(Garnet Bearing) Plagioclase Amphibolite P-T Evolution Path and Its Geological Implications in Rushan Region, Sulu Tectonic Complex: Constraints by Petrology, Mineral Chemistry and Phase Equilibria Modeling
-
摘要: 大量来自于华北陆块的高压变质岩被发现发育于苏鲁构造杂岩带中,给俯冲带上盘物质如何卷入陆-陆俯冲碰撞作用的研究带来新的契机.通过对乳山地区(含榴)斜长角闪岩进行岩石学、矿物化学及相平衡模拟的研究,发现其保留有3个不同变质演化阶段的矿物组合,峰前矿物组合为粗粒石榴子石+斜长石+角闪石+石英+钛铁矿;峰期矿物组合由石榴子石+单斜辉石+斜长石+角闪石+石英+钛铁矿组成,为典型高角闪岩相矿物组合;峰后退变质阶段矿物组合为角闪石+斜长石+石英+石榴子石+钛铁矿,发育有典型的“白眼圈”结构.相平衡模拟与温压计算表明,乳山午极石榴斜长角闪岩峰前变质阶段的P-T条件分别为P=6.4~7.0 kbar、T=610~640℃,表明其俯冲至30 km左右的地壳深度;峰期变质阶段P-T条件分别为P=9.3~10.0 kbar、T=700~730℃,表明其已俯冲至36~40 km的地壳深度,峰后退变质阶段P-T条件分别为P=5.2~5.8 kbar、T=680~710℃.锆石U-Pb定年结果表明乳山午极石榴斜长角闪岩原岩时代为1 734±24 Ma,龙角山水库斜长角闪岩变质时代为1 849±28 Ma,研究表明二者均来源于华北构造岩片.结合前人研究资料,推测乳山地区石榴斜长角闪岩原岩可能经历三叠纪俯冲作用并发生变质;其与杂岩带中来自华南的构造岩片发生混杂,共同构成华北-华南板块间宽约80~100 km的构造杂岩带.Abstract: Many high-pressure metamorphic rocks or blocks from the North China Craton were recognized in the Sulu tectonic complex belt, providing many opportunities to investigate the mechanism of the involvement and exhumation of the materials from the upper subduction zone. In this paper, we present a study of petrology, mineral chemistry and phase equilibria modeling on the (garnet) plagioclase amphibolites in the Rushan area, and three metamorphic stages have been found in the rock: (1) The pre-peak stage with the mineral assemblage of garnet+quartz+plagioclase+amphibole+ilmenite; (2) the peak high-pressure stage with the diagnostic amphibolite-facies assemblage of garnet+clinopyroxene+plagioclase+amphibole+quartz+ilmenite; (3) the post-peak decompression stage represented by amphibole+plagioclase+garnet+ilmenite, and typical "white eye" textures can be observed. Phase equilibria modeling constrained the P-T conditions of the pre-peak, peak, and post-peak of 6.4-7.0 kbar/610-640 ℃, 9.3-10.0 kbar/700-730 ℃, 5.2-5.8 kbar/680-710 ℃, respectively. These P-T conditions indicate that the materials from the upper subduction zone have already subducted to ~30 km and 36-40 km, respectively. U-Pb dating of zircons show that the protolith age of the garnet plagioclase amphibolite is 1 734±24 Ma, and the metamorphic age of plagioclase amphibolite is 1 849±28 Ma (from Longjiaoshan reservoir), which all indicates a North China Plate origin. Our data, combined with those of previous studies, indicate that the Wuji garnet plagioclase amphibolites might have been involved in the subduction in Triassic and experienced metamorphism. Together with the "tectonic rock slices" from South China Block, a 80-100 km wide tectonic mélange zone is suggested between the North China Plate and the South China Block.
