Petrogenesis, Mineralization and Prospecting Information of Permian Mafic-Ultramafic Rocks, Beishan, Xinjiang
-
摘要: 为认识新疆北山二叠纪镁铁-超镁铁质岩石成岩成矿作用,基于地质调查获得的新资料,对这套岩石存在争议或认识模糊的年代学、岩浆起源与性质、动力学背景、硫化物熔离机制等进行了重新梳理.区内幔源岩浆除了早二叠世大规模侵入,中二叠世还有一期小规模侵入(261~266 Ma).母岩浆起源于受俯冲流体交代改造的亏损地幔在相对浅的深度发生高程度部分熔融,其具高温、高镁、含水、氧化特征.这些岩石并非地幔柱成因,亦非产于岛弧环境,而是造山后伸展背景下板片断裂引起的软流圈地幔上涌形成镁铁质侵入岩.坡北亚带和红石山亚带具有类似的岩石矿物组合和地球化学特征,但是矿化方式有明显差异.不同类型矿化是硫化物多期次熔离的产物,来自邻近VMS型铜矿床的外源硫混染触发硫化物在橄榄石结晶分异之前熔离,高品位脉状矿化是硫化物矿浆晚期贯入苏长岩的产物.超镁铁质岩相橄榄石中较低的Ni含量,岩体低Ti、高Mg、高m/s和m/f比值、母岩浆MgO含量大于11.5%、部分熔融程度不低于10%、固结指数SI大于50,均是有利的找矿指标,红十井深大断裂一带可能具有找矿潜力.Abstract: A series of Permian mafic-ultramafic complexes associated with large and medium-sized Ni deposits have been found in recent decades in the Beishan area, Xinjiang, NW China. Based on the new data obtained from the geological survey, a few controversial scientific issues, such as geochronology, the origin and nature of parental magma, tectonic setting, sulfide immiscibility mechanism, etc., are redefined. Two episodes of mafic magmatism in the Beishan area were recognized. i.e. the Early Permian and Middle Permian (261-266 Ma). The parental magma may have originated from high degree partial melting of the depleted mantle which suffered from metasomatism and modification by subduction-related fluid in relatively shallow depth. It is characterized by high temperature, high Mg content, oxidized and hydrous nature. The Beishan mafic-ultramafic rocks are of non-plume origin, as well as of non-arc origin. The tectonic setting seems more likely slab break-off and consequent upwelling from an asthenosphere mantle in post-orogenic setting. The Pobei sub-belt and the Hongshishan sub-belt have similar rock types and geochemical features, but different mineralization types, suggesting multi-stages and differences of sulfide segregation mechanism. Addition of external S from adjacent VMS Cu deposits triggers sulfide segregation prior to olivine crystallization. Injection of ore pulp to later norite gives rise to vein-type mineralization with high Ni tenor. Finally, some indicators are proposed for the future prospecting, for example, relatively low Ni content in olivine from ultramafic rocks, high Mg but low Ti contents, high m/s and m/f ratios, tholeiitic parental magma (>11.5% MgO), relatively high degree of partial melting (>10%) and high solidification index (>50). The area along the Hongshijing deep fault is of further prospecting potential.
