Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data
-
摘要: 岩溶含水层具有高度的非均质性和各向异性,为定量识别济南泉域岩溶含水层发育状况,通过选取泉域岩溶水补给区和排泄区的地下水位动态数据,采用相关分析和频谱分析,研究其对降雨补给的响应特征.地下水位-降雨量的自相关和互相关分析表明,系统对降雨输入信号的敏感程度自补给区至排泄区逐渐降低,但记忆作用逐渐增强.相位分析结果表明泉域地下水位对降雨信号的响应存在滞后现象,自补给区至排泄区滞后时间逐渐延长,补给区地下水位与降雨具有更好的线性相关性.交叉振幅分析结果表明补给区地下水流中快速流约占20%~30%,而在排泄区快速流占比减少至2.5%~10.0%.岩溶含水系统地下水动力条件主要受岩溶发育程度等介质内部结构影响,济南泉域岩溶含水层岩溶发育程度较低,含水介质和水流通道以岩溶裂隙为主,地下水运动以基质流为主.Abstract: Karst aquifers are characterized by highheterogeneity and spatial variability of their media. Time-series analysis of precipitation and waterlevel (as input and output functions), including correlation, spectrum analysis, were applied to the Jinan karst spring system in Shandong Province, in order to study the hydrodynamic behavior and hydraulic properties of the aquifer system. Autocorrelation and cross-correlation analysis showed that the sensitivity of the system to precipitation input signal decreased gradually from the recharge area to the discharge area, but the memory effect increased gradually. Phase analysis results show that the response of water level to precipitation signal in Jinan spring area lags behind. The lag time from recharge area to discharge area gradually prolongs, and the recharge area has better linear correlation. The results show that the quick flow accounts for about 20%-30% of the subsurface flow in the recharge zone, and the ratio is reduced to 2.5%-10.0% in the discharge zone. The fluctuation of water level in karst system is mainly affected by the internal structure of karstic medium. The karstification degree of the aquifer in Jinan is fairly low, and groundwater movement is dominated by matrix flow.
-
Key words:
- Karst aquifer /
- Time-series analysis /
- Karstification degrees /
- Jinan /
- groundwater
-
表 1 济南泉域地下水位及降雨时间序列的ADF检验结果
Table 1. ADF test results of groundwater level and precipitation timeseries
变量 t统计量 临界值 检验结果 1% level 5% level 10% level A282 -3.036 67 -3.449 45 -2.869 85 -2.571 27 平稳* A2-30 -3.233 77 -3.449 45 -2.869 85 -2.571 27 平稳* 趵突泉 -3.096 72 -3.449 45 -2.869 85 -2.571 27 平稳* 黑虎泉 -3.242 34 -3.449 45 -2.869 85 -2.571 27 平稳* 降雨 -5.844 68 -3.449 45 -2.869 85 -2.571 27 平稳** 注:*为5%显著水平;**为1%显著水平. 表 2 地下水位时间序列自相关函数模型及其参数值
Table 2. Auto-correlation function model and its parameter value of groundwater level timeseries
点位 模型 块金常数C0 拱高C 基台值C0+C 自相关长度(d) R2 RSS 趵突泉 球状 1 -1.000 0 208 0.994 0.13 黑虎泉 球状 1 -1.005 -0.005 199 0.996 0.10 A282 指数 1 -1.228 -0.228 190 0.955 0.25 A2-30 指数 1 -1.330 -0.330 183 0.931 0.42 -
[1] Chen, H. H., Zhu, Y. F., Zhou, S. Z., 2002. Aligned Indicator Conditional Simulation of Probability of Karst-Fissure Media in Karst Area of North. Earth Science, 27(2): 168-172(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200202011.htm [2] Chen, Z. H., Grasby, S. E., Osadetz, K. G., 2004. Relation between Climate Variability and Groundwater Levels in the Upper Carbonate Aquifer, Southern Manitoba, Canada. Journal of Hydrology, 290(1/2): 43-62. https://doi.org/10.1016/j.jhydrol.2003.11.029 [3] Chi, G. Y., 2019. Identification of Dominant Seepage Channel in Jinan Karst Springs(Dissertation). University of Ji'nan, Ji'nan(in Chinese with English abstract). [4] Delbart, C., Valdes, D., Barbecot, F., et al., 2014. Temporal Variability of Karst Aquifer Response Time Established by the Sliding-Windows Cross-Correlation Method. Journal of Hydrology, 511(6): 580-588. https://doi.org/10.1016/j.jhydrol.2014.02.008 [5] Francesco, F., Doglioni, A., 2010. The Relation between Karst Spring Discharge and Rainfall by Cross-Correlation Analysis (Campania, Southern Italy). Hydrogeology Journal, 18(8): 1881-1895. https://doi.org/10.1007/s10040-010-0666-1 [6] Gárfias-Soliz, J., Llanos-Acebo, H., Martel, R., 2010. Time Series and