-
图 1 华北克拉通东部陆块地质简图(据Liu et al., 2017修改)
Fig. 1. Simplified geological map of eastern block in North China Craton (modified after Liu et al., 2017)
图 4 午极(石榴)斜长角闪岩及其花岗质围岩典型地质产状野外照片(a~d),以及龙角山水库地区岩石野外特征(e、f)
a.午极石榴斜长角闪岩远照;b.部分石榴斜长角闪岩含细小脉体;c.石榴斜长角闪岩;d.石榴斜长角闪岩的围岩为含榴花岗岩;e.库斜长角闪岩;f.斜长角闪岩的围岩为含榴花岗岩
Fig. 4. Field pictures show typical geological feature of garnet plagioclase amphibolites and country-rock of the garnet-bearing granite in Wuji (a-d) and Longjiaoshan area (e, f)
图 5 (a) 石榴斜长角闪岩中峰期高角闪岩相变质作用中保留的矿物组合:石榴子石+斜长石+单斜辉石+角闪石+石英+钛铁矿; (b)“白眼圈”结构及后成合晶矿物组合:角闪石+斜长石+石英; (c)“红眼圈”结构; (d)石榴斜长角闪岩围岩含榴花岗岩中的显微结构; (e)斜长角闪岩的显微结构; (f)斜长角闪岩围岩含榴花岗岩中显微结构
Fig. 5. Under the microscope showing: (a) peak high-pressure amphibolite-facies minerals assemblage: garnet+plagioclase+clinopyroxene+amphibole+quartz+ilmenite; (b)"white eye" texture and symplectites of amphibole+plagioclase+quartz; (c)"red eye" texture; (d) microtexture of the garnet-bearing granite (country-rock of the amphibolite); (e) amphibolites at the Longjiaoshan area; (f) microstructure in garnet granite, country-rock of the amphibolite
图 8 念头村石榴斜长角闪岩样品19LR39⁃1锆石U⁃Pb年龄谐和图(a)及加权年龄平均图(b);石榴斜长角闪岩围岩中含榴花岗岩19LR39⁃2锆石U⁃Pb年龄谐和图(c)及19LR39⁃2加权年龄平均图(d)
Fig. 8. Zircon U⁃Pb age concordia diagram (a) and weighted average age diagram (b) of Wuji garnet plagioclase amphibolite sample 19LR39⁃1; concordia diagram (c) and weighted average age diagram (d) for its country-rocks garnet-bearing granite sample 19LR39⁃2
图 9 龙角山水库斜长角闪岩样品19LR46⁃1锆石U⁃Pb年龄谐和图(a)及加权年龄平均图(b);斜长角闪岩围岩中含榴花岗岩19LR46⁃2锆石U⁃Pb年龄谐和图(c)及加权年龄平均图(d)
Fig. 9. Zircon U⁃Pb age concordia diagram (a) and weighted average age diagram (b) of the Longjiaoshan amphibolite sample 19LR46⁃1; concordia diagram (c) and weighted average age diagram (d) for its country-rocks garnet-bearing granite sample 19LR46⁃2
-
[1] Cao, G. Q., 1990. Preliminary Discussion on "Jiaonan Terrane". Geology of Shandong, 6(2):1-10 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI199002000.htm [2] Faure, M., Lin, W., le Breton, N., 2001. Where is the North China-South China Block Boundary in Eastern China?. Geology, 29(2):119-122. https://doi.org/10.1130/0091-7613(2001)0290119:witncs>2.0.co; 2 doi: 10.1130/0091-7613(2001)0290119:witncs>2.0.co;2 [3] Feng, P., Wang, L., Brown, M., et al., 2020. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust:an Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China. GSA Bulletin, 132(5-6):1235-1256. https://doi.org/10.1130/b35210.1 [4] Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9):845-869. https://doi.org/10.1111/jmg.12211 [5] Guo, J. H., Zhai, M. G., Ye, K., 2002.Petrochemistry and Geochemistry of HP Metabasites from Haiyangsuo in Sulu UHP Belt of Eastern China. Science in China (Series D), 32(5):394-404 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed200201003 [6] Hirajima, T., Ishiwatari, A., Gong, B., et al., 1990. Coesite from Mengzhong Eclogite at Dhonghai County, Northeastern Jiangsu Province, China. Mineralogical Magazine, 54(377):579-583. https://doi.org/10.1180/minmag.1990.054.377.07 [7] Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x [8] Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4):492-501. https://doi.org/10.1007/s00410-003-0464-z [9] Ishizaka, K., Hirajma, T., Zheng, X.S., 1994. Rb-Sr Dating for the Jiaodong Gneiss of the Su-Lu Ultra-High Pressure Province, Eastern China. The Island Arc, 3(3):232-241. https://doi.org/10.1111/j.1440-1738.1994.tb00109.x [10] Liou, J. G., Tsujimori, T., Chu, W., et al., 2006. Protolith and Metamorphic Ages of the Haiyangsuo Complex, Eastern China:A Non-UHP Exotic Tectonic Slab in the Sulu Ultrahigh-Pressure Terrane. Mineralogy and Petrology, 88(1-2):207-226. https://doi.org/10.1007/s00710-006-0156-2 [11] Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007 [12] Liu, F. L., Liu, L. S., Liu, P. H., et al., 2017. A Relic Slice of Archean-Early Paleoproterozoic Basement of Jiaobei Terrane Identified within the Sulu UHP Belt:Evidence from Protolith and Metamorphic Ages from Meta-Mafic Rocks, TTG-Granitic Gneisses, and Metasedimentary Rocks in the Haiyangsuo Region. Precambrian Research, 303:117-152. https://doi.org/10.1016/j.precamres.2017.03.014 [13] Liu, F. L., Xue, H. M., Liu, P. H., 2009.Genetic Mechanism of Garnet-Bearing Amphibolite in the North Sulu Ultrahigh-Pressure (UHP) Metamorphic Belt. Acta Petrologica Sinica, 25(7):1575-1586 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907003 [14] Liu, L. S., Liu, F. L., Liu, P. H., et al., 2015.Geochemical Characteristics and Metamorphic Evolution of Metamafic Rocks from Haiyangsuo Area, Sulu Ultrahigh-Pressure Metamorphic Belt. Acta Petrologica Sinica, 31(10):2863-2888 (in Chinese with English abstract). http://www.researchgate.net/publication/285457828_Geochemical_characteristics_and_metamorphic_evolution_of_metamafic_rocks_from_Haiyangsuo_area_Sulu_ultrahigh-pressure_metamorphic_belt [15] Liu, L.S., Liu, F.L., Wang, W., 2017.The Polygenetic Meta-Mafic Rocks from the Northeast of Sulu Ultrahigh-Pressure Metamorphic Belt:Insight from Petrology, Isotope Geochronology and Geochemistry. Acta Petrologica Sinica, 33(9):2899-2924 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201709016.htm [16] Okay, A. I., Xu, S. T., Sengör, A. M. C., 1989. Coesite from the Dabie Shan Eclogites, Central China. European Journal of Mineralogy, 1(4):595-598. https://doi.org/10.1127/ejm/1/4/0595 [17] Peng, P., 2016.1:2500 000 Map of Precambrian Dyke Swarms and Related Units in North China. Acta Geologica Sinica (English Edition), 90(S1):16. https://doi.org/10.1111/1755-6724.12856 [18] Song, M. C., Wang, L. M., 2000.The Latest Understandings of Fundamental Geology of Jiaonan Orogenic Belt. Regional Geology of China, 19(1):1-6 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200001001 [19] Wallis, S., Enami, M., Banno, S., 1999. The Sulu UHP Terrane:A Review of the Petrology and Structural Geology. International Geology Review, 41(10):906-920. https://doi.org/10.1080/00206819909465178 [20] Wang, L. M., Wang, S. J., Zhang, F.Z., et al., 2003. Development and Major Achievements of Geological Survey Work in 2002. Geology of Shandong, (1):28-31 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_shandong-land-resources_thesis/0201252165229.html [21] Wang, Q. C., Cong, B. L., 1996. The Geodynamic Significance of UHP Metamorphic Rocks in Dabie. Science in China (Series D), 26(3):271-276 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201701013 [22] Wang, Q. C., Ishiwatari, A., Zhao, Z.Y., et al., 