• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响

    黄发明 叶舟 姚池 李远耀 殷坤龙 黄劲松 姜清辉

    黄发明, 叶舟, 姚池, 李远耀, 殷坤龙, 黄劲松, 姜清辉, 2020. 滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
    引用本文: 黄发明, 叶舟, 姚池, 李远耀, 殷坤龙, 黄劲松, 姜清辉, 2020. 滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
    Huang Faming, Ye Zhou, Yao Chi, Li Yuanyao, Yin Kunlong, Huang Jinsong, Jiang Qinghui, 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
    Citation: Huang Faming, Ye Zhou, Yao Chi, Li Yuanyao, Yin Kunlong, Huang Jinsong, Jiang Qinghui, 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247

    滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响

    doi: 10.3799/dqkx.2020.247
    基金项目: 

    国家自然科学基金项目 41807285

    国家自然科学基金项目 41762020

    国家自然科学基金项目 51879127

    国家自然科学基金项目 51769014

    江西省自然科学基金 20192BAB216034

    江西省自然科学基金 20192ACB2102

    江西省自然科学基金 20192ACB20020

    教育部博士后面上基金 2019M652287

    教育部博士后面上基金 2020T130274

    江西省博士后面上基金 2019KY08

    详细信息
      作者简介:

      黄发明(1988-), 男, 博士, 副教授, 从事滑坡易发性预测研究.ORCID:0000-0002-4428-7133.E-mail:faminghuang@ncu.edu.cn

      通讯作者:

      姚池, E-mail:chi.yao@ncu.edu.cn

    • 中图分类号: P642.22

    Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models

    • 摘要: 对于滑坡易发性预测建模,连续型环境因子在频率比分析时的属性区间划分数量(attribute interval numbers,AIN)和不同易发性预测模型是两个重要不确定性因素.为研究这两个因素对建模的影响规律,以江西省上犹县为例,考虑5种连续型环境因子AIN划分(4、8、12、16及20)和5种数据驱动模型(层次分析法(analytic hierarchy process,AHP)、逻辑回归(logistic regression,LR)、BP神经网络(back-propagation neural network,BPNN)、支持向量机(support vector machine,SVM)和随机森林(random forest,RF)),总计25种不同工况下的滑坡易发性预测研究.再开展滑坡易发性指数的不确定性(包括精度评价和统计规律等)分析.结果表明:(1)对于同一模型,随着AIN值从4增加至8再到20时,易发性预测精度先逐渐提升,然后缓慢提升直至稳定;(2)对于同一AIN值,RF模型预测精度最高,其后依次为SVM、BPNN、LR和AHP模型;(3)在25种组合工况下,AIN=20和RF模型的预测精度最高,AIN=4和AHP模型精度最低,但在AIN=8和RF模型组合下的易发性建模效率较高且精度也较高;(4)更大的AIN值和更先进的机器学习模型预测出的滑坡易发性指数的不确定性相对较低,更符合实际的滑坡概率分布特征.在环境因子属性区间划分为8和RF模型工况下高效准确地构建滑坡易发性预测模型.

       

    • 图  1  上犹县地理位置图(a)和滑坡编录图(b)

      Fig.  1.  Location of the study area (a) and landslide inventory map (b)

      图  2  地形地貌、地表覆被、水文环境以及地质因子

      Fig.  2.  The topographical factors, land cover, hydrology and geological factors

      图  3  AIN为8和5类模型预测滑坡易发性

      Fig.  3.  Landslide susceptibility maps of AIN of 8 and 5 different models

      图  4  各种AIN值以及BPNN模型预测滑坡易发性

      Fig.  4.  Landslide susceptibility maps of different AINs and BPNN models

      图  5  各模型及不同AIN的ROC曲线

      a.AHP; b.LR; c.BPNN; d.SVM; e.RF; f.AUC值三维趋势图

      Fig.  5.  ROC curves of each models and different AINs

      图  6  AIN为8时各模型易发性指数分布特征

      Fig.  6.  Landslide susceptibility indexes distributions of different models under AIN of 8

      图  7  BPNN预测各AIN时的易发性指数分布

      Fig.  7.  Landslide susceptibility indexes distributions of each AIN by BPNN model

      表  1  地形地貌因子FR值

      Table  1.   Frequency ratio of topographical factors

      环境因子 AIN=4 AIN=8 AIN=12 AIN=16 AIN=20
      属性区间 FR值 属性区间 FR值 属性区间 FR值 属性区间 FR值 属性区间 FR值
      高程(m) 122~345 1.292 122~261 1.241 122~240 1.178 122~227 1.046 122~213 0.937
      345~594 0.859 261~386 1.191 240~338 1.432 227~317 1.567 213~289 1.629
      594~955 0.682 386~525 0.878 338~ 442 0.781 317~407 0.923 289~365 1.149
      955~1 892 0.413 525~678 0.764 442~546 0.995 407~504 0.814 365~449 0.721
      678~851 0.727 546~657 0.702 504~601 1.013 449~532 1.041
      851~1 052 0.682 657~768 0.896 601~699 0.648 532~615 0.839
      1 052~1 295 0.491 768~886 0.462 699~796 0.819 615~699 0.652
      1 295~1 892 0.000 8 861~1 011 0.776 796~893 0.470 699~782 0.859
      1 011~1 143 0.726 893~990 0.778 782~865 0.413
      1 143~1 288 0.062 990~1 087 0.515 865~948 0.790
      1 288~1 448 0.000 1 087~1 191 0.821 948~10 25 0.693
      1 448~1 892 0.000 1 191~1 295 0.000 1 025~1 101 0.543
      1 295~1 399 0.000 1 101~1 184 0.779
      1 504~1 635 0.000 1 261~1 337 0.000
      1 635~1 892 0.000 1 337~1 413 0.000
      1 413~1 490 0.000
      1 490~1 566 0.000
      1 566~1 691 0.000
      1 691~1 892 0.000
      坡度(°) 0~8 0.525 0~5 0.218 0~4 0.183 0~3 0.142 0~2 0.105
      8~16 1.417 5~9 0.973 4~8 0.759 3~6 0.566 2~5 0.356
      16~25 1.159 9~14 1.453 8~11 1.321 6~10 1.120 5~8 0.880
      25~57 0.573 14~18 1.373 11~15 1.508 10~12 1.475 8~10 1.254
      18~22 1.163 15~18 1.328 12~15 1.451 10~13 1.527
      22~28 0.880 18~21 1.204 15~18 1.272 13~16 1.452
      28~35 0.602 21~24 1.010 18~21 1.220 16~19 1.264
      35~57 0.228 24~27 0.821 21~24 1.021 19~21 1.199
      27~31 0.682 24~26 0.868 21~23 1.055
      31~36 0.403 26~29 0.756 23~25 0.900
      36~41 0.309 29~32 0.609 25~28 0.722
      41~57 0.000 32~34 0.383 28~30 0.799
      34~37 0.331 30~32 0.464
      37~41 0.265 32~34 0.416
      41~45 0.000 34~37 0.317
      45~57 0.000 37~39 0.371
      39~42 0.041
      42~45 0.000
      45~48 0.000
      48~57 0.000
      注:以高程和坡度为例.
      下载: 导出CSV

      表  2  水文环境因子FR值

      Table  2.   Frequency ratio of hydrologic factors

      环境因子 AIN=4 AIN=8 AIN=12 AIN=16 AIN=20
      属性区间 FR值 属性区间 FR值 属性区间 FR值 属性区间 FR值 属性区间 FR值
      TWI 2~6 1.021 2~5 1.028 2~4 1.034 2~4 1.003 2~4 0.937
      6~9 1.068 5~6 1.069 4~6 1.012 4~5 1.042 4~5 1.069
      9~23 0.485 6~9 1.010 6~7 1.150 5~6 1.075 5~6 1.039
      23~43 0.000 9~13 0.521 7~9 0.962 6~7 1.132 6~7 1.186
      13~24 0.508 9~11 0.608 7~9 0.872 7~8 0.990
      24~33 0.000 11~13 0.472 9~11 0.552 8~10 0.706
      33~37 0.000 13~16 0.552 11~12 0.466 10~11 0.428
      37~43 0.000 16~25 0.406 12~14 0.620 11~13 0.527
      25~33 0.000 14~16 0.361 13~14 0.655
      33~35 0.000 16~18 0.662 14~16 0.374
      35~39 0.000 18~25 0.000 16~17 0.517
      39~43 0.000 25~32 0.000 17~18 0.452
      32~33 0.000 18~20 0.000
      33~35 0.000 20~25 0.000
      35~39 0.000 25~32 0.000
      39~43 0.000 32~33 0.000
      33~35 0.000
      35~37 0.000
      37~40 0.000
      40~43 0.000
      注:以TWI为例.
      下载: 导出CSV

      表  3  地表覆被与地质环境因子FR值

      Table  3.   FR of land cover and geological factors

      环境因子 AIN=4 AIN=8 AIN=12 AIN=16 AIN=20
      属性区间 FR值 属性区间 FR值 属性区间 FR值 属性区间 FR值 属性区间 FR值
      NDVI 0.01~0.16 0.514 0.01~0.09 0.420 0.01~0.06 0.390 0.01~0.04 0.320 0.01~0.02 0.126
      0.16~0.27 1.325 0.09~0.18 0.885 0.06~0.12 0.469 0.04~0.08 0.629 0.02~0.05 0.534
      0.27~0.34 0.989 0.18~0.24 1.447 0.12~0.18 1.011 0.08~0.13 0.443 0.05~0.08 0.594
      0.34~0.50 0.848 0.24~0.28 1.260 0.18~0.21 1.345 0.13~0.16 0.811 0.08~0.11 0.463
      0.28~0.31 0.977 0.21~0.25 1.451 0.16~0.20 1.339 0.11~0.14 0.644
      0.31~0.35 0.971 0.25~0.27 1.256 0.20~0.23 1.377 0.14~0.17 0.964
      0.35~0.38 0.801 0.27~0.30 1.015 0.23~0.25 1.449 0.17~0.19 1.333
      0.38~0.50 0.911 0.30~0.32 0.952 0.25~0.27 1.245 0.19~0.22 1.378
      0.32~0.35 0.979 0.27~0.29 1.057 0.22~0.24 1.478
      0.35~0.37 0.802 0.29~0.31 0.959 0.24~0.26 1.329
      0.37~0.40 0.872 0.31~0.33 0.977 0.26~0.28 1.171
      0.40~0.50 0.857 0.33~0.35 0.920 0.28~0.30 0.975
      0.35~0.37 0.783 0.30~0.32 0.937
      0.37~0.39 0.844 0.32~0.34 1.006
      0.39~0.42 0.894 0.34~0.36 0.819
      0.42~0.50 0.938 0.36~0.38 0.753
      0.38~0.40 0.919
      0.40~0.41 0.895
      0.41~0.43 0.913
      0.43~0.50 0.896
      地层岩性 变质岩 1.161
      碳酸盐岩 1.018
      碎屑岩 0.301
      水域 0.000
      注:以NDVI和地层岩性为例.
      下载: 导出CSV

      表  4  各工况下LR系数和常数项

      Table  4.   Logistic regression coefficients and constant terms

      环境因子 AIN=4 AIN=8 AIN=12 AIN=16 AIN=20
      高程 1.507 3.920 1.386 1.149 1.036
      坡度 0.842 0.668 0.974 0.814 0.848
      坡向 -0.567 1.161 0.972 1.069 1.107
      剖面曲率 0.962 -0.254 0.380 0.537 0.464
      平面曲率 1.117 1.021 1.164 1.109 1.098
      地形起伏度 0.300 -0.070 0.350 0.474 1.350
      地层岩性 1.467 0.967 1.211 1.333 0.419
      NDBI 0.994 1.342 1.103 1.167 1.137
      NDVI 0.264 0.250 0.354 0.255 0.290
      TWI 0.881 0.400 0.496 0.457 0.436
      MNDWI 1.304 1.584 1.117 1.120 1.091
      地表总辐射 0.761 0.447 0.608 0.548 0.453
      常数 -10.173 -11.388 -10.533 -10.449 -10.154
      下载: 导出CSV