Stochastic Analyses to Study the Hydrodynamic Characteristics of Karstic Aquifers. Hydrological Processes, 24(3): 300-316. https://doi.org/10.1002/hyp.7487 [7] Guo, Y., Qin, D. J., Li, L., et al., 2019. A Complicated Karst Spring System: Identified by Karst Springs Using Water Level, Hydrogeochemical, and Isotopic Data in Jinan, China. Water, 11(5): 947. https://doi.org/10.3390/w11050947 [8] Kang, F. X., Jin, M. G., Qin, P. R., 2011. Sustainable Yield of a Karst Aquifer System: A Case Study of Jinan Springs in Northern China. Hydrogeology Journal, 19(4): 851-863. https://doi.org/10.1007/s10040-011-0725-2 [9] Katsanou, K., Lambrakis, N., Tayfur, G., et al., 2015. Describing the Karst Evolution by the Exploitation of Hydrologic Time-Series Data. Water Resources Management, 29(9): 3131-3147. https://doi.org/10.1007/s11269-015-0987-x [10] Katz, B. G., DeHan, R. S., Hirten, J. J., et al., 1997. Interactions between Ground Water and Surface Water in the Suwannee River Basin, Florida. Journal of the American Water Resources Association, 33(6): 1237-1254. https://doi.org/10.1111/j.1752-1688.1997.tb03549.x [11] Lambrakis, N., Andreou, A. S., Polydoropoulos, P., et al., 2000. Nonlinear Analysis and Forecasting of a Brackish Karstic Spring. Water Resources Research, 36(4): 875-884. https://doi.org/10.1029/1999wr900353 [12] Larocque, M., Mangin, A., Razack, M., et al., 1998. Contribution of Correlation and Spectral Analyses to the Regional Study of a Large Karst Aquifer (Charente, France). Journal of Hydrology, 205(3/4): 217-231. https://doi.org/10.1016/s0022-1694(97)00155-8 [13] Lee, J. Y., Lee, K. K., 2000. Use of Hydrologic Time Series Data for Identification of Recharge Mechanism in a Fractured Bedrock Aquifer System. Journal of Hydrology, 229(3/4): 190-201. https://doi.org/10.1016/s0022-1694(00)00158-x [14] Li, C. S., Wu, X. C., Sun, B., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(Suppl.1): 313-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1027.htm [15] Liu, J., Liu, D., 2010. Research on the Response Feature of Tunnel Inflow to Precipitation in a Karstic Area. Coal Geology & Exploration, (2): 32-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201002009.htm [16] Liu, L. H., Chen, X. H., Xu, G. Q., et al., 2011. Use of Hydrologic Time-Series Data for Identification of Hydrodynamic Function and Behavior in a Karstic Water System in China. Hydrogeology Journal, 19(8): 1577-1585. https://doi.org/10.1007/s10040-011-0774-6 [17] Mangin, A., 1984. Better Knowledge Water Systems from Spectral and Correlation Analysis. Journal of Hydrology, 67: 25-43. doi: 10.1016/0022-1694(84)90230-0 [18] Massei, N., Dupont, J. P., Mahler, B. J., et al., 2006. Investigating Transport Properties and Turbidity Dynamics of a Karst Aquifer Using Correlation, Spectral, and Wavelet Analyses. Journal of Hydrology, 329(1/2): 244-257. https://doi.org/10.1016/j.jhydrol.2006.02.021 [19] Mathevet, T., Lepiller, M. L., Mangin, A., 2004. Application of Time-Series Analyses to the Hydrological Functioning of an Alpine Karstic System: The Case of Bange-L'Eau-Morte. Hydrology and Earth System Sciences, 8(6): 1051-1064. https://doi.org/10.5194/hess-8-1051-2004 [20] Padilla, A., 1995. Study of Hydrographs of Karstic Aquifers by Means of Correlation and Cross-Spectral Analysis. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(1): A8. https://doi.org/10.1016/0148-9062(96)87402-x [21] Panagopoulos, G., Lambrakis, N., 2006. The Contribution of Time Series Analysis to the Study of the Hydrodynamic Characteristics of the Karst Systems: Application on Two Typical Karst Aquifers of Greece (Trifilia, Almyros Crete). Journal of Hydrology, 329(3/4): 368-376. https://doi.org/10.1016/j.jhydrol.2006.02.023 [22] Qi, X. F., Yang, L. