Geochronology Centre Special Publication, Berkeley, 75.
      [17] McLennan, S.M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Review of Mineralogy, 21: 169-200. https://doi.org/10.1515/9781501509032-010
      [18] McLennan, S.M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
      [19] McLennan, S.M., Hemming, S., McDaniel, D.K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society of America Special Paper, 284: 21-40. https://doi.org/10.1130/SPE284-p21
      [20] Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
      [21] Sun, C.Y., Long, X.Y., Xu, W.L., et al., 2018. Zircon U-Pb Ages and Hf Isotopic Compositions of the Heilongjiang Complex from Jiayin, Heilongjiang Province and Kundur, Russian Far East and Their Geological Implications. Acta Petrologica Sinica, 34(10): 2901-2916(in Chinese with English abstract). http://www.researchgate.net/publication/328496497_Zircon_U-Pb_ages_and_Hf_isotopic_compositions_of_the_Heilongjiang_Complex_from_Jiayin_Heilongjiang_Province_and_Kundur_Russian_Far_East_and_their_geological_implications
      [22] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London, 42: 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      [23] Wang, F., Xu, W.L., Ge, W.C., et al., 2016. The Offset Distance of the Dunhua-Mishan Fault: Constraints from Paleozoic-Mesozoic Magmatism within the Songnen-Zhangguangcai Range, Jiamusi, and Khanka Massifs. Acta Petrologica Sinica, 32(4): 1129-1140(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201604013.htm
      [24] Wang, P.J., Zhao, L.R., Meng, Q.A., et al., 2015. The Cretaceous Songliao Basin: Dynamic Background from Volcanic Rift to Interior Sag Basin. Earth Science Frontiers, 22(3): 99-117 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201503011.htm
      [25] Wang, Q.Y., Mou, C.L., He, J., et al., 2018. Provenance Analysis and Tectonic Setting Judgment in Shanglan Formation of Middle Triassic in Weixi Area. Earth Science, 43(8): 2811-2832(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808021.htm
      [26] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41: 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [27] Xie, H.Q., Miao, L.C., Chen, F.K., et al., 2008. Characteristics of the "Mashan Group" and Zircon SHRIMP U-Pb Dating of Granite in Muling Area, Southeastern Heilongjiang Provience, China: Constraint on Crustal Evolution of the Southernmost of Jiamusi Massif. Geological Bulletin of China, 27(12): 2127-2137(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200812023.htm
      [28] Xu, W.L., Wang, F., Meng, E., et al., 2012. Paleozoic-Early Mesozoic Tectonic Evolution in Eastern Heilongjiang Province, NE China: Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons. Journal of Jilin University(Earth Science Edition), 42(5): 1378-1389(in Chinese with English abstract). http://www.cqvip.com/QK/91256B/201205/43710841.html
      [29] Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regimes Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353(in Chinese with English abstract). http://www.researchgate.net/publication/303919904_Mesozoic_tectonic_regimes_and_regional_ore-forming_background_in_NE_China_constraints_from_spatial_and_temporal_variations_of_Mesozoic_volcanic_rock_associations
      [30] Yang, G.L., 2008. Constituents, Structure and Evolution of Sunwu-Jiayin Mesonzoic-Cenozoic Basin(Dissertation). China University of Geoscience, Beijing(in Chinese with English abstract).