      表  5  不同数据驱动模型和不同AIN组合工况下的AUC精度值

      Table  5.   AUC values of different data-based models and different AIN values

      模型 AIN
      4 8 12 16 20
      AHP 0.701 0.708 0.717 0.723 0.724
      LR 0.718 0.729 0.737 0.737 0.738
      BPNN 0.726 0.737 0.741 0.739 0.740
      SVM 0.728 0.750 0.752 0.752 0.753
      RF 0.760 0.827 0.831 0.834 0.854
      下载: 导出CSV

      表  6  不同AIN和不同模型的Friedman按秩的双向方差分析

      Table  6.   Friedman two-way ANOVA tests by rank for different AIN values and different models

      建模工况 AIN对比 显著性 AIN对比 显著性 AIN对比 显著性 AIN对比 显著性
      不同AIN和BPNN模型 4, 80 1.000
      4, 12 0.027 8, 12 0.455
      4, 16 0.027 8, 16 1.000 12, 16 1.000
      4, 20 0.003 8, 20 0.124 12, 20 1.000 16, 20 1.000
      建模工况 模型对比 显著性 模型对比 显著性 模型对比 显著性 模型对比 显著性
      AIN=8和不同模型 AHP, LR 1.000
      AHP, BPNN 0.455 LR, BPNN 1.000
      AHP, SVM 0.027 LR, SVM 0.455 BPNN, SVM 1.000
      AHP, RF 0.001 LR, RF 0.027 BPNN, RF 0.455 SVM, RF 1.000
      下载: 导出CSV
    • [1] Aghdam, I.N., Pradhan, B., Panahi, M., 2017.Landslide Susceptibility Assessment Using a Novel Hybrid Model of Statistical Bivariate Methods (FR and WOE) and Adaptive Neuro-Fuzzy Inference System (ANFIS) at Southern Zagros Mountains in Iran.Environmental Earth Sciences, 76(6):1-22. https://doi.org/10.1007/s12665-017-6558-0
      [2] Bueechi, E., Klimeš, J., Frey, H., et al., 2019.Regional-Scale Landslide Susceptibility Modelling in the Cordillera Blanca, Peru:A Comparison of Different Approaches.Landslides, 16(2):395-407. https://doi.org/10.1007/s10346-018-1090-1
      [3] Chakraborty, A., Goswami, D., 2017.Prediction of Slope Stability Using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN).Arabian Journal of Geosciences, 10(17):385. https://doi.org/10.1007/s12517-017-3167-x
      [4] Chang, Z.L., Du, Z., Zhang, F., et al., 2020.Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS:Comparisons of Supervised and Unsupervised Machine Learning Models.Remote Sensing, 12(3):502. https://doi.org/10.3390/rs12030502
      [5] Chen, W., Peng, J.B., Hong, H.Y., et al., 2018.Landslide Susceptibility Modelling Using GIS-Based Machine Learning Techniques for Chongren County, Jiangxi Province, China.Science of the Total Environment, 626:1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
      [6] Chen, W., Xie, X.S., Wang, J.L., et al., 2017.A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility.Catena, 151:147-160. https://doi.org/10.1016/j.catena.2016.11.032
      [7] Dou, J., Yunus, A.P., Tien Bui, D., et al., 2019.Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the Izu-Oshima Volcanic Island, Japan.Science of the Total Environment, 662:332-346. https://doi.org/10.1016/j.scitotenv.2019.01.221
      [8] Fanos, A.M., Pradhan, B., Mansor, S., et al., 2018.A Hybrid Model Using Machine Learning Methods and GIS for Potential Rockfall Source Identification from Airborne Laser Scanning Data.Landslides, 15(9):1833-1850. https://doi.org/10.1007/s10346-018-0990-4
      [9] Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016.A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province.Earth Science, 41(3):403-415(in Chinese with English abstract).
      [10] Guo, Z.Z., Yin, K.L., Fu, S., et al., 2019.Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model.Earth Science, 44(12):4299-4312(in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
      [11] Guo, Z.Z., Yin, K.L., Huang, F.M., et al., 2019.Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model.Chinese Journal of Rock Mechanics and Engineering, 38(2):287-300(in Chinese with English abstract).
      [12] Hong, H.Y., Pourghasemi, H.R., Pourtaghi, Z.S., 2016.Landslide Susceptibility Assessment in Lianhua County (China):A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models.Geomorphology, 259:105-118. https://doi.org/10.1016/j.geomorph.2016.02.012
      [13] Huang, F.M., Wang, Y., Dong, Z.L., et al., 2019.Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model.Earth Science, 44(2):664-676 (in Chinese with English abstract).
      [14] Huang, F.M., Yin, K.L., Jiang, S.H., et al., 2018.Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine.Chinese Journal of Rock Mechanics and Engineering, 37(1):156-167(in Chinese with English abstract).
      [15] Huang, F.M., Zhang, J., Zhou, C.B., et al., 2020.A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction.Landslides, 17(1):217-229. https://doi.org/10.1007/s10346-019-01274-9
      [16] Li, L.P., Lan, H.X., Guo, C.B., et al., 2017.A Modified Frequency Ratio Method for Landslide Susceptibility Assessment.Landslides, 14(2):727-741. https://doi.org/10.1007/s10346-016-0771-x
      [17] Lin, S., Wang, W., Deng, X.H., et al., 2019.Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance:A Case Study of Sifangbei Landslide in Wanzhou District.Earth Science, 44(9):3135-3146(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909026.htm
      [18] Liu, Y., Zhao, B.B., Yin, K.L., et al., 2019.Sensitivity Analysis of Maliulin Landslide Stability Based on Orthogonal Design.Earth Science, 44(2):677-684(in Chinese with English abstract).
      [19] Luo, Y., He, S.M., He, J.C., 2014.Effect of Rainfall Patterns on Stability of Shallow Landslide.Earth Science, 39(9):1357-1363(in Chinese with English abstract).
      [20] Park, H.J., Jang, J.Y., Lee, J.H., 2019.Assessment of Rainfall-Induced Landslide Susceptibility at the Regional Scale Using a Physically Based Model and Fuzzy-Based Monte Carlo Simulation.Landslides, 16(4):695-713. https://doi.org/10.1007/s10346-018-01125-z
      [21] Park, S., Choi, C., Kim, B., et al., 2013.Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea.Environmental Earth Sciences, 68(5):1443-1464. https://doi.org/10.1007/s12665-012-1842-5
      [22] Pereira, D.G., Afonso, A., Medeiros, F.M., 2015.Overview of Friedman's Test and Post-Hoc Analysis.Communications in Statistics-Simulation and Computation, 44(10):2636-2653. https://doi.org/10.1080/03610918.2014.931971.
      [23] Reichenbach, P., Rossi, M., Malamud, B.D., et al., 2018.A Review of Statistically-Based Landslide Susceptibility Models.Earth-Science Reviews, 180:60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
      [24] Tien Bui, D., Tuan, T.A., Klempe, H., et al., 2016.Spatial Prediction Models for Shallow Landslide Hazards:A Comparative Assessment of the Efficacy of Support Vector Machines, Artificial Neural Networks, Kernel Logistic Regression, and Logistic Model Tree.Landslides, 13(2):361-378. https://doi.org/10.1007/s10346-015-0557-6
      [25] Wu, Y.P., Zhang, Q.X., Tang, H.M., et al., 2014.Landslide Hazard Warning Based on Effective Rainfall Intensity.Earth Science, 39(7):889-895(in Chinese with English abstract).
      [26] Xu, C., Dai, F.C., Xu, X.W., 2011.Earthquake Triggered Landslide Susceptibility Evaluation Based on GIS Platform and Weight-of-Evidence Modeling.Earth Science, 36(6):1155-1164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201106022.htm
      [27] Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z.S., et al., 2016.Landslide Susceptibility Mapping Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of Their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia.Landslides, 13(5):839-856. https://doi.org/10.1007/s10346-015-0614-1
      [28] Zhang, J., Yin, K.L., Wang, J.J., et al., 2016.Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir.Chinese Journal of Rock Mechanics and Engineering, 35(2):284-296(in Chinese with English abstract).
      [29] Zhang, S.H., Wu, G., 2019.Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS.Earth Science, 44(9):3115-3134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909025.htm
      [30] Zhang, T.L., Zhou, A.G., Sun, Q., et al., 2017.Characteristics of the Groundwater Seepage and Failure Mechanisms of Landslide Induced by Typhoon Rainstorm.Earth Science, 42(12):2354-2362(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201712019.htm
      [31] Zhao, J.B., Liu, Y.X., Liu, N., et al., 2019.Spatial Prediction Method of Regional Landslide Based on Distributed BP Neural Network Algorithm under Massive Monitoring Data.Rock and Soil Mechanics, 40(7):2866-2872(in Chinese with English abstract).
      [32] 冯杭建, 周爱国, 俞剑君, 等, 2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3):403-415. doi: 10.3799/dqkx.2016.032
      [33] 郭子正, 殷坤龙, 付圣, 等, 2019a.基于GIS与WOE-BP模型的滑坡易发性评价.地球科学, 44(12):4299-4312. doi: 10.3799/dqkx.2018.555
      [34] 郭子正, 殷坤龙, 黄发明, 等, 2019b.基于滑坡分类和加权频率比模型的滑坡易发性评价.岩石力学与工程学报, 38(2):287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm
      [35] 黄发明, 汪洋, 董志良, 等, 2019.基于灰色关联度模型的区域滑坡敏感性评价.地球科学, 44(2):664-676. doi: 10.3799/dqkx.2018.175
      [36] 黄发明, 殷坤龙, 蒋水华, 等, 2018.基于聚类分析和支持向量机的滑坡易发性评价.岩石力学与工程学报, 37(1):156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      [37] 林松, 王薇, 邓小虎, 等, 2019.三峡库区典型滑坡地球物理实测及其意义:以万州区四方碑滑坡为例.地球科学, 44(9):3135-3146. doi: 10.3799/dqkx.2019.074
      [38] 刘毅, 赵斌滨, 殷坤龙, 等, 2019.基于正交设计的麻柳林滑坡稳定性敏感分析.地球科学, 44(2):677-684. doi: 10.3799/dqkx.2018.195
      [39] 罗渝, 何思明, 何尽川, 2014.降雨类型对浅层滑坡稳定性的影响.地球科学, 39(9):1357-1363. doi: 10.3799/dqkx.2014.118
      [40] 吴益平, 张秋霞, 唐辉明, 等, 2014.基于有效降雨强度的滑坡灾害危险性预警.地球科学, 39(7):889-895. doi: 10.3799/dqkx.2014.083
      [41] 许冲, 戴福初, 徐锡伟, 2011.基于GIS平台与证据权的地震滑坡易发性评价.地球科学, 36(6):1155-1164. http://www.earth-science.net/article/id/2192
      [42] 张俊, 殷坤龙, 王佳佳, 等, 2016.三峡库区万州区滑坡灾害易发性评价研究.岩石力学与工程学报, 35(2):284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
      [43] 张书豪, 吴光, 2019.随机森林与GIS的泥石流易发性及可靠性.地球科学, 44(9):3115-3134. doi: 10.3799/dqkx.2019.081
      [44] 张泰丽, 周爱国, 孙强, 等, 2017.台风暴雨条件下滑坡地下水渗流特征及成因机制.地球科学, 42(12):2354-2362. doi: 10.3799/dqkx.2017.570
      [45] 赵久彬, 刘元雪, 刘娜, 等, 2019.海量监测数据下分布式BP神经网络区域滑坡空间预测方法.岩土力学, 40(7):2866-2872. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907042.htm
    • 加载中
    图(7) / 表(6)
    计量
    • 文章访问数:  877
    • HTML全文浏览量:  110
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-28
    • 刊出日期:  2020-12-15

    目录

      /

      返回文章
      返回