The Magmatic Activity in Paleoproterozoic Global Magmatic Quiescence: Take the ~2.3 Ga Henglingguan Granites from Zhongtiao Mountains in the Southern North China Craton as an Example
-
摘要: 在全球岩浆活动静寂期,人们在华北克拉通内相继识别出大量~2.3 Ga的地质体,对探讨华北克拉通古元古代地质演化过程具有十分重要的意义.选择中条山地区横岭关二长花岗岩进行了地球化学、锆石U-Pb年代学和Hf同位素研究.横岭关二长花岗岩LA-ICPMS锆石U-Pb年龄结果为2 308±12 Ma,代表岩体的形成时代.横岭关二长花岗岩高硅、高钾、高铝、富碱,贫钙、低钠和低钛,A/CNK主要集中在1.0~1.1之间,为高钾钙碱性偏铝-过铝质花岗岩系列.岩石的稀土元素含量相对高,轻重稀土元素分异强烈,并具有明显的Eu负异常.高场强元素Nb、Ta、Zr、Hf、U和大离子亲石元素Rb等相对富集,亏损V、Cr、Co、Ni等相容元素,具有I型花岗岩的特征.横岭关二长花岗岩锆石εHf(t)为0.52~6.24,平均值为2.06,单阶段和两阶段模式年龄分别为2 419~2 642 Ma和2 438~2 738 Ma.横岭关二长花岗岩具有同碰撞花岗岩的特征,推测来源于~2.5 Ga古老地壳岩石在挤压碰撞环境下的部分熔融,揭示了华北克拉通在古元古代全球岩浆静寂期并不静寂.Abstract: A large number of ~2.3 Ga geologic bodies have been identified in the North China Craton (NCC) in global magmatic quiescence, which is vital for unveiling the Paleoproterozoic geological evolution on the NCC. This paper presents the whole rock geochemical data, zircon U-Pb ages and Hf isotopes of the Henglingguan monzogranite in Zhongtiao mountains area. LA-ICPMS dating of zircon from the Henglingguan monzogranite yields an age of 2 308±12 Ma. The Henglingguan monzogranite is high in SiO2, K2O, Al2O3 and alkali, and low in CaO, NaO and TiO2, with A/CNK concentrated between 1.0 and 1.1, which belongs to high-K calc-alkaline and metaluminous-peraluminous series. The monzogranite is high in total REE contents, showing strong fractionation of LREE and HREE and obvious negative Eu anomaly. As to the trace elements, the monzogranite shows enrichment in Nb, Ta, Zr, Hf, U and Rb, and depletion in V, Cr, Co and Ni, which is consistent with characteristics of I-type granite. Zircons in the Henglingguan monzogranite have εHf(t) values ranging from 0.52 to 6.24, with an average of 2.06, and Hf model TDM1 age of 2 419-2 642 Ma and TDM2 age of 2 438-2 738 Ma. The Henglingguan monzogranite shows the features of syn-collision granites originated from partial melting of the ~2.5 Ga ancient crust in collision environment, which shows the NCC was not quiet during the Paleoproterozoic global magmatic quiescence.
-
挥发性氯代有机化合物是重要的化工原料和有机溶剂, 广泛的应用于化工、医药、制革、电子等行业.加上挥发性氯代烃还是饮用水氯气消毒的副产物, 使其成为地下水和饮用水中最常见的有机污染之一[1, 2].许多氯代有机化合物具有“三致效应” (致癌、致畸、致突变) 或可疑“三致效应”, 是各国优先控制的污染物.因此对此类污染物污染的环境水体进行恢复处理已迫在眉睫.氯代有机化合物的种类很多, 其中最常见的是三氯乙烯(TCE) 和四氯乙烯(PCE), 它们是美国和日本等国的地下水中检出率最高的有机污染物[3, 4].随着工业化进程的加速, TCE和PCE对地下水污染有着进一步扩大的趋势.由于TCE和PCE都为非混溶相液体, 污染范围大, 容易扩散, 而且很难被生物降解, 因而以TCE和PCE为目标污染物研究地下水中的氯代有机物污染有着明显的实际意义[5].本文主要在实验室条件下, 用零价铁作为反应介质的批实验方法, 对脱氯效果和影响因素进行初步的研究.
1. 实验方法
(1) 实验材料.机械加工厂的生铁废料, 粒径为20~40目和60~80目, 自来水, 分析纯的四氯乙烯和四氯化碳. (2) 实验仪器.恒温水浴振荡器; 带HP-7694自动顶空进样器的HP-6890气相色谱.仪器条件: 进样口温度, 160 ℃; 色谱柱柱流量, 1.0 mL/min; 炉温, 70 ℃; 保留时间, 10 min; 检测器ECD温度, 300 ℃[6].顶空部分: 瓶区, 50 ℃; Loop: 60 ℃; 传输线, 70 ℃; 瓶平衡时间, 10 min; 注射时间, 1.00 min; 振摇时间, 5 min; 载气流量, 约30 mL/min[7].实验装置: 用120 mL玻璃钳口瓶, 带有聚四氟乙烯膜的瓶盖. (3) 批实验程序.称10.00 g生铁放于钳口瓶中, 将配好的氯代烃溶液缓缓注入瓶中[8], 封口.配置储备液用地质大学的自来水, 其成分如表 1.将瓶放于往复式恒温水浴中振荡, 每隔一定时间间隔取水样进行分析, 每个取样时间点有3个瓶, 一个不放铁只放原溶液作为控制样, 另外两个瓶作为反应液做平行样.取样时, 用注射器抽取瓶中液体0.5 mL, 用纯净水稀释到1.0 mL, 用自动顶空进样器进样于气相色谱上测定, 方法的检出限为0.05 μg/L.
表 1 储备液用水的化学成分Table Supplementary Table Composition of water prepared solution2. 实验结果与讨论
(1) 零价铁(20~40目) 降解四氯化碳.图 1a是以四氯化碳为研究对象的批实验结果, 四氯化碳初始质量浓度为1 844 μg/L, 从图中可以看到, 随着实验的进行原溶液的质量浓度基本保持不变.当t=71 h时, 测定低于检出限0.05 μg/L, 该点不作为线性回归点.相对质量浓度的对数值对时间作图[9], 进行回归, 其r2为0.993 2表明反应是准一级反应.回归方程: y=-0.025 6x+0.020 8, 反应速率常数为: k=2.303×k′=0.058 96 h-1, t1/2=ln 2/k=11.76 h.通过对三氯甲烷的检测发现, 三氯甲烷质量浓度逐渐上升, 而通过对摩尔数的比较, 与四氯化碳的减少又不是1∶1的关系, 说明除三氯甲烷外还有其他类型的降解产物如二氯甲烷等生成. (2) 零价铁(60~80目) 降解四氯乙烯.图 1b是初始质量浓度为3 225 μg/L的四氯乙烯, 通过在反应过程当中四氯乙烯和三氯乙烯的测定, 四氯乙烯逐渐减少, 120 h时还有662 μg/L的四氯乙烯.原溶液中有14.5~15.1 μg/L的三氯乙烯, 属于溶液配置时四氯乙烯不纯带入的, 但在反应过程中质量浓度基本不变, 说明四氯乙烯的还原性脱氯过程可能不是逐级进行的, 而是与反应介质一接触就在表面直接脱氯成二氯乙烯或一氯乙烯或乙烯、乙炔等, 或者可能是三氯乙烯一经形成马上降解, 这有待于以后完善测试方法进行中间产物的研究.回归方程为y=-0.004 9 x-0.123 5, k=0.011 h-1, r2=0.910 3, t1/2=36.23 h. (3) 零价铁(20~40目) 降解四氯乙烯.图 1c初始质量浓度为3 225 μg/L的四氯乙烯, 初始质量浓度与图 1b相近但反应介质粒度不同, 本实验中回归方程为: y=-0.002 8 x-0.070 2, k=0.006 4, t1/2=82.44 h, r2=0.953 5.可以看出60~80目的零价铁比20~40目的零价铁反应速率大一倍, 即半衰期短一倍.这是由于随着粒度减小, 比表面积增大, 增加了反应介质与溶液的接触的机会, 反应加快的结果[10]. (4) 零价铁(20~40目) 降解不同起始质量浓度的四氯乙烯(表 2).同一粒度的铁屑(20~40目) 对四氯乙烯的降解作用.当原溶液质量浓度ρ0为292 μg/L时, 速率常数为0.018 4 h-1; 当原溶液质量浓度为2 802 μg/L时, 速率常数为0.006 4 h-1.前者是后者的2.875倍, 但没有线性相关关系.据分析应是由在相对浓的溶液中, 反应介质上反应点位很快被占据而影响反应动力学[11].
表 2 Fe0 (20~40目) 对不同起始质量浓度四氯乙烯的降解原溶液PCETable Supplementary Table Degradation of different initial concentrations using Fe0 (20~40目)3. 结论
(1) 零价铁对氯代烃有明显的脱氯作用; (2) 相同氯代程度的烷烃和烯烃, 烷烃的脱氯速度快; (3) 反应符合一级反应动力学方程, 反应是准一级反应; 反应速率受到传质速率即零价铁颗粒比表面积的影响; (4) 零价铁对氯代烃的还原性脱氯是否完全, 中间产物的存在和降解情况还有待于进一步研究.
-
图 1 华北克拉通~2.3 Ga地质体分布
底图据Zhao et al.(2005)、Zhai and Santosh(2011);~2.3 Ga年龄数据见附表1文献.图中简写含义:AL.阿拉善; CD.承德; DF.登封; EH.冀东; ES.胶东; FP.阜平; GY.固阳; HA.怀安; HL.贺兰山; HS.恒山; JN.集宁; LL.吕梁; MY.密云; NH.冀北; QL.千里山; NL.辽北; SJ.吉南; SL.辽南; TH.太华; WD.乌拉山-大青山; WH.五河; WL.辽西; WS.鲁西; WT.五台; XH.宣化; ZT.中条
Fig. 1. The distribution map of ~2.3 Ga geologic bodies in the North China Craton
图 2 华北克拉通中条山地区地质简图(据白瑾等,1997;刘树文等, 2007)
Fig. 2. Geological sketch map of Zhongtiao mountains in the North China Craton (after Bai et al., 1997; Liu et al., 2007)
图 3 横岭关二长花岗岩的野外及显微镜下照片(矿物缩写据沈其韩,2009)
a.二长花岗质片麻岩的野外特征;b.二长花岗质片麻岩的显微镜下特征,单偏光;c.绢云石英片岩的野外特征;d.绢云石英片岩的显微镜下特征,单偏光
Fig. 3. Field and microscopic photographs of the Henglingguan monzogranite (abbreviation of minerals after Shen, 2009)
图 4 横岭关二长花岗岩锆石U⁃Pb年龄谐和图(a)和锆石年龄与εHf(t)关系图(b)
球粒陨石(CHUR)根据Blichert⁃Toft and Albereade(1997); 亏损地幔(DM)根据Griffin et al.(2000); 长英质上地壳的计算根据Vervoort et al.(2000)
Fig. 4. U⁃Pb Concordia diagram of zircons from the Henglingguan adamellite (a) and zircon ages vs. εHf(t) (b)
图 5 横岭关二长花岗岩SiO2-K2O(a)和A/CNK-A/NK(b)关系图解
图a据Peccerillo and Taylor(1976)、Middlemost(1985);图b中A/CNK=Al2O3/(CaO+Na2O+K2O), A/NK=Al2O3/(Na2O+K2O)
Fig. 5. Geochemical diagram of SiO2 vs. K2O (a) and A/CNK vs. A/NK (b) for the Henglingguan monzogranit
图 6 横岭关二长花岗岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图解(b)(标准化值根据Sun McDonough, 1989)
Fig. 6. Chondrite-normalized REEs (a) and PM-normalized trace elements (b) patterns for the Henglingguan monzogranite (normalization values after Sun McDonough, 1989)
图 8 横岭关二长花岗岩Nb-Y(a)和Rb-(Y+Yb)(b)图解(底图据Pearce et al., 1984)
Syn⁃COLG.同碰撞花岗岩; VAG.火山弧花岗岩; WPG.板内花岗岩; ORG.洋脊花岗岩
Fig. 8. Nb vs. Y (a) and Rb vs. (Y+Yb) (b) diagrams of the Henglingguan monzogranite (after Pearce et al., 1984)
-
[1] Bai, J., Dai, F. Y., Yan, Y. Y., 1997. Precambrian Crustal Evolution of the Zhongtiao Mountains. Earth Science Frontiers, 4(4):281-289 (in Chinese). [2] Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola:Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5):554-566. https://doi.org/10.1007/s004100000211 [3] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [4] Chappell, B.W., White, A.J.R., 1992. I and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83:1-26. http://dx.doi.org/10.1017/S0263593300007720 [5] Chen, H. X., Wang, J., Wang, H., et al., 2015. Metamorphism and Geochronology of the Luoning Metamorphic Terrane, Southern Terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton. Precambrian Research, 264:156-178. https://doi.org/10.1016/j.precamres.2015.04.013 [6] Chu, N. C., Taylor, R. N., Chavagnac, V. R., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:an Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. https://doi.org/10.1039/b206707b [7] Condie, K. C., 2018. A Planet in Transition:The Onset of Plate Tectonics on Earth between 3 and 2 Ga?. Geoscience Frontiers, 9(1):51-60. https://doi.org/10.1016/j.gsf.2016.09.001 [8] Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time:Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3-4):228-242. https://doi.org/10.1016/j.gr.2008.06.001 [9] Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4):294-298. https://doi.org/10.1016/j.epsl.2009.03.033 [10] Dan, W., Li, X. H., Guo, J. H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China:Evidence from in Situ Zircon U-Pb Dating and Hf-O Isotopes. Gondwana Research, 21(4):838-864. https://doi.org/10.1016/j.gr.2011.09.004 [11] Deng, J. F., Wu, Z. X., Zhao, G. C., et al., 1999. Precambrain Granitic Rocks, Continental Crustal Evolution and Craton Formation of the North China Platform. Acta Petrologica Sinica, 15(2):31-39 (in Chinese with English abstract). http://www.researchgate.net/publication/279587697_Precambrian_granitoids_continental_crustal_evolution_and_craton_formation_of_the_North_China_Platform [12] Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at~2.5 Ga:Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1):149-170. https://doi.org/10.1016/j.gr.2011.01.011 [13] Diwu, C. R., Sun, Y., Lin, C. L., et al., 2007. Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China. Acta Petrologica Sinica, 23(2):253-262 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702006 [14] Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45-2.20 Ga) Magmatic Activity during the Period of Global Magmatic Shutdown:Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255:627-640. https://doi.org/10.1016/j.precamres.2014.08.001 [15] Dong, C. Y., Liu, D. Y., Li, J. J., et al., 2007. New Evidence for the Formation Age of Khondalite Belt in the West of the North China Craton:Zircon SHRIMP Dating and Hf Isotope Composition in Bayan Wula-Helan Mountains. Chinese Science Bulletin, 52(16):1912-1922 (in Chinese). [16] Eriksson, P. G., Catuneanu, O., Nelson, D. R., et al., 2012. Events in the Precambrian History of the Earth:Challenges in Discriminating Their Global Significance. Marine and Petroleum Geology, 33(1):8-25. https://doi.org/10.1016/j.marpetgeo.2010.01.009 [17] Geng, Y. S., Wan, Y. S., Shen, Q. H., et al., 2000. Chronological Framework of the Early Precambrian Important Events in the Luliang Area, Shanxi Province. Acta Geologica Sinica, 74(3):216-223 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200003003 [18] Geng, Y. S., Yang, C. H., Wan, Y. S., 2006. Paleoproterozoic Granitic Magmatism in the Lüliang Area, North China Craton:Constraint from Isotopic Geochronology. Acta Petrologica Sinica, 22(2):305-314 (in Chinese with English abstract). [19] Gong, J. H., 2013. Compositions, Characteristics, Chronological Framework and Origin of Early-Precambrian Metamorphic Basement in Western Alxa Block (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [20] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [21] Guo, L. S., Liu, S. W., Liu, Y. L., et al., 2008. Zircon Hf Isotopic Features of TTG Gneisses and Formation Environment of Precambrian Sushui Complex in Zhongtiao Mountains. Acta Petrologica Sinica, 24(1):139-148 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200801011 [22] Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [23] Huang, D. M., Zhang, D. H., Wang, S. Y., et al., 2012.2.3 Ga Magmatism and 1.94 Ga Metamorphism in the Xiatang Area, Southern Margin of the North China Craton. Geological Review, 58(3):565-577 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201203017 [24] Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong'er in the Southern Segment of the Trans-North China Orogen:Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134-135:236-252. https://doi.org/10.1016/j.lithos.2012.01.004 [25] Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233:337-357. https://doi.org/10.1016/j.precamres.2013.05.016 [26] Jiang, Z. S., Wang, G. D., Xiao, L. L., et al., 2011. Paleoproterozoic Metamorphic P-T-t Path and Tectonic Significance of the Luoning Metamorphic Complex at the Southern Terminal of the Trans-North China Orogen, Henan Province. Acta Petrologica Sinica, 27(12):3701-3717 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201112016 [27] Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24(5):577-595. https://doi.org/10.1016/j.jseaes.2004.01.001 [28] Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4):383-397. https://doi.org/10.1016/s1367-9120(03)00071-3 [29] Kusky, T. M., Windley, B. F., Zhai, M. G., 2007. Tectonic Evolution of the North China Block:From Orogen to Craton to Orogen. Geological Society, London, Special Publications, 280(1):1-34. https://doi.org/10.1144/sp280.1 [30] Li, C., Sun, K. K., Chen, B., 2017. Paleoproterozoic Granites and Meta-Mafic Rocks from Yingkou-Liaoyang Area of the Eastern Liaoning and Their Significance. Journal of Earth Sciences and Environment, 39(2):143-160 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201702002 [31] Li, J. H., Qian, X. L., Huang, X. N., et al., 2000. Tectonic Framework of North China Block and Its Cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1):1-10 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200001001 [32] Li, N. B., Luo, Y., Guo, S. L., et al., 2013. Zircon U-Pb Geochronology and Hf Isotope Geochemistry of Metamorphic Quartz-Monzonite Porphyry from Tongkuangyu Area, Zhongtiao Mountain and Its Geological Implications. Acta Petrologica Sinica, 29(7):2416-2424 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201307011 [33] Li, Q. G., Liu, S. W., Wang, Z. Q., et al., 2008. LA-ICP-MS U-Pb Geochronology of the Detrital Zircons from the Jiangxian Group in the Zhongtiao Mountain and Its Tectonic Significance. Acta Petrologica Sinica, 24(6):1359-1368 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806019 [34] Li, X. H., Li, W. X., Li, Z. X., 2007. Further Discussions on the Genetic Type and Tectonic Significance of Early Yanshan Granitoids in Nanling Area. Chinese Science Bulletin, 52(9):981-991 (in Chinese). doi: 10.1360/csb2007-52-9-981 [35] Liu, C. H., Zhao, G. C., Sun, M., et al., 2012. U-Pb Geochronology and Hf Isotope Geochemistry of Detrital Zircons from the Zhongtiao Complex:Constraints on the Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 222-223:159-172. https://doi.org/10.1016/j.precamres.2011.08.007 [36] Liu, S. W., Zhang, C., Liu, C. H., et al., 2007. EPMA Th-U-Pb Dating of Monazite for Zhongtiao and Lueliang Precambrian Metanmorphic Complexes. Earth Science Frontiers, 14(1):64-74 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60003-7 [37] Ludwig, K. R., 2000. User's Manual for Isoplot/Ex Version 2.2: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [38] Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks: An Introduction to Igenous Petrology. Longman Higher Education, London. [39] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956. [40] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [41] Shen, Q. H., 2009. The Recommendation of a Systematic List of Mineral Abbreviations. Acta Petrologica et Mineralogica, 28(5):495-500 (in Chinese with English abstract). [42] Su, Y. P., Zheng, J. P., Griffin, W. L., et al., 2014. Zircon U-Pb Ages and Hf Isotope of Gneissic Rocks from the Huai'an Complex:Implications for Crustal Accretion and Tectonic Evolution in the Northern Margin of the North China Craton. Precambrian Research, 255:335-354. https://doi.org/10.1016/j.precamres.2014.10.007 [43] Sun, D. Z., Hu, W. X., 1993. Precambrian Age of the Tectonic Framework and the Age of Crustal Structure of the Zhongtiao Mountains. Geology Publishing House, Beijing (in Chinese). [44] Sun, D. Z., Li, H. M., Lin, Y. X., et al., 1991. Precambrian