      [31] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x
      [32] Zhang, F.Q., Dilek, Y., Chen, H.L., et al., 2017. Structural Architecture and Stratigraphic Record of Late Mesozoic Sedimentary Basin in NE China: Tectonic archives of the Late Cretaceous Continental Margin Evolution in East Asia. Earth-Science Reviews, 171: 598-620. https://doi.org/10.1016/j.earscirev.2017.05.015
      [33] Zhang, L., Liu, Z.J., He, Z.H., et al., 2008. Geochemical Characteristics of Major Elements in Sandstone of Taoqihe Formation-Taipinglinchang Formation of Cretaceous in Sunwu-Jiayin Basin. Sedimentary Geology and Tethyan Geology, 28(2): 100-106 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200802015.htm
      [34] Zhao, X.Q., Chen, H.L., Yang, S.F., et al., 2008. Structural Features and Evolution of the Sunwu-Jiayin Basin from Mesozoic to Cenozoic. Journal of China University of Mining & Technology, 41(4): 598-606 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201204014.htm
      [35] 白建科, 陈隽璐, 朱小辉, 等, 2018. 准格尔盆地东北缘卡拉麦里组物源区特征: 碎屑岩地球化学及锆石U-Pb年代学制约. 地球科学, 43(12): 4411-4426. doi: 10.3799/dqkx.2018.587
      [36] 丛智超, 孙丰月, 王冠, 等, 2016. 佳木斯地块中部岩浆岩锆石U-Pb年代学、地球化学及其大地构造意义. 岩石学报, 32(4): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604014.htm
      [37] 樊馥, 蔡进功, 高福红, 2009. 孙吴-嘉荫盆地太平林场组烃源岩海侵特征研究. 沉积学报, 27(4): 650-656. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200904008.htm
      [38] 李敏, 冯坚, 肖明尧, 等, 2012. 孙吴-嘉荫盆地早白垩世火山岩地球化学特征及其构造环境意义. 世界地质, 31(2): 255-261. doi: 10.3969/j.issn.1004-5589.2012.02.004
      [39] 李献华, 李武显, 陈丕基, 等, 2004. 黑龙江富饶组上段凝灰岩的SHRIMP锆石U-Pb年龄: 一个最接近白垩系/第三系界限的年龄. 科学通报, 49(8): 816-818. doi: 10.3321/j.issn:0023-074X.2004.08.020
      [40] 孙晨阳, 龙欣雨, 许文良, 等, 2018. 黑龙江嘉荫与俄罗斯远东Kundur地区黑龙江杂岩锆石U-Pb年代学、Hf同位素组成及其地质意义. 岩石学报, 34(10): 2901-2916. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810006.htm
      [41] 王枫, 许文良, 葛文春, 等, 2016. 敦化-密山断裂带的平移距离: 来自松嫩-张广才岭-佳木斯-兴凯地块古生代-中生代岩浆作用的制约. 岩石学报, 32(4): 1129-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604013.htm
      [42] 王璞珺, 赵然磊, 蒙启安, 等, 2015. 白垩纪松辽盆地: 从火山裂谷到陆内拗陷的动力学环境. 地学前缘, 22(3): 99-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503011.htm
      [43] 王启宇, 牟传龙, 贺娟, 等, 2018. 维西地区中三叠统上兰组物源分析及构造背景判别. 地球科学, 43(8): 2811-2832. doi: 10.3799/dqkx.2018.307
      [44] 颉颃强, 苗来成, 陈福坤, 等, 2008. 黑龙江东南部穆棱地区"麻山群"的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约. 地质通报, 27(12): 2127-2137. doi: 10.3969/j.issn.1671-2552.2008.12.021
      [45] 许文良, 王枫, 孟恩, 等, 2012. 黑龙江省东部古生代-早中生代的构造演化: 火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205012.htm
      [46] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
      [47] 张雷, 刘招君, 和钟铧, 等, 2008. 孙吴-嘉荫盆地白垩系淘淇河组-太平林场组砂岩主量元素的地球化学特征. 沉积与特提斯地质, 28(2): 100-106. doi: 10.3969/j.issn.1009-3850.2008.02.016
      [48] 杨国良, 2008. 孙吴-嘉荫中-新生代盆地组成、构造与盆地演化(硕士学位论文). 北京: 中国地质大学, 50-53.
      [49] 赵学钦, 陈汉林, 杨树锋, 等, 2012. 孙吴-嘉荫盆地中新生代构造特征及演化. 中国矿业大学学报, 41(4): 598-606. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201204014.htm
    • 加载中
    图(15)
    计量
    • 文章访问数:  542
    • HTML全文浏览量:  337
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-21
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回