Characteristic of Tectonic Stress Field in Source Region of 2018 MW7.6 Palu Earthquake and Sulawesi Area
-
摘要: 为分析帕卢地震的发震构造及构造应力场特征,基于1976年1月至2018年4月全球CMT目录的震源机制解,反演了2018年9月28日印度尼西亚帕卢地震震源区及苏拉威西地区构造应力场,得到以下初步认识:赤道0°两侧南、北区域的应力场呈现出整体的一致性和局部的不均匀性,北部是以向北倾伏的低倾伏角挤压和向南倾伏的高倾伏角拉张作用为主;南部是近水平的NNW-EW向挤压及低倾伏角的近N-S向拉张的应力状态.摆堆易逆冲推挤及西里伯斯海阻挡导致北部地区的应力场显示俯冲带的特征,也导致北苏拉和马纳都块体的应力场出现差异性.在班达海自东向西的挤压及西部马卡萨盆地的阻挡作用下,南部地区呈现出近E-W向的挤压状态,并沿着NNE-SSW向呈现出地壳物质的构造逃逸现象.深部地幔物质上涌致使苏拉威西中部的R值偏小,形成活火山.受到桑吉双俯冲带和麦纳哈撒海沟的推挤及火山喷发作用,东部交汇区的应力场呈较大倾伏角的拉张为主及R值复杂突变.西部交汇地区的应力场是走滑为主兼有正断应力机制,该应力场有益于此次地震的触发及超剪切波破裂现象的出现.Abstract: In order to analyse the characteristic of seismogenic structure and tectonic stress field about Palu earthquake. Based on the focal mechanism solution from Global CMT catalog between January 1976 and April 2018, the tectonic stress field is inverted about Palu Indonesia earthquake on September 28th, 2018 and Sulawesi area. The conclusions are obtained as follows: Tectonic stress field are consistency and inhomogeneity in both sides of the boundary 0°. The compressive axis is plunging to north with lower plunge and extensional axis is plunging to south with larger plunge in North area. And South area is compressed in the direction of NNW-EW and extended in the direction of N-S with lower plunge. The tectonic stress field in northern area is a subduction zone, and the stress regime is difference in North Sula Block and Manado Block, because of pushing from Batui Thrust and blocking from Celebes Sea. In the south area, the crustal material is escaped in the direction of NNE-SSW, under compression in the direction of E-W, from Banda Sea and Makasa Basin. Lower R value in central Sulawesi is probably caused by mantle flow upwelling from upper mantle. The tectonic stress field and R value are complicated and heterogeneous in eastern area, which is effected by Sanghie double subduction, Minahassa Trench and active volcano. The tectonic stress field is strike slip regime with a little part of normal in western area, which is beneficial to trigger this earthquake and supershear.
-
Key words:
- Palu earthquake /
- Sulawesi area /
- focal mechanism solution /
- tectonic stress field /
- R value /
- earthquake
-
图 1 帕卢地震震源区构造
图中断裂带和海沟数据来源于Socquet et al.(2006);火山数据来源于Advokaat et al.(2017)
Fig. 1. Tectonic in Palu and its adjacent area
图 6 帕卢地震震源区应力场的沙滩球示意图
根据Zoback(1992)划分标准绘制红色、黑色、蓝色及绿色应力机制沙滩球
Fig. 6. Distribution of beach-ball map about stress field in source region of the Palu earthquake
图 7 苏拉威西地区地球动力学示意图
本示意图修改自Walpersdorf et al.(1998a)和Hall and Spakman(2015);图中的应力辐射花样红色部分表示压应力轴,蓝色代表张应力轴
Fig. 7. Sketch map of geodynamic model in Sulawei
表 1 应力场参数
Table 1. Parameters of stress field
经度E(°) 纬度N(°) 压应力轴 中间轴 张应力轴 R值 应力机制类型 方位角(°) 倾伏角(°) 方位角(°) 倾伏角(°) 方位角(°) 倾伏角(°) 118.25 -3.25 -69.19 12.08 34.45 47.78 -169.42 39.68 0.64 走滑型 118.25 2.75 38.77 28.49 -54.39 5.80 -154.87 60.82 0.32 逆冲型 118.75 -2.75 -80.26 17.06 46.73 62.98 -176.77 20.30 0.78 走滑型 118.75 1.25 -7.27 37.93 83.71 1.25 175.31 52.04 0.38 过渡型 119.25 -3.75 -85.39 9.14 94.29 80.86 -175.39 0.05 0.94 走滑型 119.25 -2.25 -84.45 19.08 92.23 70.89 -174.80 1.03 0.58 走滑型 119.25 -1.25 -77.97 23.40 70.84 63.16 -173.43 12.39 0.61 走滑型 119.25 1.75 9.25 37.10 -89.27 11.09 166.87 50.72 0.50 过渡型 119.75 -3.75 -88.93 8.72 102.86 81.10 1.34 1.79 0.81 走滑型 119.75 -2.75 -97.33 23.60 80.50 66.39 172.33 0.80 0.47 走滑型 119.75 -2.25 -86.82 21.68 89.79 68.28 -177.28 