Geochronology, Chronotectonic Framework and Model of Chronocrustal Structure of the Zhongtiao Mountains. Acta Geologica Sinica, 65(3):216-231 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1755-6724.1992.mp5001002.x [45] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19. [46] Sun, Q. Y., Zhou, Y. Y., Wang, W., et al., 2017. Formation and Evolution of the Paleoproterozoic Meta-Mafic and Associated Supracrustal Rocks from the Lushan Taihua Complex, Southern North China Craton:Insights from Zircon U-Pb Geochronology and Whole-Rock Geochemistry. Precambrian Research, 303:428-444. https://doi.org/10.1016/j.precamres.2017.05.018 [47] Sun, Y., Yu, Z. P., 1988. Geochemistry of Archean Shushui Complex. Geochimica, 17(4):319-325 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005176398 [48] Vervoort, J. D., Patchett, P. J., Albarède, F., et al., 2000. Hf-Nd Isotopic Evolution of the Lower Crust. Earth and Planetary Science Letters, 181(1-2):115-129. https://doi.org/10.1016/s0012-821x(00)00170-9 [49] Wang, C. L., Zhang, L. C., Dai, Y. P., et al., 2015. Geochronological and Geochemical Constraints on the Origin of Clastic Meta-Sedimentary Rocks Associated with the Yuanjiacun BIF from the Lüliang Complex, North China. Lithos, 212-215:231-246. https://doi.org/10.1016/j.lithos.2014.11.015 [50] Wang, G. D., Lu, J. S., Wang, H., et al., 2013. LA-ICP-MS U-Pb Dating of Zircons and 40Ar/39Ar Dating of Amphiboles of the Taihua Metamorphic Complex, Mt. Huashan, Southern Terminal of the Palaeoprotorozoic Trans-North China Orogen. Acta Petrologica Sinica, 29(9):3099-3114 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201309012 [51] Wang, G. D., Wang, H., Chen, H. X., et al., 2012. U-Pb Dating of Zircons from Metamorphic Rocks of the Taihua Metamorphic Complex, Mt. Huashan, Southern Margin of the Trans-North China Orogen. Acta Geologica Sinica, 86(9):1541-1552 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201209013 [52] Wang, G. D., Wang, H., Chen, H. X., et al., 2014. Metamorphic Evolution and Zircon U-Pb Geochronology of the Mts. Huashan Amphibolites:Insights into the Palaeoproterozoic Amalgamation of the North China Craton. Precambrian Research, 245:100-114. https://doi.org/10.1016/j.precamres.2014.02.004 [53] Wang, H. Z., Mo, X. X., 1995. An Outline of the Tectonic Evolution of China. Episodes, 18(1-2):6-16. https://doi.org/10.18814/epiiugs/1995/v18i1.2/003 [54] Wang, Z., Wen, G., 1957. Porphyry Copper in Zhongtiao Mountains. Acta Geologica Sinca, 37(4):401-415 (in Chinese with English abstract). [55] Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4):339-362. https://doi.org/10.1016/j.precamres.2008.10.002 [56] Xu, C. L., Xu, Y. H., Zhang, X., 1994. The Sequence and Age of the Zhongtiaoshan Metamoephic Rock Series. Regional Geology of China, (3):268-273 (in Chinese with English abstract). [57] Yang, C. H., Du, L. L., Ren, L. D., et al., 2015a. Early Precambrian Stratigraphic Division and Magamtic Evolution in the North Chian Craton. Science Press, Beijing (in Chinese). [58] Yang, C. H., Du, L. L., Ren, L. D., et al., 2015b. The Age and Tectonic Setting of Metavolcanic Rocks in the Tongkuangyu Deposit, Zhongtiao Mountain, and Their Constraints on Copper Mineralization. Acta Geoscientica Sinica, 36(5):613-633 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201505012 [59] Yang, C. H., Du, L. L., Song, H. X., et al., 2018. Stratigraphic Division and Correlation of the Pleoproterozoic Strata in the North China Craton:A Review. Acta Petrologica Sinica, 34(4):1019-1057 (in Chinese with English abstract). [60] Yu, X. Q., Liu, J. L., Li, C. L., et al., 2013. Zircon U-Pb Dating and Hf Isotope Analysis on the Taihua Complex:Constraints on the Formation and Evolution of the Trans-North China Orogen. Precambrian Research, 230:31-44. https://doi.org/10.1016/j.precamres.2012.12.008 [61] Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science China Earth Sciences, 43:219-232. https://doi.org/10.1007/BF02911947 [62] Zhai, M. G., Guo, J. H., Liu, W. J., 2005. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton:A Review. Journal of Asian Earth Sciences, 24(5):547-561. https://doi.org/10.1016/j.jseaes.2004.01.018 [63] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005 [64] Zhang, F. Q., Liu, J. Z., Ouyang, Z. Y., 1998. Greenstone Petro-Tectonic Frameworkof Cratonic Basement, North China. Chinese Journal of Geophysics, 41(S1):99-107 (in Chinese with English abstract). [65] Zhang, Q., Jin, W. J., Li, C. D., 2010. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index. Acta Petrologica Sinica, 26(4):985-1015 (in Chinese with English abstract). [66] Zhang, Q., Wang, Y., Li, C. D., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001 [67] Zhang, R. Y., Zhang, C. L., Diwu, C. R., et al., 2012. Zircon U-Pb Geochronology, Geochemistry and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain, Shanxi Province. Acta Petrologica Sinica, 28(11):3559-3573 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201211010 [68] Zhang, R. Y., Zhang, C. L., Sun, Y., 2013. Crustal Reworking in the North China Craton at~2.5 Ga:Evidence from Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the TTG Gneisses in the Zhongtiao Mountain. Acta Petrologica Sinica, 29(7):2265-2280 (in Chinese with English abstract). [69] Zhao, B., Wang, D. H., Hou, K. J., et al., 2012. Isochronology Study on Sushui Complex in Zhongtiao Mountains and Its Geological Significance. Journal of Earth Sciences and Environment, 34(1):1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201201001 [70] Zhao, F. Q., Li, H. M., Zuo, Y. C., et al., 2006. Zircon U-Pb Ages of Paleoproterozoic Granitoids in the Zhongtiao Mountains, Southern Shanxi, China. Geological Bulletin of China, 25(4):442-447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200604003 [71] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1-2):55-88. https://doi.org/10.1016/s0301-9268(00)00076-0 [72] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [73] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8):706-721. https://doi.org/10.1080/00206819809465233 [74] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1999. Thermal Evolution of Two Textural Types of Mafic Granulites in the North China Craton:Evidence for both Mantle Plume and Collisional Tectonics. Geological Magazine, 136(3):223-240. https://doi.org/10.1017/s001675689900254x [75] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2):45-73. https://doi.org/10.1016/s0301-9268(00)00154-6 [76] Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Ages of Granitoid Rocks in the Lüliang Complex:Implications for the Accretion and Evolution of the Trans-North China Orogen. Precambrian Research, 160(3-4):213-226. https://doi.org/10.1016/j.precamres.2007.07.004 [77] 白瑾, 戴凤岩, 颜耀强, 1997.中条山前寒武纪地壳演化.地学前缘, 4(4):281-289. [78] 邓晋福, 吴宗絮, 赵国春, 等, 1999.华北地台前寒武花岗岩类、陆壳演化与克拉通形成.岩石学报, 15(2):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199902004 [79] 第五春荣, 孙勇, 林慈銮, 等, 2007.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学.岩石学报, 23(2):253-262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702006 [80] 董春艳, 刘敦一, 李俊建, 等, 2007.华北克拉通西部孔兹岩带形成时代新证据:巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成.科学通报, 52(16):1912-1922. [81] 耿元生, 万渝生, 沈其韩, 等, 2000.吕梁地区早前寒武纪主要地质事件的年代框架.地质学报, 74(3):216-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200003003 [82] 耿元生, 杨崇辉, 万渝生, 2006.吕梁地区古元古代花岗岩浆作用——来自同位素年代学的证据.岩石学报, 22(2):305-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200602005 [83] 宫江华, 2013.西阿拉善地块早前寒武纪变质基底组成、性质、年代格架及归属(博士学位论文).北京: 中国地质科学院. [84] 郭丽爽, 刘树文, 刘玉琳, 等, 2008.中条山涑水杂岩中TTG片麻岩的锆石Hf同位素特征及其形成环境.岩石学报, 24(1):139-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200801011 [85] 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [86] 黄道袤, 张德会, 王世炎, 等, 2012.华北克拉通南缘豫西下汤地区2.3 Ga岩浆作用和1.94 Ga变质作用.地质论评, 58(3):565-577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201203017 [87] 蒋宗胜, 王国栋, 肖玲玲, 等, 2011.河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义.岩石学报, 27(12):3701-3717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201112016 [88] 李超, 孙克克, 陈斌, 2017.辽东营口-辽阳地区古元古代花岗岩和变质基性岩形成时代及意义.地球科学与环境学报, 39(2):143-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201702002 [89] 李江海, 钱祥麟, 黄雄南, 等, 2000.华北陆块基底构造格局及早期大陆克拉通化过程.岩石学报, 16(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200001001 [90] 李宁波, 罗勇, 郭双龙, 等, 2013.中条山铜矿峪变石英二长斑岩的锆石U-Pb年龄和Hf同位素特征及其地质意义.岩石学报, 29(7):2416-2424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201307011 [91] 李秋根, 刘树文, 王宗起, 等, 2008.中条山绛县群碎屑锆石LA-ICP-MS U-Pb测年及其地质意义.岩石学报, 24(6):1359-1368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806019 [92] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9):981-991. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200709001 [93] 刘树文, 张臣, 刘超辉, 等, 2007.中条山-吕梁山前寒武纪变质杂岩的独居石电子探针定年研究.地学前缘, 14(1):64-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200701006 [94] 沈其韩, 2009.推荐一个系统的矿物缩写表.岩石矿物学杂志, 28(5):495-500. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200905011 [95] 孙大中, 胡维兴, 1993.中条山前寒武纪年代构造格架和年代地壳结构.北京:地质出版社. [96] 孙大中, 李惠民, 林源贤, 等, 1991.中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究.地质学报, 65(3):216-231. [97] 孙勇, 于在平, 1988.涑水杂岩的地球化学特征.地球化学, 17(4):319-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005176398 [98] 王国栋, 卢俊生, 王浩, 等, 2013.华山太华变质杂岩中LA-ICP-MS及角闪石40Ar/39Ar定年.岩石学报, 29(9):3099-3114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201309012 [99] 王国栋, 王浩, 陈泓旭, 等, 2012.华北中部造山带南缘华山地区太华变质杂岩中锆石U-Pb定年.地质学报, 86(9):1541-1552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201209013 [100] 王植, 闻广, 1957.中条山斑岩铜矿.地质学报, 37(4):401-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201803011 [101] 徐朝雷, 徐有华, 张忻, 1994.中条山变质岩系的层序和年代讨论.中国区域地质, (3):268-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400629592 [102] 杨崇辉, 杜利林, 任留东, 等, 2015a.华北克拉通早前寒武纪地层划分对比及岩浆演化.北京:科学出版社. [103] 杨崇辉, 杜利林, 任留东, 等, 2015b.中条山铜矿峪变质火山岩的时代、构造背景及对成矿的制约.地球学报, 36(5):613-633. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201505012 [104] 杨崇辉, 杜利林, 宋会侠, 等, 2018.华北克拉通古元古代地层划分与对比.岩石学报, 34(4):1019-1057. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804010 [105] 张福勤, 刘建忠, 欧阳自远, 1998.华北克拉通基底绿岩的岩石大地构造学研究.地球物理学报, 41(S1):99-107. [106] 张旗, 金惟俊, 李承东, 等, 2010.再论花岗岩按照Sr-Yb的分类:标志.岩石学报, 26(4):985-1015. [107] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001 [108] 张瑞英, 张成立, 第五春荣, 等, 2012.中条山前寒武纪花岗岩地球化学、年代学及其地质意义.岩石学报, 28(11):3559-3573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201211010 [109] 张瑞英, 张成立, 孙勇, 2013.华北克拉通~2.5 Ga地壳再造事件:来自中条山TTG质片麻岩的证据.岩石学报, 29(7):2265-2280. [110] 赵斌, 王登红, 侯可军, 等, 2012.中条山涑水杂岩的同位素年代学研究及其地质意义.地球科学与环境学报, 34(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201201001 [111] 赵凤清, 李惠民, 左义成, 等, 2006.晋南中条山古元古代花岗岩的锆石U-Pb年龄.地质通报, 25(4):442-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200604003 -
dqkxzx-45-9-3372-附表.doc
-