Geochemistry and Geochronology of Mafic Rocks from Hongqiyingzi Group in Chongli Area of the Northern Hebei Province: Implications for the Late Neoarchean-Early Paleoproterzoic Tectonic Evolution of the North China Craton
-
摘要: 崇礼地区红旗营子岩群位于华北克拉通北缘,该区红旗营子岩群的岩石组合、构造属性及时代归属对于探讨华北克拉通新太古代晚期-古元古代早期大地构造演化具有重要意义.本文对崇礼地区红旗营子岩群中的镁铁质岩石进行了野外、镜下岩相学、全岩地球化学、锆石U-Pb年代学及Hf同位素分析,并讨论其对华北克拉通北缘新太古代晚期-古元古代早期地壳演化的指示意义.研究区红旗营子岩群中的镁铁质岩石以夹层产出于表壳岩中,主要由斜长角闪岩和斜长辉石角闪岩组成.红旗营子镁铁质岩石主量元素中SiO2(40.17%~51.53%)、Na2O(1.52%~3.47%)和K2O(0.43%~1.23%)含量范围较大,具有较高的CaO(9.15%~12.68%)、MgO(5.90%~13.36%)和Al2O3(9.81%~20.92%)含量.镁铁质岩石轻稀土元素轻微富集,重稀土元素配分模式近平坦,大离子亲石元素Ba、U、K、Sr富集,高场强元素Th、Nb、Ta、Ti明显亏损.斜长角闪岩LA-ICP-MS锆石U-Pb测年显示207Pb/206Pb加权平均年龄为2 477±23 Ma(MSWD=3.1),上交点年龄为2 468±22 Ma,表明其形成于新太古代晚期-古元古代早期.斜长角闪岩锆石Hf同位素分析结果显示εHf(t)为负值(-5.2~0),一阶段模式年龄(TDM1)为2 673~2 783 Ma,二阶段模式年龄(TDM2)为2 880~3 074 Ma,均大于锆石的形成年龄,指示其来源于古老地壳物质的再循环.镁铁质岩石全岩地球化学分析结果显示其形成于岛弧相关环境.结合华北其他地区研究成果,本研究表明崇礼地区新太古代晚期-古元古代早期可能发生了一期与岛弧有关的岩浆事件.Abstract: The Hongqiyingzi Group in the Chongli area is located in the northern margin of the North China Craton. The rock association, structural characteristics and formation age of the Hongqiyingzi Group in the Chongli area are of great significance to study the tectonic evolution of the North China Craton from late Neoarchean to early Paleoproterozoic. In this paper, based on field, petrography, geochemistry, zircon U-Pb geochronology and Hf isotope analysis of these mafic rocks from the Hongqiyingzi Group in Chongli area, we study the origin and genesis of these rocks and discuss their tectonic implications on the late Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton. The mafic rocks of the Hongqiyingzi Group are mainly composed of amphibolite and clinopyroxene amphibolite. The mafic rocks have a relatively wide range of geochemical compositions including SiO2 (40.17%-51.53%), Na2O (1.52%-3.47%) and K2O (0.43%-1.23%). These rocks have relatively high values of CaO (9.15%-12.68%), MgO (5.90%-13.36%) and Al2O3 (9.81%-20.92%), and are characterized by enrichment of large ion lithophile elements such as Ba, U, K, and Sr, depletion of high field strength elements such as Th, Nb, Ta, and Ti and flat heavy rare earth elements patterns. The LA-ICP-MS zircon U-Pb dating shows that the magmatic zircon of amphibolite was formed at 2 477±23 Ma, with the upper intercept age of 2 468±29 Ma, representing its formation age. The Hf isotopic analyses of amphibolite show that the εHf(t) values are negative (-5.2-0). The one-stage (TDM1) and two-stage Hf model ages (TDM2) are 2 673-2 783 Ma and 2 880-3 074 Ma, respectively, indicating that they were originated from recycling of the Archean crustal materials. In addition, the εHf(t) values of zircons suggest that a crustal accretion event occurred in the Neoarchean in the Chongli area. The geochemical characteristics indicate that these rocks were formed in an arc-related tectonic environment. Based on the research of other areas in the North China Craton, we suggest that a magmatic event related with arc environment may have occurred in the late Neoarchean to early Paleoproterozoic in the Chongli area.
-
Key words:
- North China Craton /
- Hongqiyingzi Group /
- geochemistry /
- zircon U-Pb geochronology /
- Hf isotope /
- tectonic evolution
-
图 6 红旗营子镁铁质岩球粒陨石标准化REE配分图(a);镁铁质岩原始地幔标准化微量元素蛛网图(b)
图a标准化值据Sun and McDonough, 1989;图b标准化值据McDonough and Sun, 1995
Fig. 6. Chondrite-normalized rare earth element diagrams of mafic rock (a); primitive mantle-normalized trace element diagrams of mafic rock (b)
图 7 SiO2-Zr/TiO2×0.000 1图解(a;据Winchester and Floyd, 1977);FeOT/MgO-SiO2图解(b;据Miyashiro, 1974)
Fig. 7. SiO2-Zr/TiO2×0.000 1 diagram (a; modified from Winchester and Floyd, 1977); SiO2-FeOT/MgO diagram (b; modified from Miyashiro, 1974)
图 9 红旗营子镁铁质岩哈克图解(据Ajaji et al., 1998)
Fig. 9. Harker diagram of mafic rock in Chongli area (modified from Ajaji et al., 1998)
图 10 Th/Yb-Nb/Yb判别图(a;据Pearce, 2008);Nb/Th-Nb判别图(b;据李曙光,1993);La/Nb-La判别图(c;据李曙光,1993)
Fig. 10. Th/Yb versus Nb/Yb diagram (a; modified from Pearce, 2008); Nb/Th-Nb diagram (b; modified from Li, 1993); La/Nb versus La diagram (c; modified from Li, 1993)
表 1 锆石U⁃Pb同位素测年结果
Table 1. Zircon U⁃Pb dating data
样品号 (10-6) 同位素比值 年龄(Ma) CL-TW1 Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ RZ1 110 127 0.87 0.16174 0.00184 10.00894 0.16799 0.45163 0.00543 2 474 19 2 436 15 2 403 24 RZ2 85 30 2.84 0.14950 0.00346 9.28582 0.51360 0.43268 0.00713 2 340 39 2 367 51 2 318 32 RZ3 66 67 0.98 0.16828 0.00203 9.22057 0.17887 0.40191 0.00492 2 541 20 2 360 18 2 178 23 RZ4 70 192 0.37 0.16501 0.00187 9.60398 0.15877 0.43760 0.00526 2 508 19 2 398 15 2 340 24 RZ5 17 33 0.51 0.16119 0.00523 7.01405 0.51171 0.29565 0.00605 2 468 54 2 113 65 1 670 30 RZ6 182 209 0.87 0.16209 0.00214 9.52324 0.24028 0.43292 0.00512 2 478 22 2 390 23 2 319 23 RZ7 84 202 0.41 0.16044 0.00187 9.51457 0.17660 0.44133 0.00494 2 460 20 2 389 17 2 357 22 RZ8 50 86 0.59 0.16484 0.00202 10.24977 0.22114 0.44666 0.00509 2 506 20 2 458 20 2 380 23 RZ9 115 94 1.23 0.16180 0.00228 9.28046 0.26017 0.42462 0.00512 2 475 24 2 366 26 2 281 23 RZ10 53 45 1.18 0.16086 0.00211 10.48173 0.27312 0.46073 0.00612 2 465 22 2 478 24 2 443 27 RZ11 52 69 0.76 0.16635 0.00300 10.09918 0.41617 0.43968 0.00665 2 521 30 2 444 38 2 349 30 RZ12 107 100 1.07 0.15575 0.00262 9.41148 0.34769 0.41806 0.00606 2 410 28 2 379 34 2 252 28 RZ13 270 388 0.70 0.15999 0.00166 10.34474 0.15770 0.46436 0.00573 2 456 17 2 466 14 2 459 25 RZ14 79 160 0.50 0.16067 0.00190 10.10095 0.21283 0.46026 0.00586 2 463 20 2 444 19 2 441 26 表 2 崇礼镁铁质岩Lu-Hf同位素分析结果
Table 2. Lu-Hf isotopic analysis data of mafic rock in the Chongli area
样号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1(Ma) TDM2(Ma) CL-TW1-1 2 474 0.010710 0.000356 0.281223 -54.77 -1.5 2 783 3 019 CL-TW1-2 2 340 0.012890 0.000464 0.281301 -52.02 -0.8 2 686 2 913 CL-TW1-3 2 541 0.012956 0.000419 0.281265 -53.31 -5.2 2 732 3 074 CL-TW1-4 2 508 0.006784 0.000271 0.281301 -52.02 0.0 2 673 2 880 表 3 崇礼地区红旗营子岩群镁铁质岩石主量元素(%)和微量元素(10-6)分析结果
Table 3. Major (%) and trace elements (10-6) compositions of mafic rock in the Chongli area
样品号 CL-1 CL-2 CL-3 CL-4 CL-5 CL-6 CL-7 CL-8 岩性 斜长角闪岩 斜长角闪岩 斜长辉石角闪岩 斜长角闪岩 斜长角闪岩 斜长辉石角闪岩 斜长角闪岩 斜长角闪岩 GPS 115°04′37″E 115°03′58″E 115°09′24″E 115°08′31″E 115°09′14″E 115°12′49″E 115°15′21″E 115°26′18″E 41°01′4″N 41°00′58″N 41°01′30″N 41°01′05″N 41°00′12″N 41°01′22″N 41°01′56″N 41°01′55″N SiO2 47.85 45.46 40.17 51.53 46.96 43.48 50.53 45.36 TiO2 0.60 1.58 2.08 0.57 0.61 1.51 0.36 1.77 Al2O3 19.81 17.99 20.92 9.81 13.58 19.06 14.86 14.14 Fe2O3 2.67 4.15 4.70 2.30 6.76 2.46 1.49 4.22 FeO 6.52 8.72 8.83 6.48 8.85 5.84 6.88 8.62 MnO 0.13 0.19 0.11 0.18 0.19 0.11 0.19 0.19 MgO 6.79 5.90 7.31 13.36 7.95 9.16 10.12 8.93 CaO 9.21 9.60 10.28 10.24 9.15 12.68 9.42 10.44 Na2O 3.04 3.47 2.42 1.52 2.91 1.84 2.59 2.49 K2O 0.43 0.69 0.55 0.58 0.92 0.72 1.15 1.23 P2O5 0.058 0.300 0.056 0.130 0.071 0.100 0.032 0.390 LOI 2.71 1.75 2.38 3.12 1.94 2.86 2.26 2.06 Total 99.83 99.79 99.82 99.82 99.88 99.83 99.87 99.84 La 4.04 19.10 4.36 11.00 13.90 5.32 13.50 17.10 Ce 9.63 47.30 12.40 26.40 30.10 13.20 37.00 44.80 Pr 1.52 7.18 2.24 3.92 4.29 2.28 5.99 7.41 Nd 7.5 32.6 12.4 18.0 19.1 12.0 28.2 36.6 Sm 1.76 6.82 3.49 4.13 4.35 3.35 7.40 8.48 Eu 0.87 1.81 1.29 1.14 1.39 1.49 1.19 2.00 Gd 1.40 5.64 2.91 3.33 3.77 2.99 5.91 6.71 Tb 0.23 0.95 0.51 0.56 0.69 0.55 1.03 1.12 Dy 1.40 5.94 3.15 3.31 4.38 3.04 5.95 6.68 Ho 0.27 1.12 0.57 0.61 0.82 0.56 1.03 1.24 Er 0.75 3.26 1.56 1.71 2.42 1.47 2.78 3.50 Tm 0.11 0.49 0.23 0.26 0.40 0.21 0.41 0.53 Yb 0.70 2.98 1.28 1.52 2.41 1.26 2.31 3.01 Lu 0.11 0.44 0.19 0.23 0.39 0.19 0.34 0.45 ∑REE 30.28 135.67 46.55 76.05 88.32 47.93 113.00 139.73 LREE 25.32 114.84 36.15 64.52 73.05 37.67 93.24 116.49 HREE 4.96 20.83 10.40 11.53 15.27 10.26 19.76 23.24 LREE/HREE 5.10 5.51 3.47 5.60 4.79 3.67 4.72 5.01 (La/Sm)N 1.48 1.81 0.81 1.72 2.06 1.03 1.18 1.30 (La/Yb)N 4.14 4.60 2.44 5.19 4.14 3.03 4.19 4.08 La/Yb 4.14 4.61 2.44 5.17 4.13 3.04 4.17 4.09 Zr/Y 6.39 2.78 3.46 5.80 4.81 5.02 2.82 1.44 δEu 1.64 0.87 1.21 0.91 1.03 1.41 0.53 0.78 δCe 0.95 0.99 0.96 0.98 0.95 0.93 1.01 0.97 Ti 3 596 9 470 12 466 3 416 3 656 9 050 2 158 10 608 Cr 42.70 10.60 7.16 543.00 163.00 30.00 185.00 222.00 Rb 0.91 7.51 0.59 2.90 3.10 9.40 5.95 7.86 Ba 282 603 274 215 167 393 203 186 K 3 570 5 728 4 566 4 815 7 637 5 977 9 547 12 011 GPS 115°04′37″E 115°03′58″E 115°09′24″E 115°08′31″E 115°09′14″E 115°12′49″E 115°15′21″E 115°26′18″E 41°01′4″N 41°00′58″N 41°01′30″N 41°01′05″N 41°00′12″N 41°01′22″N 41°01′56″N 41°01′55″N Th 0.32 0.47 0.51 1.95 1.32 0.42 1.50 0.69 U 0.14 0.54 0.16 0.56 0.75 0.38 0.85 0.31 Zr 43.2 85.5 52.2 93.3 112.0 67.8 79.6 46.1 Hf 1.17 2.77 1.51 2.63 3.18 1.86 2.91 1.69 Sr 1 477 689 1 102 369 342 855 420 372 Y 6.76 30.80 15.10 16.10 23.30 13.50 28.20 32.00 Nb 1.13 6.31 2.61 3.20 13.40 2.84 7.69 6.57 Ta 0.19 0.23 0.15 0.20 0.87 0.13 0.44 0.40 Ga 17.6 22.3 22.3 13.1 19.0 14.6 19.6 19.1 Cr 42.70 10.60 7.16 543.00 163.00 30.00 185.00 222.00 V 161 254 370 155 170 218 298 179 -
[1] Ajaji, T., Weis, D., Giret, A., et al., 1998. Coeval Potassic and Sodic Calc-Alkaline Series in the Post-Collisional Hercynian Tanncherfi Intrusive Complex, Northeastern Morocco:Geochemical, Isotopic and Geochronological Evidence. Lithos, 45(1-4):371-393. https://doi.org/10.1016/s0024-4937(98)00040-1 [2] Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, London. [3] Deng, H., Kusky, T., Polat, A., et al., 2014. Geochronology, Mantle Source Composition and Geodynamic Constraints on the Origin of Neoarchean Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton. Lithos, 205:359-378. https://doi.org/10.1016/j.lithos.2014.07.011 [4] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics:Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3-4):387-411. https://doi.org/10.1130/b30446.1 [5] Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at~2.5 Ga:Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1):149-170. https://doi.org/10.1016/j.gr.2011.01.011 [6] Geng, Y. S., Shen, Q. H., Ren, L. D., 2010. Late Neoarchean to Early Paleoproterozoic Magmatic Events and Tectonothermal Systems in the North China Craton. Acta Petrologica Sinica, 26(7):1945-1966 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007001 [7] Hu, X. W., Zhang, J. M., Quan, H., 1996. The Isotopic Ages of the Hongqiyingzi Group in Northern Hebei and Its Age Assignment. Regional Geology of China, (2):186-192 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600705060 [8] Kusky, T. M., Li, J. H., Tucker, R. D., 2001. The Archean Dongwanzi Ophiolite Complex, North China Craton:2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 292(5519):1142-1145. https://doi.org/10.1126/science.1059426 [9] Li, J. H., Kusky, T. M., Huang, X. N., 2002. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton:A Record of Early Oceanic Mantle Processes. GSA Today, 12(7):4-11.https://doi.org/10.1130/1052-5173(2002)0120004:apcamt>2.0.co; 2 doi: 10.1130/1052-5173(2002)0120004:apcamt>2.0.co;2 [10] Li, S. G., 1993. Ba-Th-Nb-La Diagram Used to Identify Tectonic Environments of Ophiolite. Acta Petrologica Sinica, 9(2):146-157 (in Chinese with English abstract). [11] Li, W. P., Lu, F. X., 1999. New Progress of the Study of Geologic Setting for Calc Alkline Volcanic Rocks. Geological Science and Technology Information, 18(2):15-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb199902004 [12] Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥ 3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4):339-342.https://doi.org/10.1130/0091-7613(1992)0200339:romcit>2.3.co; 2 doi: 10.1130/0091-7613(1992)0200339:romcit>2.3.co;2 [13] Liu, S. W., Lü, Y. J., Feng, Y. G., et al., 2007. Zircon and Monazite Geochranology of the Hongqiyingzi Complex, Northern Hebei, China. Geological Bulletin of China, 26(9):1086-1100 (in Chinese with English abstract). [14] Liu, Y., Ni, Z. Y., Kong, X., et al., 2015. Geological Characteristics and Implication of Hongqiyingzi Complex in Chicheng, North Hebei, China. Journal of Chengdu University of Technology (Science & Technology Edition). 42(3):268-278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CDLG201503002.htm [15] Ludwig, K. R., 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [16] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [17] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321 [18] Ning, W. B., Wang, J. P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5):952-963. https://doi.org/10.1007/s12583-019-1020-8 [19] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [20] Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2):101-108. https://doi.org/10.2113/gselements.10.2.101 [21] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343 [22] Peng, P., Zhai, M. G., 2002. Two Major Precambrian Geological Events of North China Block (NCB):Characteristics and Property. Advance in Earth Sciences, 17(6):818-825 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXJZ200206004.htm [23] Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4):197-218. https://doi.org/10.1016/s0301-9268(03)00095-0 [24] Saunders, A.D., Norry, M.J., Tarney, J., 1991. Fluid Influence on the Trace Element Compositions of Subduction Zone Magmas. Philosophical Transactions of the Royal Society of London Series A:Physical and Engineering Sciences, 335(1638):377-392. https://doi.org/10.1098/rsta.1991.0053 [25] Shen, Q. H., Geng, Y. S., Song, H. X., 2018. Progress on Metamorphic Petrology and Metamorphic Geology of China in the Last nearly 70 Years. Earth Science, 43(1):1-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801001 [26] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [27] Taylor, B., Martinez, F., 2003. Back-Arc Basin Basalt Systematics. Earth and Planetary Science Letters, 210(3-4):481-497. https://doi.org/10.1016/s0012-821x(03)00167-5 [28] Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6):685-700 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201506001 [29] Wang, F., Chen, F. K., Hou, Z. H., et al., 2009. Zircon Ages and Sr-Nd-Hf Isotopic Composition of Late Paleozoic Granitoids in the Chongli-Chicheng Area, Northern Margin of the North China Block. Acta Petrologica Sinica, 25(11)::3057-3074 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911033 [30] Wang, F., Chen, F. K., Siebel, W., et al., 2011. Zircon U-Pb Geochronology and Hf Isotopic Composition of the Hongqiyingzi Complex, Northern Hebei Province:New Evidence for Paleoproterozoic and Late Paleozoic Evolution of the Northern Margin of the North China Craton. Gondwana Research, 20(1):122-136. https://doi.org/10.1016/j.gr.2011.02.003 [31] Wang, H. C., Chu, H., Xiang, Z. Q., et al., 2012. The Hongqiyingzi Group in the Chongli-Chicheng Area, Northern Margin of the North China Craton:A Suite of Late Paleozoic Metamorphic Complex. Earth Science Frontiers, 19(5):100-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201205012.htm [32] Wang, J. P., Kusky, T., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608:929-946. https://doi.org/10.1016/j.tecto.2013.07.025 [33] Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture:Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12):1943-1964. https://doi.org/10.1130/b35138.1 [34] Wang, Q. C., 1992. On the Age of Hongqiyingzi Group and Geological Thermal Events in Undergone. Chinese Journal of Geology, 27(S1):17-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368959 [35] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1):1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x [36] Wilson, M., 1989. Igneous Petrogenesis:A Global Tectonic Approach. Unwin Hyman, London. [37] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [38] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [39] Wu, J. S., Geng, Y. S., Shen, Q. H., et al., 1998. The Geological Characteristics and Tectonic Evolution of the Ancient Archean of China and the DPRK. Geological Publishing House, Beijing (in Chinese). [40] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 [41] Zhai, M. G., 1991. Two Types of Archaean Meta-Basalts and Their Geotectonic Significance. Chinese Journal of Geology, 26(3):222-230 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368885 [42] Zhai, M. G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1):24-36 (in Chinese with English abstract). http://www.researchgate.net/publication/285024039_Tectonic_evolution_and_metallogenesis_of_North_China_Craton [43] Zhai, M. G., 2012. Evolution of the North China Craton and Early Plate Tectonics. Acta Geologica Sinica, 86(9):1335-1349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201209004.htm [44] Zhai, M. G., 2019. Tectonic Evolution of the North China Craton. Journal of Geomechanics, 25(5):722-745 (in Chinese with English abstract). [45] Zhang, C. H., Wang, Q. C., Gao, M. W., et al., 1990. The Early Precambrian Metamorphism of Hebei. Geological Publishing House, Beijing (in Chinese with English abstract). [46] Zhang, J. H., Tian, H., Wang, H. C., et al., 2019. Re-Definition of the Two-Stage Early-Precambeian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1):1-22 (in Chinese with English abstract). http://www.researchgate.net/publication/332108466_Re-Definition_of_the_Two-Stage_Early-Precambrian_Meta-Supracrustal_Rocks_in_the_Huai'an_Complex_North_China_Craton_Evidences_from_Petrology_and_Zircon_U-Pb_Geochronology [47] Zhang, J., Ni, Z. Y., Zhai, M. G., et al., 2012. Petrology, Geochemistry and Protolith of the Biotite Plagiogneiss from Hongqiyingzi Group in Chicheng County, Northern Hebei Province. Acta Petrologica et Mineralogica, 31(3):307-322 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203002 [48] Zhang, L. C., Zhai, M. G., Wan, Y. S., et al., 2012. Study of the Precambrian BIF-Iron Deposits in the North China Craton:Progresses and Questions. Acta Petrologica Sinica, 28(11):3431-3445 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211002.htm [49] Zhang, Z. Q., Shen, Q. H., Geng, Y. S., et al. 1996., Geochemistry and Ages of Archean Metamorphic Rocks in Northwestern Hebei Province, China, and Formation Time of the Paleocrust in the Region. Acta Petrologica Sinica, 12(2):315-328 (in Chinese with English abstract). [50] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1-2):55-88. https://doi.org/10.1016/s0301-9268(00)00076-0 [51] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [52] Zhong, Y. T., He, C., Chen, N. S., et al., 2018. Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing:Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton. Journal of Earth Science, 29(5):1254-1275. https://doi.org/10.1007/s12583-018-0856-7 [53] 耿元生, 沈其韩, 任留东, 2010.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制.岩石学报, 26(7):1945-1966. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007001 [54] 胡学文, 张江满, 权桓, 1996.冀北红旗营子群同位素年龄及其时代归属.中国区域地质, (2):186-192. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD602.012.htm [55] 李曙光, 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146-157. http://www.cqvip.com/qk/94579X/199302/1213325.html [56] 李伍平, 路凤香, 1999.钙碱性火山岩构造背景的研究进展.地质科技情报, 18(2):15-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb199902004 [57] 刘树文, 吕勇军, 凤永刚, 等, 2007.冀北红旗营子杂岩的锆石、独居石年代学及地质意义.地质通报, 26(9):1086-1100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200709012 [58] 刘瑶, 倪志耀, 孔旭, 等, 2015.冀北赤城红旗营子杂岩的地质特征及意义.成都理工大学学报(自然科学版), 42(3):268-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201503002 [59] 彭澎, 翟明国, 2002.华北陆块前寒武纪两次重大地质事件的特征和性质.地球科学进展, 17(6):818-825. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200206004 [60] 沈其韩, 耿元生, 宋会侠, 2018.近70年中国变质岩石学-变质地质学的研究进展.地球科学, 43(1):1-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180802770181 [61] 万渝生, 董春艳, 颉颃强, 等, 2015.华北克拉通太古宙研究若干进展.地球学报, 36(6):685-700. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201506001 [62] 王芳, 陈福坤, 侯振辉, 等, 2009.华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Sr-Nd-Hf同位素组成.岩石学报, 25(11):3057-3074. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911033 [63] 王惠初, 初航, 相振群, 等, 2012.华北克拉通北缘崇礼-赤城地区的红旗营子(岩)群:一套晚古生代的变质杂岩.地学前缘, 19(5):100-113. http://d.wanfangdata.com.cn/Periodical/dxqy201205011 [64] 王启超, 1992.红旗营子群的时代归属及所经历的地质热事件.地质科学, 27(S1):17-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368959 [65] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报.23(2):185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [66] 伍家善, 耿元生, 沈其韩, 等, 1998.中朝古大陆太古宙地质特征及构造演化.北京:地质出版社. [67] 翟明国, 1991.太古代变质玄武岩的地球化学特征及大地构造意义.地质科学, 26(3):222-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368885 [68] 翟明国, 2010.华北克拉通的形成演化与成矿作用.矿床地质, 29(1):24-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201001004 [69] 翟明国, 2012.华北克拉通的形成以及早期板块构造.地质学报, 86(9):1335-1349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201209002 [70] 翟明国, 2019.华北克拉通构造演化.地质力学学报, 25(5):722-745. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201905008 [71] 张春华, 王启超, 高明文, 等, 1990.河北早前寒武纪变质作用.北京:地质出版社. [72] 张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. doi: 10.3799/dqkx.2018.259 [73] 张静, 倪志耀, 翟明国, 等, 2012.冀北赤城红旗营子群黑云斜长片麻岩的岩石学、地球化学及原岩特征.岩石矿物学杂志, 31(3):307-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203002 [74] 张连昌, 翟明国, 万渝生, 等, 2012.华北克拉通前寒武纪BIF铁矿研究:进展与问题.岩石学报, 28(11):3431-3445. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211002.htm [75] 张宗清, 沈其韩, 耿元生, 等, 1996.赤城伙房村和崇礼上新营变质岩的地球化学特征、年龄及其区域地壳形成时间.岩石学报, 12(2):315-328. http://www.cqvip.com/Main/Detail.aspx?id=2141061