-
图 1 研究区区域地质简图
a.中亚造山带分布;b.新疆镁铁质岩分布(据陈继平等,2013和Zhang et al., 2015修改);c.东天山-北山镁铁-超镁铁质岩分布(据Su et al., 2012修改);d.新疆北山镁铁-超镁铁质岩分布(据Ruan et al., 2020修改).①大南湖-头苏泉岛弧,②小热泉子-梧桐窝子弧内盆地,③康古尔-黄山韧性剪切带,④雅满苏弧后盆地;I.阿齐库都克-沙泉子断裂,Ⅱ.红柳河-依格孜塔格断裂,Ⅲ.白地洼-淤泥河断裂,Ⅳ.红十井断裂
Fig. 1. Regional geological map of the studied area
图 3 新疆北山二叠纪镁铁-超镁铁质岩带岩体侵位年龄
各岩体年龄见附表 3;东天山-北山镁铁质岩年龄范围据Qin et al.(2011)
Fig. 3. Ages of the Permian mafic-ultramafic complexes in the Beishan area, Xinjiang
图 4 新疆北山镁铁-超镁铁质岩及同时期中酸性岩石的Sr-Nd同位素组成
早二叠世岩石数据参考Su et al.(2012),Xue et al.(2016a, 2016b)和Zhang et al.(2015),中二叠世岩石数据参考苏本勋等(2010)和Xue et al. (2016b);MORB.大洋中脊玄武岩;OIB.洋岛玄武岩;EMⅠ.Ⅰ型富集地幔;EMⅡ.Ⅱ型富集地幔
Fig. 4. Sr-Nd isotopic compositions of mafic-ultramafic rocks and contemporaneous felsic rocks in Beishan area
图 7 新疆北山地区不同类型矿石的Pd-Cu/Pd散点图
坡一和红石山数据分别参考Xue et al.(2016a)和Ruan et al.(2020);红星代表原始地幔成分,演化线中斜体数字代表早期熔离硫化物的量(据Wang et al., 2018b)
Fig. 7. Plot of Pd vs. Cu/Pd for various sulfide ores in the Beishan area
图 8 新疆北山“岩浆多期次侵入+硫化物多期次熔离”的镍成矿模式(据Ruan et al., 2020修改)
Fig. 8. Model of "multi-stages of magma emplacement and sulfide segregation" for the Ni mineralization in the Beishan area, Xinjiang (modified from Ruan et al., 2020)
-
[1] Ao, S.J., Xiao, W.J., Han, C.M., et al., 2010.Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China:Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids.Gondwana Research, 18(2-3):466-478. https://doi.org/10.1016/j.gr.2010.01.004 [2] Ballhaus, C., Berry, R.F., Green, D.H., 1991.High-Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer:Implications for the Oxidation State of the Upper Mantle.Contributions to Mineralogy and Petrology, 107(1):27-40. https://doi.org/10.1007/bf00311183 [3] Barnes, S.J., Mungall, J.E., Maier, W.D., 2015.Platinum Group Elements in Mantle Melts and Mantle Samples.Lithos, 232:395-417. https://doi.org/10.1016/j.lithos.2015.07.007 [4] Bekker, A., Barley, M.E., Fiorentini, M.L., et al., 2009.Atmospheric Sulfur in Archean Komatiite-Hosted Nickel Deposits. Science, 326(5956):1086-1089. doi: 10.1126/science.1177742 [5] Cao, Y.H., Wang, C.Y., Wei, B., 2019.Magma Oxygen Fugacity of Permian to Triassic Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusions in the Central Asian Orogenic Belt, North China.Journal of Asian Earth Sciences, 173:250-262. https://doi.org/10.1016/j.jseaes.2019.01.024 [6] Cao, Y.H., Wang, Y.C., Wei, B., 2020.Magma Oxygen Fugacity of Mafic-Ultramafic Intrusions in Convergent Margin Settings:Insights for the Role of Magma Oxidation States on Magmatic Ni-Cu Sulfide Mineralization.American Mineralogist. https://doi.org/10.2138/am-2020-7351 [7] Chai, F.M., Xia, F., Chen, B., et al., 2013.Platinum Group Elements Geochemistry of Two Mafic-Ultramafic Intrusions in the Beishan Block, Xinjiang, NW China.Acta Geologica Sinica, 87(4):474-485(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201304004&dbcode=CJFD&year=2013&dflag=pdfdown [8] Chen, J.P., Liao, Q.A., Zhang, X.H., et al., 2013.Contrast of Huangshandong and Xiangshan Mafic-Ultramafic Complex, East Tianshan.Earth Science, 38(6):1183-1196(in Chinese with English abstract). http://www.researchgate.net/publication/286215688_Contrast_of_Huangshandong_and_Xiangshan_mafic-ultramafic_complex_east_Tianshan [9] Chen, K., Tang, M., Lee, C.T.A., et al., 2020.Sulfide-Bearing Cumulates in Deep Continental Arcs:The Missing Copper Reservoir.Earth and Planetary Science Letters, 531:115971. https://doi.org/10.1016/j.epsl.2019.115971 [10] Deng, X.L., Shu, L.S., Zhu, W.B., et al., 2008.Precambrian Tectonism, Magmatism, Deformation and Geochronology of Igneous Rocks in the Xingdi Fault Zone, Xinjiang.Acta Petrologica Sinica, 24(12):2800-2808(in Chinese with English abstract). [11] Godefroy-Rodríguez, M., Hagemann, S., LaFlamme, C., et al., 2020.The Multiple Sulfur Isotope Architecture of the Golden Mile and Mount Charlotte Deposits, Western Australia.Mineralium Deposita, 55(4):797-822. https://doi.org/10.1007/s00126-018-0828-y [12] Han, C.M., Xiao, W.J., Zhao, G.C., et al., 2010.In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt:Constraints on the Timing and Genesis of the Mineralization.Lithos, 120(3-4):547-562. https://doi.org/10.1016/j.lithos.2010.09.019 [13] Hoshide, T., Obata, M., 2012.Amphibole-Bearing Multiphase Solid Inclusions in Olivine and Plagioclase from a Layered Gabbro:Origin of the Trapped Melts.Journal of Petrology, 53(2):419-449. https://doi.org/10.1093/petrology/egr067 [14] Huw Davies, J., von Blanckenburg, F., 1995.Slab Breakoff:A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens.Earth and Planetary Science Letters, 129(1-4):85-102. https://doi.org/10.1016/0012-821x(94)00237-s [15] Jiang, C.Y., Guo, N.X., Xia, M.Z., et al., 2012.Petrogenesis of the Poyi Mafic-Ultramafic Layered Intrusion, NE Tarim Plate.Acta Petrologica Sinica, 28(7):2209-2223(in Chinese with English abstract). http://www.oalib.com/paper/1475422 [16] Labidi, J., Cartigny, P., Hamelin, C., et al., 2014.Sulfur Isotope Budget (32S, 33S, 34S and 36S) in Pacific-Antarctic Ridge Basalts:A Record of Mantle Source Heterogeneity and Hydrothermal Sulfide Assimilation.Geochimica et Cosmochimica Acta, 133:47-67. https://doi.org/10.1016/j.gca.2014.02.023 [17] Le Vaillant, M., Barnes, S.J., Fiorentini, M.L., et al., 2016.Effects of Hydrous Alteration on the Distribution of Base Metals and Platinum Group Elements within the Kevitsa Magmatic Nickel Sulphide Deposit.Ore Geology Reviews, 72:128-148. https://doi.org/10.1016/j.oregeorev.2015.06.002 [18] Li, C., Ripley, E.M., 2009.Sulfur Contents at Sulfide-Liquid or Anhydrite Saturation in Silicate Melts:Empirical Equations and Example Applications.Economic Geology, 104(3):405-412. https://doi.org/10.2113/gsecongeo.104.3.405 [19] Li, M., Ren, B.F., Teng, X.J., et al., 2018.Geochemical Characteristics, Zircon U-Pb Age and Hf Isotope and Geological Significance of Granitoid in Beishan Orogenic Belt.Earth Science, 43(12):4586-4605(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812024.htm [20] Lin, T., Deng, Y.F., Chen, B., et al., 2019.Geochronology, Geochemistry and Petrogenesis of the Kongwusayi A-Type Granites in the Eastern Alataw Mountain, West Tianshan, Xinjiang.Acta Geologica Sinica, 93(5):1020-1036(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201905003.htm [21] Liu, X., Su, B.X., Bai, Y., et al., 2018.Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite:Inference from Mineral Inclusions.Earth Science, 43(4):1038-1053(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804008.htm [22] Liu, X., Su, B.X., Xiao, Y., et al., 2019.Initial Subduction of Neo-Tethyan Ocean:Geochemical Records in Chromite and Mineral Inclusions in the Pozantı-Karsantı Ophiolite, Southern Turkey.Ore Geology Reviews, 110:102926. https://doi.org/10.1016/j.oregeorev.2019.05.012 [23] Liu, Y.G., Li, W.Y., Lü, X.B., et al., 2017.Sulfide Saturation Mechanism of the Poyi Magmatic Cu-Ni Sulfide Deposit in Beishan, Xinjiang, Northwest China.Ore Geology Reviews, 91:419-431. https://doi.org/10.1016/j.oregeorev.2017.09.013 [24] Liu, Y.G., Lü, X.B., Ruan, B.X., et al., 2019.A Comprehensive Information Exploration Model for Magmatic Cu-Ni Sulfide Deposits in Beishan, Xinjiang.Mineral Deposits, 38(3):644-666(in Chinese with English abstract). http://www.researchgate.net/publication/334272956_A_comprehensive_information_exploration_model_for_magmatic_Cu-Ni_sulfide_deposits_in_Beishan_Xinjiang----In_Chinese_with_English_abstract [25] Liu, Y.G., Lü, X.B., Wu, C.M., et al., 2016.The Migration of Tarim Plume Magma toward the Northeast in Early Permian and Its Significance for the Exploration of PGE-Cu-Ni Magmatic Sulfide Deposits in Xinjiang, NW China:As Suggested by Sr-Nd-Hf Isotopes, Sedimentology and Geophysical Data.Ore Geology Reviews, 72:538-545. https://doi.org/10.1016/j.oregeorev.2015.07.020 [26] Liu, Y.G., Lü, X.B., Yang, L.S., et al., 2015. Metallogeny of the Poyi Magmatic Cu-Ni Deposit:Revelation from the Contrast of PGE and Olivine Composition with Other Cu-Ni Sulfide Deposits in the Early Permian, Xinjiang, China. Geosciences Journal, 19:613-620. https://doi.org/10.1007/s12303-015-0008-3 [27] Qin, K.Z., Su, B.X., Sakyi, P.A., et al., 2011.SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China):Constraints on a ca.280 Ma Mantle Plume.American Journal of Science, 311(3):237-260. https://doi.org/10.2475/03.2011.03 [28] Ripley, E.M., Li, C.S., 2013.Sulfide Saturation in Mafic Magmas:Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis? Economic Geology, 108(1):45-58 http://econgeol.geoscienceworld.org/content/108/1/45 [29] Ripley, E.M., Li, C.S., 2017.A Review of the Application of Multiple S Isotopes to Magmatic Ni-Cu-Pge Deposits and the Significance of Spatially Variable Delta 33S Values.Economic Geology, 112(4):983-991. https://doi.org/10.2113/econgeo.112.4.983 [30] Ruan, B.X., Yu, Y.M., Lü, X.B., et al., 2017.Occurrence and Mineral Chemistry of Chromite and Related Silicates from the Hongshishan Mafic-Ultramafic Complex, NW China with Petrogenetic Implications.Mineralogy and Petrology, 111(5):693-708. https://doi.org/10.1007/s00710-016-0480-0 [31] Ruan, B.X., Yu, Y.M., Lü, X.B., et al., 2020.Sulfide Segregation Mechanism of Magmatic Ni Mineralization in Western Beishan Region, Xinjiang, NW China:Case Study of the Hongshishan Mafic-Ultramafic Complex.Ore Geology Reviews, 122:103503. https://doi.org/10.1016/j.oregeorev.2020.103503 [32] Song, X.Y., Xie, W., Deng, Y.F., et al., 2011.Slab Break-off and the Formation of Permian Mafic-Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China.Lithos, 127(1-2):128-143. https://doi.org/10.1016/j.lithos.2011.08.011 [33] Su, B.X., Qin, K.Z., Sun, H., et al., 2010.Geochronological, Petrological, Mineralogical and Geochemical Studies of the Xuanwoling Mafic-Ultramafic Intrusion in Beishan Area, Xinjiang.Acta Petrologica Sinica, 26(11):3283-3294(in Chinese with English abstract). http://www.oalib.com/paper/1475867 [34] Su, B.X., Qin, K.Z., Sun, H., et al., 2012.Subduction-Induced Mantle Heterogeneity beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes.Lithos, 134-135:41-51. https://doi.org/10.1016/j.lithos.2011.12.011 [35] Tang, Q.Y., Zhang, M.J., Li, W.Y., et al., 2015.Geodynamic Setting and Metallogenic Potential of Permian Large-Sized Mafic Ultramafic Intrusions in Beishan Area, Xinjiang, China.Geology in China, 42(3):468-481(in Chinese English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201503006.htm [36] Tian, W., Campbell, I.H., Allen, C.M., et al., 2010.The Tarim Picrite-Basalt-Rhyolite Suite, a Permian Flood Basalt from Northwest China with Contrasting Rhyolites Produced by Fractional Crystallization and Anatexis.Contributions to Mineralogy and Petrology, 160(3):407-425. https://doi.org/10.1007/s00410-009-0485-3 [37] Wang, G.C., Zhang, M., Feng, J.L., et al., 2019.New Understanding of the Tectonic Framework and Evolution during the Neoproterozoic-Paleozoic Era in the East Tianshan Mountains.Journal of Geomechanics, 25(5):798-819(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905011.htm [38] Wang, G.Q., Li, X.M., Xu, X.Y., et al., 2014.Zircon U-Pb Chronological Study of the Hongshishan Ophiolite in the Beishan Area and Their Tectonic Significance.Acta Petrologica Sinica, 30(6):1685-1694(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252017463.html [39] Wang, H., Wang, P., Li, J., et al., 2015.A Tentative Discussion on Features of Mafic-Ultramafic Rocks and Exploration Methods in Pobei Area of Ruoqiang, Xinjiang.Geology in China, 42(3):777-784(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201503027.htm [40] Wang, J.L., Gu, X.X., Zhang, Y.M., et al., 2018a.The Sanfengshan Copper Deposit and Early Carboniferous Volcanogenic Massive Sulfide Mineralization in the Beishan Orogenic Belt, Northwestern China.Journal of Asian Earth Sciences, 153:379-394. https://doi.org/10.1016/j.jseaes.2016.12.019 [41] Wang, Y.J., Lü, X.B., Liu, Y.R., 2018b.Petrogenesis and Ni-Cu-Co Sulfide Formation of Mafic Enclaves in Tulaergen Mafic-Ultramafic Intrusive Rocks, Eastern Tianshan, Northwest China:Implications for Liquid Immiscibility and Hydrothermal Remobilization of Platinum-Group Elements.Economic Geology, 113(8):1795-1816. https://doi.org/10.5382/econgeo.2018.4613 [42] Weaver, J.S., Langmuir, C.H., 1990.Calculation of Phase Equilibrium in Mineral-Melt Systems.Computers & Geosciences, 16(1):1-19. https://doi.org/10.1016/0098-3004(90)90074-4 [43] Wei, X., Xu, Y.G., Feng, Y.X., et al., 2014.Plume-Lithosphere Interaction in the Generation of the Tarim Large Igneous Province, NW China:Geochronological and Geochemical Constraints.American Journal of Science, 314(1):314-356. https://doi.org/10.2475/01.2014.09 [44] Wu, J.L., Lü, X.B., Feng, J., et al., 2018.Mineralogical Characteristics of Chromite from the Poyi Mafic-Ultramafic Intrusion in Beishan, Xinjiang, and Its Geological Significance.Geotectonica et Metallogenia, 42(2):348-364(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK201802013&dbcode=CJFD&year=2018&dflag=pdfdown [45] Wykes, J.L., O'Neill, H.S.C., Mavrogenes, J.A., 2015.The Effect of FeO on the Sulfur Content at Sulfide Saturation (SCSS) and the Selenium Content at Selenide Saturation of Silicate Melts.Journal of Petrology, 56(7):1407-1424. https://doi.org/10.1093/petrology/egv041 [46] Xia, L.Q., Xu, X.Y., Xia, Z.C., et al., 2003.Carboniferous Post-Collisional Rift Volcanism of the Tianshan Mountains, Northwestern China.Acta Geologica Sinica, 77(3):338-360. https://doi.org/10.1111/j.1755-6724.2003.tb00751.x [47] Xia, Z.D., Jiang, C.Y., Ling, J.L., 2014.Petrogenesis of Early Permian Bijiashan Volcanic Rocks in Beishan Area, Xinjiang, NW China:Evidence from Petrology, Geochemistry and Isotopic Geochronology.Journal of Jilin University (Earth Science Edition), 44(3):817-834(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201403009.htm [48] Xie, W., Song, X.Y., Deng, Y.F., et al., 2012.Geochemistry and Petrogenetic Implications of a Late Devonian Mafic-Ultramafic Intrusion at the Southern Margin of the Central Asian Orogenic Belt.Lithos, 144-145:209-230. https://doi.org/10.1016/j.lithos.2012.03.010 [49] Xu, Y.G., Chung, S.L., Jahn, B.M., et al., 2001.Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China.Lithos, 58(3-4):145-168. https://doi.org/10.1016/s0024-4937(01)00055-x [50] Xue, S.C., Qin, K.Z., Li, C.S., et al., 2016a.Geochronological, Petrological, and Geochemical Constraints on Ni-Cu Sulfide Mineralization in the Poyi Ultramafic-Troctolitic Intrusion in the Northeast Rim of the Tarim Craton, Western China.Economic Geology, 111(6):1465-1484. https://doi.org/10.2113/econgeo.111.6.1465 [51] Xue, S.C., Li, C.S., Qin, K.Z., et al., 2016b.A Non-Plume Model for the Permian Protracted (266-286 Ma) Basaltic Magmatism in the Beishan-Tianshan Region, Xinjiang, Western China.Lithos, 256-257:243-249. https://doi.org/10.1016/j.lithos.2016.04.018 [52] Xue, S.C., Qin, K.Z., Li, C.S., et al., 2018a.Geochronological, Mineralogical and Geochemical Studies of Sulfide Mineralization in the Podong Mafic-Ultramafic Intrusion in Northern Xinjiang, Western China.Ore Geology Reviews, 101:688-699. https://doi.org/10.1016/j.oregeorev.2018.08.017 [53] Xue, S.C., Qin, K.Z., Li, C.S., et al., 2018b.Permian Bimodal Magmatism in the Southern Margin of the Central Asian Orogenic Belt, Beishan, Xinjiang, NW China:Petrogenesis and Implication for Post-Subduction Crustal Growth.Lithos, 314:617-629. https://doi.org/10.1016/j.lithos.2018.06.021 [54] Xue, S.C., Li, C.S., Wang, Q.F., et al., 2019.Geochronology, Petrology and Sr-Nd-Hf-S Isotope Geochemistry of the Newly-Discovered Qixin Magmatic Ni-Cu Sulfide Prospect, Southern Central Asian Orogenic Belt, NW China.Ore Geology Reviews, 111:103002. https://doi.org/10.1016/j.oregeorev.2019.103002 [55] Yang, S.H., Zhou, M.F., 2009.Geochemistry of the~430 Ma Jingbulake Mafic-Ultramafic Intrusion in Western Xinjiang, NW China:Implications for Subduction Related Magmatism in the South Tianshan Orogenic Belt.Lithos, 113(1-2):259-273. https://doi.org/10.1016/j.lithos.2009.07.005 [56] Yuan, C., Sun, M., Wilde, S., et al., 2010.Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan:Evolving Magmatism in Response to Extension and Slab Break-off.Lithos, 119(3-4):269-288. https://doi.org/10.1016/j.lithos.2010.07.004 [57] Zhang, Y.Y., Yuan, C., Sun, M., et al., 2015.Permian Doleritic Dikes in the Beishan Orogenic Belt, NW China:Asthenosphere-Lithosphere Interaction in Response to Slab Break-Off.Lithos, 233:174-192. https://doi.org/10.1016/j.lithos.2015.04.001 [58] Zheng, J.H., Mao, J.W., Chai, F.M., et al., 2016.Petrogenesis of Permian A-Type Granitoids in the Cihai Iron Ore District, Eastern Tianshan, NW China:Constraints on the Timing of Iron Mineralization and Implications for a Non-Plume Tectonic Setting.Lithos, 260:371-383. https://doi.org/10.1016/j.lithos.2016.05.012 [59] 柴凤梅, 夏芳, 陈斌, 等, 2013.新疆北山地区两个含铜镍镁铁-超镁铁质岩体铂族元素地球化学研究.地质学报, 87(4):474-485. doi: 10.3969/j.issn.0001-5717.2013.04.003 [60] 陈继平, 廖群安, 张雄华, 等, 2013.东天山地区黄山东与香山镁铁质-超镁铁质杂岩体对比.地球科学, 38(6):1183-1196. doi: 10.3799/dqkx.2013.117 [61] 邓兴梁, 舒良树, 朱文斌, 等, 2008.新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄.岩石学报, 24(12):2800-2808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812015.htm [62] 姜常义, 郭娜欣, 夏明哲, 等, 2012.塔里木板块东北部坡-镁铁质-超镁铁质层状侵入体岩石成因.岩石学报, 28(7):2209-2223. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207022.htm [63] 李敏, 任邦方, 滕学建, 等, 2018.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义.地球科学, 43(12):4586-4605. doi: 10.3799/dqkx.2017.598 [64] 林涛, 邓宇峰, 陈斌, 等, 2019.新疆西天山阿拉套山东部孔吾萨依A型花岗岩成岩年代、地球化学特征及成因.地质学报, 93(5):1020-1036. doi: 10.3969/j.issn.0001-5717.2019.05.003 [65] 刘霞, 苏本勋, 白洋, 等, 2018.蛇绿岩中铬铁岩母岩浆的富Ca特征:矿物包裹体证据.地球科学, 43(4):1038-1053. doi: 10.3799/dqkx.2018.707 [66] 刘月高, 吕新彪, 阮班晓, 等, 2019.新疆北山早二叠世岩浆型铜镍硫化物矿床综合信息勘查模式.矿床地质, 38(3):644-666. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201903013.htm [67] 苏本勋, 秦克章, 孙赫, 等, 2010.新疆北山地区旋窝岭镁铁-超镁铁岩体的年代学、岩石矿物学和地球化学研究.岩石学报, 26(11):3283-3294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011011.htm [68] 汤庆艳, 张铭杰, 李文渊, 等, 2015.新疆北山二叠纪大型镁铁-超镁铁质岩体的动力学背景及成矿潜力.中国地质, 42(3):468-481. doi: 10.3969/j.issn.1000-3657.2015.03.006 [69] 王国灿, 张孟, 冯家龙, 等, 2019.东天山新元古代-古生代大地构造格架与演化新认识.地质力学学报, 25(5):798-819. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905011.htm [70] 王国强, 李向民, 徐学义, 等, 2014.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义.岩石学报, 30(6):1685-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406011.htm [71] 王恒, 王鹏, 李建, 等, 2015.新疆若羌坡北地区镁铁-超镁铁质侵入岩含矿特征及找矿方法探讨.中国地质, 42(3):777-784. doi: 10.3969/j.issn.1000-3657.2015.03.027 [72] 吴建亮, 吕新彪, 冯金, 等, 2018.新疆北山坡一基性-超基性岩体铬铁矿矿物学特征及其指示意义.大地构造与成矿学, 42(2):348-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802013.htm [73] 夏昭德, 姜常义, 凌锦兰, 2014.新疆笔架山早二叠世火山岩带岩石成因:来自岩石学、地球化学及同位素年代学的制约.吉林大学学报(地球科学版), 44(3):817-834. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201403009.htm