1.17 0.49 走滑型 119.75 -1.25 -70.31 20.93 101.23 68.85 -161.40 2.84 0.56 走滑型 119.75 -0.75 -66.55 26.47 103.13 63.16 -158.62 4.15 0.52 走滑型 119.75 -0.25 -63.07 19.41 75.90 64.96 -158.56 15.20 0.71 走滑型 119.75 0.25 -51.13 30.24 43.91 8.57 148.05 58.32 0.60 逆冲型 119.75 0.75 -23.76 41.24 70.22 4.53 165.35 48.40 0.64 过渡型 119.75 1.25 -14.38 35.27 -108.86 6.30 152.40 54.00 0.50 过渡型 120.25 -2.25 -86.36 17.25 93.63 72.75 -176.36 0.01 0.44 走滑型 120.25 -1.75 -80.23 17.44 110.94 72.25 10.79 3.23 0.42 走滑型 120.25 -1.25 -73.06 6.02 138.71 82.93 17.33 3.69 0.23 走滑型 120.25 -0.75 -67.89 21.95 119.95 67.86 23.22 2.73 0.32 走滑型 120.25 -0.25 -68.62 12.44 48.49 64.16 -163.80 22.26 0.72 走滑型 120.25 0.25 -51.69 38.06 53.09 18.05 163.08 46.38 0.44 过渡型 120.25 0.75 -23.91 47.29 72.98 6.32 168.70 42.01 0.55 过渡型 120.25 1.25 -6.47 39.87 -101.02 5.42 162.57 49.61 0.46 过渡型 120.25 1.75 -2.58 33.30 -96.36 5.73 165.05 56.08 0.46 逆冲型 120.75 -2.25 -87.33 6.43 112.14 83.18 2.92 2.26 0.41 走滑型 120.75 -1.75 -83.72 5.82 143.58 81.45 6.92 6.24 0.38 走滑型 120.75 -1.25 102.33 2.99 -150.03 80.23 11.84 9.30 0.28 走滑型 120.75 -0.75 112.04 14.79 -91.78 73.90 20.39 6.22 0.04 走滑型 120.75 0.25 -55.21 37.28 64.07 32.72 -178.41 35.73 0.42 过渡型 120.75 0.75 -4.09 58.66 -98.87 2.91 169.37 31.18 0.60 正断型 120.75 1.25 -2.10 44.50 -100.34 8.29 161.48 44.31 0.54 过渡型 120.75 1.75 4.52 31.24 -90.50 8.20 166.45 57.46 0.53 逆冲型 120.75 2.25 4.36 28.51 -86.49 1.56 -179.35 61.44 0.60 逆冲型 121.25 -2.75 88.08 8.39 -78.76 81.39 178.37 1.93 0.34 走滑型 121.25 -2.25 -89.24 2.77 66.12 86.96 -179.30 1.27 0.35 走滑型 121.25 -1.25 100.98 4.29 -132.88 82.74 10.54 5.84 0.55 走滑型 121.25 -0.75 105.30 14.05 -72.77 75.94 -164.59 0.46 0.15 走滑型 121.25 -0.25 105.49 2.01 -27.10 87.04 -164.43 2.18 0.26 走滑型 121.25 1.25 7.82 50.65 -109.24 20.45 147.31 31.94 0.74 过渡型 121.25 1.75 9.85 32.99 -87.43 11.05 166.54 54.74 0.67 逆冲型 121.75 -3.75 86.23 20.70 -120.32 67.10 -7.34 9.36 0.48 走滑型 121.75 -2.75 85.04 13.16 -134.13 73.22 -7.38 10.23 0.57 走滑型 121.75 -2.25 87.51 12.26 -131.16 74.45 -4.56 9.42 0.46 走滑型 121.75 -1.75 92.77 8.27 -129.71 78.86 1.69 7.42 0.39 走滑型 121.75 -1.25 102.69 16.69 -107.64 70.84 9.93 9.13 0.32 走滑型 121.75 -0.75 106.85 38.59 -71.44 51.40 -162.48 0.83 0.10 走滑型 121.75 -0.25 105.67 45.52 -68.59 44.34 -161.40 2.87 0.42 过渡型 121.75 1.25 2.91 51.47 -143.48 33.55 115.05 16.70 0.72 过渡型 121.75 1.75 8.24 29.29 -89.40 13.33 158.97 57.26 0.72 逆冲型 121.75 2.25 11.35 20.87 -81.75 8.06 168.26 67.48 0.67 逆冲型 122.25 -2.75 83.80 17.00 -141.26 66.59 -11.10 15.60 0.66 走滑型 122.25 -1.75 95.30 15.90 -113.29 72.03 2.95 8.16 0.52 走滑型 122.25 -0.75 110.71 30.08 -65.26 59.86 -158.27 1.75 0.38 走滑型 122.25 0.75 -13.48 35.56 93.81 22.57 -150.87 45.83 0.35 过渡型 122.25 1.25 1.82 31.20 94.25 4.01 -169.17 58.48 0.60 逆冲型 122.25 1.75 4.41 23.99 -86.47 1.98 179.09 65.92 0.60 逆冲型 122.25 2.25 5.67 16.22 -88.05 12.56 145.90 69.27 0.56 逆冲型 122.75 -2.75 84.26 18.23 -138.62 65.80 -10.93 15.36 0.59 走滑型 122.75 -1.75 94.76 17.51 -104.88 71.48 2.91 5.84 0.62 走滑型 122.75 -0.75 111.66 23.74 -46.65 64.68 -154.66 8.32 0.56 走滑型 122.75 -0.25 113.43 14.85 -26.38 70.87 -153.39 11.80 0.61 走滑型 122.75 0.75 12.80 31.06 103.37 0.95 -165.04 58.92 0.37 逆冲型 122.75 1.25 -9.80 27.70 84.16 7.50 -172.04 61.13 0.49 逆冲型 122.75 1.75 -0.08 22.12 94.34 10.73 -151.50 65.16 0.59 逆冲型 123.25 -3.75 84.84 37.87 -105.45 51.68 -9.07 5.02 0.45 走滑型 123.25 -3.25 85.26 43.55 -103.27 46.13 -8.81 4.27 0.44 过渡型 123.25 -1.25 99.13 14.96 -23.54 63.67 -164.94 21.14 0.72 走滑型 123.25 -0.75 109.25 17.18 3.27 41.69 -143.81 43.31 0.59 逆冲型 123.25 -0.25 114.20 7.81 -153.80 14.27 -3.69 73.65 0.88 逆冲型 123.25 1.25 -4.45 17.38 86.30 2.39 -176.11 72.45 0.35 逆冲型 123.25 1.75 -6.63 19.77 88.56 14.13 -148.18 65.35 0.43 逆冲型 123.75 -3.75 84.25 32.52 -119.61 55.12 -13.03 11.25 0.66 走滑型 123.75 -3.25 83.72 36.52 -110.80 52.58 -11.52 7.03 0.56 走滑型 123.75 -1.25 98.53 14.17 -11.81 54.00 -162.28 32.30 0.83 走滑型 123.75 -0.75 108.37 15.95 8.62 30.65 -137.91 54.62 0.86 逆冲型 123.75 -0.25 113.75 19.65 22.96 2.22 -73.23 70.22 0.77 逆冲型 123.75 0.25 100.64 25.43 10.60 0.09 -79.60 64.57 0.57 逆冲型 123.75 1.25 21.31 9.73 -68.93 1.39 -166.96 80.17 0.23 逆冲型 123.75 1.75 6.83 18.09 99.04 6.72 -151.38 70.62 0.37 逆冲型 123.75 2.25 1.75 19.05 94.17 6.98 -156.58 69.62 0.41 逆冲型 124.25 -3.75 81.48 25.53 -147.56 53.92 -20.60 23.66 0.79 过渡型 124.25 -1.75 91.37 12.81 -62.38 75.77 -177.24 6.09 0.73 走滑型 124.25 -1.25 94.76 12.95 -9.33 46.63 -163.93 40.48 0.98 逆冲型 124.25 -0.75 105.57 19.56 -158.98 14.95 -34.04 65.00 0.72 逆冲型 124.25 -0.25 128.09 31.83 -137.73 6.70 -37.19 57.31 0.65 逆冲型 124.25 0.25 119.13 28.45 -148.44 4.47 -50.28 61.14 0.17 逆冲型 124.25 0.75 165.73 14.20 73.71 7.92 -44.60 73.66 0.26 逆冲型 124.25 1.25 25.33 1.38 115.36 1.24 -112.59 88.15 0.14 逆冲型 124.75 -1.75 92.35 8.64 -41.65 77.67 -176.32 8.74 0.76 走滑型 124.75 -1.25 90.53 9.88 -176.11 18.62 -26.06 68.74 0.90 逆冲型 124.75 -0.75 98.16 15.12 -166.14 20.20 -26.09 64.36 0.52 逆冲型 124.75 -0.25 119.63 24.00 -147.47 6.48 -43.35 65.03 0.39 逆冲型 124.75 0.25 46.00 7.26 140.21 29.95 -56.25 59.00 0.12 逆冲型 124.75 0.75 -159.10 0.02 110.89 14.94 -69.01 75.06 0.20 逆冲型 -
[1] Advokaat, E. L., Hall, R., White, L. T., et al., 2017. Miocene to Recent Extension in NW Sulawesi, Indonesia. Journal of Asian Earth Sciences, 147(2): 378-401. DOI: 10.1016/j.jseaes.2017.07.023 [2] Andrews, D. J., 1976. Rupture Velocity of Plane Strain Shear Cracks. Journal of Geophysical Research, 81(32): 5679-5687. DOI: 10.1029/jb081i032p05679 [3] Bao, H., Ampuero, J. P., Meng, L. S., et al., 2019. Early and Persistent Supershear Rupture of the 2018 Magnitude 7.5 Palu Earthquake. Nature Geoscience, 12(3): 200-205. DOI: 10.1038/s41561-018-0297-z [4] Beaudouin, T., 1998. Tectonique Active et Sismotectonique du Systeme de Failles Decrochantes de Sulawesi Central (Indonesie) (Dissertation). University Paris-Sud, Paris, 343. [5] Beaudouin, T., Bellier, O., Sebrier, M., 2003. Present-Day Stress and Deformation Field within the Sulawesi Island Area (Indonesia) : Geodynamic Implications. Bulletin de la Société Géologique de France, 174(3): 305-317. DOI: 10.2113/174.3.305 [6] Bellier, O., Sebrier, M., Beaudouin, T., et al., 2001. High Slip Rate for a Low Seismicity along the Palu-Koro Active Fault in Central Sulawesi (Indonesia). Terra Nova, 13(6): 463-470. DOI: 10.1046/j.1365-3121.2001.00382.x [7] Bellier, O., Sébrier, M., Seward, D., et al., 2006. Fission Track and Fault Kinematics Analyses for New Insight into the Late Cenozoic Tectonic Regime Changes in West-Central Sulawesi (Indonesia). Tectonophysics, 413(3/4): 201-220. DOI: 10.1016/j.tecto.2005.10.036 [8] Bergman, S. C., Coffield, D. Q., Talbot, J. P., et al., 1996. Tertiary Tectonic and Magmatic Evolution of Western Sulawesi and the Makassar Strait, Indonesia: Evidence for a Miocene Continent-Continent Collision. Geological Society, London, Special Publications, 106(1): 391-429. DOI: 10.1144/gsl.sp.1996.106.01.25 [9] Bird, P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1-52. DOI: 10.1029/2001gc000252 [10] Burridge, R., 1973. Admissible Speeds for Plane-Strain Self-Similar Shear Cracks with Friction but Lacking Cohesion. Geophysical Journal International, 35(4): 439-455. DOI: 10.1111/j.1365-246x.1973.tb00608.x [11] Burke, K., Sengör, C., 1986. Tectonic Escape in the Evolution of the Continental Crust. Reflection Seismology: The Continental Crust, 14: 41-53. http://adsabs.harvard.edu/abs/1986GMS....14...41B [12] Cui, H. W., Wan, Y. G., Huang, J. C., et al., 2017. The Tectonic Stress Field in the Source of the New Britain Ms 7.4 Earthquake of March 2015 and Adjacent Areas. Chinese Journal of Geophysics, 60(3): 985-998(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201703014.htm [13] Cui, H. W., Wan, Y. G., Huang, J. C., et al., 2019. Inversion for the Tectonic Stress Field and the Characteristic of the Stress Shape Factor of the Detachment Slab in the Pamir-Hindu Kush Area. Chinese Journal of Geophysics, 62(5): 1633-1649(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201905006.htm [14] Daly, M. C., Cooper, M. A., Wilson, I., et al., 1991. Cenozoic Plate Tectonics and Basin Evolution in Indonesia. Marine and Petroleum Geology, 8(1): 2-21. DOI: 10.1016/0264-8172(91)90041-x [15] DeMets, C., Gordon, R. G., Argus, D. F., et al., 1990. Current Plate Motions. Geophysical Journal International, 101(2): 425-478. DOI: 10.1111/j.1365-246x.1990.tb06579.x [16] DeMets, C., Gordon, R. G., Argus, D. F., et al., 1994. Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters, 21(20): 2191-2194. DOI: 10.1029/94gl02118 [17] Dziewonski, A. M., Chou, T. A., Woodhouse, J. H., 1981. Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity. Journal of Geophysical Research: Solid Earth, 86(B4): 2825-2852. DOI: 10.1029/jb086ib04p02825 [18] Ekström, G., Nettles, M., Dziewoński, A. M., 2012. The Global CMT Project 2004-2010: Centroid-Moment Tensors for 13, 017 Earthquakes. Physics of the Earth and Planetary Interiors, 200-201: 1-9. DOI: 10.1016/j.pepi.2012.04.002 [19] Fang, J., Xu, C. J., Wen, Y. M., et al., 2019. The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms. Remote Sensing, 11(11): 1330. DOI: 10.3390/rs11111330 [20] Gao, X. W., Wan, Y. G., Huang, J. C., et al., 2015. Tectonic Stress Field Analysis and Static Coulomb Stress Changes of the Ms5.8 Inner Mongolias' Alxa Left Banner Earthquake. North China Earthquake Sciences, 33(2): 48-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDKD201502010.htm [21] Gephart, J. W., Forsyth, D. W., 1984. An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research, 89(B11): 9305. DOI: 10.1029/jb089ib11p09305 [22] Global Centroid Moment Tensor (GCMT)Catalog. Available Online: https://www.globalcmt.org/CMTsearch.html [23] Guiraud, M., Laborde, O., Philip, H., 1989. Characterization of Various Types of Deformation and Their Corresponding Deviatoric Stress Tensors Using Microfault Analysis. Tectonophysics, 170(3/4): 289-316. DOI: 10.1016/0040-1951(89)90277-1 [24] Hafkenscheid, E., Buiter, S. J. H., Wortel, M. J. R., et al., 2001. Modelling the Seismic Velocity Structure beneath Indonesia: A Comparison with Tomography. Tectonophysics, 333(1/2): 35-46. DOI: 10.1016/s0040-1951(00)00265-1 [25] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. DOI: 10.1016/s1367-9120(01)00069-4 [26] Hall, R., Spakman, W., 2015. Mantle Structure and Tectonic History of SE Asia. Tectonophysics, 658(6625): 14-45. DOI: 10.1016/j.tecto.2015.07.003 [27] Hamilton, W. B., 1979. Tectonics of the Indonesian Region. United States Government Office, Washington. [28] Hardebeck, J. L., Michael, A. J., 2006. Damped Regional-Scale Stress Inversions: Methodology and Examples for Southern California and the Coalinga Aftershock Sequence. Journal of Geophysical Research: Solid Earth, 111(B11): 1-11. DOI: 10.1029/2005jb004144 [29] Hardebeck, J. L., 2015. Stress Orientations in Subduction Zones and the Strength of Subduction Megathrust Faults. Science, 349(6253): 1213-1216. DOI: 10.1126/science.aac5625 [30] Huang, J. C., Wan, Y. G., Sheng, S. Z., et al., 2016. Heterogeneity of Present Days Stress Field in the Tonga Kermadec Subduction Zone and its Geodynamic Significance. Chinese Journal of Geophysics, 59(2): 578-592(in Chinese with English abstract). http://www.researchgate.net/publication/294521177_Heterogeneity_of_present-day_stress_field_in_the_Tonga-Kermadec_subduction_zone_and_its_geodynamic_significance_in_Chinese_with_English_abstract [31] Hui, G. G., Li, S. Z., Wang, P. C., et al., 2018. Linkage between Reactivation of the Sinistral Strike-Slip Faults and 28 September 2018 Mw7.5 Palu Earthquake, Indonesia. Science Bulletin, 63(24): 1635-1640. DOI: 10.1016/j.scib.2018.11.021 [32] Hutchison, C. S., 1989. Geological Evolution of South-East Asia. Clarendon Press, Oxford. [33] Jaya, A., Nishikawa, O., 2013. Paleostress Reconstruction from Calcite Twin and Fault-Slip Data Using the Multiple Inverse Method in the East Walanae Fault Zone: Implications for the Neogene Contraction in South Sulawesi, Indonesia. Journal of Structural Geology, 55(3-5): 34-49. DOI: 10.1016/j.jsg.2013.07.006 [34] Kadarusman, A., van Leeuwen, T., Sopaheluwakan, J., 2011. Eclogite, Peridotite, Granulite and Associated High-Grade Rocks from the Palu Region, Central Sulawesi, Indonesia: An Example of Mantle and Crust Interaction in a Young Orogenic Belt. Proc. Joint 36th HAGI and 40th IAGI Ann. Conv., Makassar, 10. [35] Katili, J. A., 1970. Large Transcurrent Faults in Southeast Asia with Special Reference to Indonesia. Geologische Rundschau, 59(2): 581-600. DOI: 10.1007/bf01823809 [36] Kopp, C., Flueh, E. R., Neben, S., 1999. Rupture and Accretion of the Celebes Sea Crustrelated to the North-Sulawesi Subduction: Combinedinterpretation of Reflection and Refraction Seismicmeasurements. Journal of Geodynamics, 27(3): 309-325. DOI: 10.1016/s0264-3707(98)00004-0 [37] Li, F. C., Sun, Z., Zhang. J.Y., 2018. Numerical Studieson Continental Lithospheric Breakup in Response to The Extension Induced by Subduction Direction Inversion. Earth Science, 43(10): 3762-3777(in Chinese with English abstract). [38] Li, H., Tang, Y., Ding, W. W., et al., 2018. Gravity Inversion on Crust Structures of the Shikoku Basin, Philippine Sea, and Its Implication to the Evolution Process. Earth Science, 43(3): 862-872(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803018.htm [39] Li, Q., Tan, K., Zhao, B., et al., 2019. The 2018 MW 7.5 Palu, Indonesia Earthquake: A Supershear Rupturing Event. Chinese Journal of Geophysics, 62(8): 3017-3023(in Chinese with English abstract). http://www.researchgate.net/publication/335005023_LiQi-2019-The_2018_Mw75_Palu_Indonesia_earthquake-a_supershear_rupturing_event [40] Li, T. J., Chen, Q. F., 2019. Stress Regime Inversion in the Northwest Pacific Subduction Zone, the Segment from Northern Honshu, Japan to Northeast China. Chinese Journal of Geophysics, 62(2): 520-533(in Chinese with English abstract). http://www.researchgate.net/publication/339497561_Stress_regime_inversion_in_the_Northwest_Pacific_subduction_zone_the_segment_from_northern_Honshu_Japan_to_Northeast_China [41] Li, X., Wan, Y. G., Cui, H. W., et al., 2016. Tectonic Stress Field Analysis on the Source Region of the 2015 Mw 8.3 Chile Earthquake. Acta Seismologica Sinica., 38(6): 847-853(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-seismologica-sinica_thesis/0201251976166.html [42] Martínez-Garzón, P., Kwiatek, G., Ickrath, M., et al., 2014. MSATSI: A MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New Simplified User-Handling, and a Visualization Tool. Seismological Research Letters, 85(4): 896-904. DOI: 10.1785/0220130189 [43] Milsom, J., Susilo, A., 2001. Short-Wavelength, High-Amplitude Gravity Anomalies around the Banda Sea, and the Collapse of the Sulawesi Orogen. Tectonophysics, 333(1/2): 61-74. DOI: 10.1016/s0040-1951(00)00267-5 [44] Panshori, A., Martha, A. A., Maryanto, S., 2019. Imaging the Velocity Structure of Rayleigh Wave in Sulawesi Island Using Ambient Noise Tomography. International Journal of Advances in Scientific Research and Engineering, 5(1): 85-95. DOI: 10.31695/ijasre.2019.33072 [45] Rangin, C., Pubellier, M., Azema, J., et al., 1990. The Quest for Tethys in the Western Pacific; 8 Paleogeodynamic Maps for Cenozoic Time. Bulletin de la Société Géologique de France, VI(6): 907-913. DOI: 10.2113/gssgfbull.vi.6.907 [46] Replumaz, A., Kárason, H., van der Hilst, R. D., et al., 2004. 4-D Evolution of SE Asia's Mantle from Geological Reconstructions and Seismic Tomography. Earth and Planetary Science Letters, 221(1/2/3/4): 103-115. DOI: 10.1016/s0012-821x(04)00070-6 [47] Robinson, D. P., Das, S., Searle, M. P., 2010. Earthquake Fault Superhighways. Tectonophysics, 493(3/4): 236-243. DOI: 10.1016/j.tecto.2010.01.010 [48] Satyana, A.H., 2006. Docking and Post-Docking Tectonic Escapes of Eastern Sulawesi: Collisional Convergence and Their Implications to Petroleum Habitat. Proceedings of Jakarta 2006 Geoscience Conference and Exhibition, New York. [49] Satyana, A. H., Armandita, C, Tarigan, R. L., 2008. Collision and Post-Collision Tectonics in Indonesia: Roles for Basin Formation and Petroleum Systems. Proceedings, Indonesian Petroleum Association, 32th Annual Convention & Exhibition. [50] Siebert, L., Simkin, T., Kimberly, P., 2010. Volcanoes of the World. University of California Press, Berkeley, California. [51] Silver, E. A., Joyodiwiryo, Y., McCaffrey, R., 1978. Gravity Results and Emplacement Geometry of the Sulawesi Ultramafic Belt, Indonesia. Geology, 6(9): 527. DOI:10.1130/0091-7613(1978)6<527:graego>2.0.co;2 [52] Silver, E. A., McCaffrey, R., Smith, R. B., 1983. Collision, Rotation, and the Initiation of Subduction in the Evolution of Sulawesi, Indonesia. Journal of Geophysical Research: Solid Earth, 88(B11): 9407-9418. DOI: 10.1029/jb088ib11p09407 [53] Simandjuntak, T. O., Barber, A. J., 1996. Contrasting Tectonic Styles in the Neogene Orogenic Belts of Indonesia. Geological Society, London, Special Publications, 106(1): 185-201. DOI: 10.1144/gsl.sp.1996.106.01.12 [54] Socquet, A., Simons, W., Vigny, C., et al., 2006. Microblock Rotations and Fault Coupling in SE Asia Triple Junction (Sulawesi, Indonesia) from GPS and Earthquake Slip Vector Data. Journal of Geophysical Research, 111(B8): 1-15. DOI: 10.1029/2005jb003963 [55] Socquet, A., Hollingsworth, J., Pathier, E., et al., 2019. Evidence of Supershear during the 2018 Magnitude 7.5 Palu Earthquake from Space Geodesy. Nature Geoscience, 12(3): 192-199. DOI: 10.1038/s41561-018-0296-0 [56] Song, X. G., Zhang, Y. F., Shan, X. J., et al., 2019. Geodetic Observations of the 2018 Mw 7.5 Sulawesi Earthquake and its Implications for the Kinematics of the Palu Fault. Geophysical Research Letters, 46(8): 4212-4220. DOI: 10.1029/2019gl082045 [57] Stevens, C., McCaffrey, R., Bock, Y., et al., 1999. Rapid Rotations about a Vertical Axis in a Collisional Setting Revealed by the Palu Fault, Sulawesi, Indonesia. Geophysical Research Letters, 26(17): 2677-2680. DOI: 10.1029/1999gl008344 [58] Surmont, J., Laj, C., Kissel, C., et al., 1994. New Paleomagnetic Constraints on the Cenozoic Tectonic Evolution of the North Arm of Sulawesi, Indonesia. Earth and Planetary Science Letters, 121(3/4): 629-638. DOI: 10.1016/0012-821x(94)90096-5 [59] Vigny, C., Perfettini, H., Walpersdorf, A., et al., 2002. Migration of Seismicity and Earthquake Interactions Monitored by GPS in SE Asia Triple Junction: Sulawesi, Indonesia. Journal of Geophysical Research: Solid Earth, 107(B10): ETG 7-1-ETG 7-11. DOI: 10.1029/2001jb000377 [60] Walpersdorf, A., Vigny, C., Subarya, C., et al., 1998a. Monitoring of the Palu-Koro Fault (Sulawesi) by GPS. Geophysical Research Letters, 25(13): 2313-2316. DOI: 10.1029/98gl01799 [61] Walpersdorf, A., Rangin, C., Vigny, C., 1998b. GPS Compared to Long-Term Geologic Motion of the North Arm of Sulawesi. Earth and Planetary Science Letters, 159(1/2): 47-55. DOI: 10.1016/s0012-821x(98)00056-9 [62] Wan, Y. G., Sheng, S. Z., Xu, Y. R., et al., 2011. Effect of Stress Ratio and Friction Coefficient on Composite P Wave Radiation Patterns. Chinese Journal of Geophysics, 54(4): 994-1001(in Chinese with English abstract). http://www.researchgate.net/publication/269991641_butongyinglizhuangtaihemocaxishuduizonghemabofushehuayangyingxiangdemoniyanjiuEffect_of_stress_ratio_and_friction_coefficient_on_composite_P_wave_radiation_patterns [63] Wan, Y. G., 2016. Introduction to Seismology. Science Press, Beijing(in Chinese with English abstract). [64] Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201912018.htm [65] Wan, Y. G., Sheng, S. Z., Huang, J. C., et al., 2016. The Grid Search Algorithm of Tectonic Stress Tensor Based on Focal Mechanism Data and its Application in the Boundary Zone of China, Vietnam and Laos. Journal of Earth Science, 27(5): 777-785. DOI: 10.1007/s12583-015-0649-1 [66] Wang, S. J., Zhai, S.K., Yu, Z. K., et al., 2018. Reflections on Model of Modern Seafloor Hydrothermal System. Earth Science, 43(3): 835-850(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803016.htm [67] Wang, Y. Z., Feng, W. P., Chen, K., et al., 2019. Source Characteristics of the 28 September 2018 Mw 7.4 Palu, Indonesia, Earthquake Derived from the Advanced Land Observation Satellite 2 Data. Remote Sensing, 11(17): 1999. DOI: 10.3390/rs11171999 [68] Watkinson, I. M., Hall, R., 2017. Fault Systems of the Eastern Indonesian Triple Junction: Evaluation of Quaternary Activity and Implications for Seismic Hazards. Geological Society, London, Special Publications, 441(1): 71-120. DOI: 10.1144/sp441.8 [69] Wessel, P., Smith, W. H. F., 1995. New Version of the Generic Mapping Tools. Eos, Transactions American Geophysical Union, 76(33): 329-329. DOI: 10.1029/95eo00198 [70] Widiyantoro, S., Hilst, R., 1997. Mantle Structure beneath Indonesia Inferred from High-Resolution Tomographic Imaging. Geophysical Journal International, 130(1): 167-182. DOI: 10.1111/j.1365-246x.1997.tb00996.x [71] Wu, W. N., Kao, H., Hsu, S. K., et al., 2010. Spatial Variation of the Crustal Stress Field along the Ryukyu-Taiwan-Luzon Convergent Boundary. Journal of Geophysical Research, 115(B11): 1-19. DOI: 10.1029/2009jb007080 [72] Wu, W. N., Lo, C. L., Lin, J. Y., 2017. Spatial Variations of the Crustal Stress Field in the Philippine Region from Inversion of Earthquake Focal Mechanisms and Their Tectonic Implications. Journal of Asian Earth Sciences, 142(9): 109-118. DOI: 10.1016/j.jseaes.2017.01.036 [73] Yolsal-Çevikbilen, S., Taymaz, T., 2019. Source Characteristics of the 28 September 2018 Mw 7.5 Palu-Sulawesi, Indonesia (SE Asia) Earthquake Based on Inversion of Teleseismic Bodywaves. Pure and Applied Geophysics, 176(10): 4111-4126. DOI: 10.1007/s00024-019-02294-1 [74] Zenonos, A., De Siena, L., Widiyantoro, S., et al., 2019. P and S Wave Travel Time Tomography of the SE Asia-Australia Collision Zone. Physics of the Earth and Planetary Interiors, 293: 106267. DOI: 10.1016/j.pepi.2019.05.010 [75] Zhang, Y., Chen, Y. T., Feng, W. P., 2019. Complex Multiple-Segment Ruptures of the 28 September 2018, Sulawesi, Indonesia, Earthquake. Science Bulletin, 64(10): 650-652. DOI: 10.1016/j.scib.2019.04.018 [76] Zoback, M. L., 1992. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. Journal of Geophysical Research, 97(B8): 11703. DOI: 10.1029/92jb00132 [77] 崔华伟, 万永革, 黄骥超, 等, 2017. 2015年3月新不列颠MS 7.4地震震源及邻区构造应力场特征. 地球物理学报, 60(3): 985-998. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201703014.htm [78] 崔华伟, 万永革, 黄骥超, 等, 2019. 帕米尔-兴都库什地区构造应力场反演及拆离板片应力形因子特征研究. 地球物理学报, 62(5): 1633-1649. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905006.htm [79] 高熹微, 万永革, 黄骥超, 等, 2015. 内蒙古阿拉善左旗MS 5.8地震的构造应力场和静态库伦应力变化分析. 华北地震科学, 33(2): 48-54. doi: 10.3969/j.issn.1003-1375.2015.02.009 [80] 黄骥超, 万永革, 盛书中, 等, 2016. 汤加-克马德克俯冲带现今非均匀应力场特征及其动力学意义. 地球物理学报, 59(2): 578-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602017.htm [81] 李付成, 孙珍, 张江阳, 2018. 大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟. 地球科学, 43(10): 3762-3777. doi: 10.3799/dqkx.2018.581 [82] 李赫, 唐勇, 丁巍伟, 等, 2018. 菲律宾海四国海盆地壳结构重力反演及其形成演化过程分析. 地球科学, 43(3): 862-872. doi: 10.3799/dqkx.2017.505 [83] 李琦, 谭凯, 赵斌, 等, 2019. 2018年印尼帕卢MW 7.5地震——一次超剪切破裂事件. 地球物理学报, 62(8): 3017-3023. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201908021.htm [84] 李天觉, 陈棋福, 2019. 西北太平洋俯冲带日本本州至中国东北段应力场反演. 地球物理学报, 62(2): 520-533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201902007.htm [85] 李祥, 万永革, 崔华伟, 等, 2016. 2015年智利MW 8.3地震震源区构造应力场分析. 地震学报, 38(6): 847-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201606004.htm [86] 万永革, 2016. 地震学导论. 北京: 地震出版社. [87] 万永革, 2019. 同一地震多个震源机制中心解的确定. 地球物理学报, 62(12): 4718-4728. doi: 10.6038/cjg2019M0553 [88] 万永革, 盛书中, 许雅儒, 等, 2011. 不同应力状态和摩擦系数对综合P波辐射花样影响的模拟研究. 地球物理学报, 54(4): 994-1001. doi: 10.3969/j.issn.0001-5733.2011.04.014 [89] 王淑杰, 翟世奎, 于增慧, 等, 2018. 关于现代海底热液活动系统模式的思考. 地球科学, 43(3): 835-850. doi: 10.3799/dqkx.2018.907