1993. Coesite-Bearing Granulite Retrograded from Eclogite in Weihai, Eastern China. European Journal of Mineralogy, 5(1):141-152. https://doi.org/10.1127/ejm/5/1/0141 [23] Wang, R. M., An, J. T., Lai, X. Y., 1995. The Discovery of an Ophiolite Suite in Eastern Part of Shangdong Peninsula and Its Significance.Acta Petrologica Sinica, 11(S1):221-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB5S1.017.htm [24] Wang, X. M., Liou, J. G., Mao, H. K., 1989. Coesite-Bearing Eclogite from the Dabie Mountains in Central China. Geology, 17(12):1085-1088. https://doi.org/10.1130/0091-7613(1989)0171085:cbeftd>2.3.co; 2 doi: 10.1130/0091-7613(1989)0171085:cbeftd>2.3.co;2 [25] Wei, C. J., Duan, Z. Z., 2019. Phase Relations in Metabasic Rocks:Constraints from the Results of Experiments, Phase Modelling and ACF Analysis. Geological Society, London, Special Publications, 474(1):25-45. https://doi.org/10.1144/sp474.10 [26] White, R. W., Powell, R., Holland, T. J. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions:Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5):497-511. https://doi.org/10.1046/j.1525-1314.2000.00269.x [27] White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3):261-286. https://doi.org/10.1111/jmg.12071 [28] Xiang, H., Zhang, Z. M., Lei, H. C., et al., 2014. Paleoproterozoic Ultrahigh-Temperature Pelitic Granulites in the Northern Sulu Orogen:Constraints from Petrology and Geochronology. Precambrian Research, 254:273-289. https://doi.org/10.1016/j.precamres.2014.09.004 [29] Xiong, Z. W., Xu, H. J., Wang, P., et al., 2020. Zircon U-Pb Ages and Hf Isotopes of the Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity. Earth Science, Online (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.036 [30] Xu, H. J., Lei, H. C., Xiong, Z. W., et al., 2019. Paleoproterozoic Ultrahigh-Temperature Granulite-Facies Metamorphism in the Sulu Orogen, Eastern China:Evidence from Zircon and Monazite in the Pelitic Granulite. Precambrian Research, 333:105430. https://doi.org/10.1016/j.precamres.2019.105430 [31] Xu, Y., Li, R. H., Wen, Z. H., et al., 2015.Comparison of Precambrian Basements between the Jiaobei Terrane and the North Sulu UHP Metamorphic Belt, Jiaodong Area in East China. Marine Geology & Quaternary Geology, 35(1):99-110 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201501011 [32] Xu, Z. Q., Zeng, L. S., Liang, F. H., et al., 2005. A Dynamic Model for Sequential Subduction and Exhumation of a Continental Slab:Age Constraints on the Timing of Exhumation of the Sulu HP-UHP Metamorphic Terrane. Acta Petrologica et Mineralogica, 24(5):357-368 (in Chinese with English abstract). http://www.researchgate.net/publication/292098632_A_dynamic_model_for_sequential_subduction_and_exhumation_of_a_continental_slab_age_constraints_on_the_timing_of_exhumation_of_the_Sulu_HP-UHP_metamorphic_terrane [33] Xu, Z. Q., Zhang, Z. M. Liu, F. L., et al., 2003.Exhumation Structure and Mechanism of the Sulu Ultrahigh-Pressure Metamorphic Belt, Central China. Acta Geologica Sinica, 77(4):433-450 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200304001 [34] Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Paleozoic Ultrahigh Pressure (UHP) Metamorphic Belt, New China. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(11):719-724. https://doi.org/10.1016/S1251-8050(01)01718-9 [35] Yao, Y. P., Ye, K., Liu, J. B., et al., 2000. A Transitional Eclogite-to High Pressure Granulite-Facies Overprint on Coesite-Eclogite at Taohang in the Sulu Ultrahigh-Pressure Terrane, Eastern China. Lithos, 52(1-4):109-120. https://doi.org/10.1016/s0024-4937(99)00087-0 [36] Zhang, R. Y., Liou, J. G., Tsujimori, T., et al., 2006. Non-Ultrahigh-Pressure Unit Bordering the Sulu Ultrahigh-Pressure Terrane, Eastern China:Transformation of Proterozoic Granulite and Gabbro to Garnet Amphibolite. Geological Society of America Special Papers, 403:169-206. https://doi.org/10.1130/2006.2403(10) [37] Zhang, S. B., Tang, J., Zheng, Y. F., 2014. Contrasting Lu-Hf Isotopes in Zircon from Precambrian Metamorphic Rocks in the Jiaodong Peninsula:Constraints on the Tectonic Suture between North China and South China. Precambrian Research, 245:29-50. https://doi.org/10.1016/j.precamres.2014.01.006 [38] Zhang, X. D., Wang, L. M., 1996. The Discovery and Preliminary Study of Granulite Facies Rocks in the Weihai-Rushan Region, Eastern Shandong. Regional Geology of China, 15(3):213-221 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD603.002.htm [39] Zhang, Z. M., Xiao, Y. L., Liu, F. L., et al., 2005. Petrogenesis of UHP Metamorphic Rocks from Qinglongshan, Southern Sulu, East-Central China. Lithos, 81(1-4):189-207. https://doi.org/10.1016/j.lithos.2004.10.002 [40] 曹国权, 1990.试论"胶南地体".山东地质, 6(2):1-10. http://www.cnki.com.cn/Article/CJFD1990-SDDI199002000.htm [41] 郭敬辉, 翟明国, 叶凯, 等, 2002.胶东海阳所高压变质基性岩的岩石化学和地球化学.中国科学(D辑), 32(5):394-404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200205006 [42] 刘福来, 薛怀民, 刘平华, 2009.北苏鲁超高压变质带中斜长角闪岩的成因.岩石学报, 25(7):1575-1586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907003 [43] 刘利双, 刘福来, 刘平华, 等, 2015.苏鲁超高压变质带中海阳所地区变基性岩的地球化学性质及变质演化特征.岩石学报, 31(10):2863-2888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510004 [44] 刘利双, 刘福来, 王伟, 2017.苏鲁超高压变质带东北端多种成因类型变基性岩:来自岩石学、同位素年代学及地球化学属性的制约.岩石学报, 33(9):2899-2924. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709016.htm [45] 宋明春, 王来明, 2000.对胶南造山带基础地质问题的新认识.中国区域地质, 19(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200001001 [46] 王来明, 王世进, 张富中, 等, 2003.2002年山东省地质调查工作进展和主要成果.山东地质, (1):28-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sddz200301008 [47] 王清晨, 从柏林, 1996.大别山超高压变质岩的地球动力学意义.中国科学(D辑), 26(3):271-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600918627 [48] 王仁民, 安家桐, 赖兴运, 1995.胶东蛇绿岩套的发现及其地质意义.岩石学报, 11(S1):221-227. http://www.cnki.com.cn/Article/CJFDTotal-YSXB5S1.017.htm [49] 熊志武, 续海金, 王攀, 等, 2020.苏鲁造山带威海古元古代泥质麻粒岩锆石U-Pb年龄和Hf同位素特征及其构造属性.地球科学, 在线出版. https://doi.org/10.3799/dqkx.2020.036 [50] 徐扬, 李日辉, 温珍河, 等, 2015.胶北地块和北苏鲁超高压变质带前寒武纪基底对比研究.海洋地质与第四纪地质, 35(1):99-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201501011 [51] 许志琴, 曾令森, 梁凤华, 等, 2005.大陆板片多重性俯冲与折返的动力学模式:苏鲁高压-超高压变质地体的折返年龄限定.岩石矿物学杂志, 24(5):357-368. http://www.cqvip.com/QK/94932X/200505/20196877.html [52] 许志琴, 张泽明, 刘福来, 等, 2003.苏鲁高压-超高压变质带的折返构造及折返机制.地质学报, 77(4):433-450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200304001 [53] 张希道, 王来明, 1996.胶东威海-乳山麻粒岩相岩石的发现及初步研究.中国区域地质, 15(3):213-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600705062 -
dqkxzx-45-9-3420-附表.doc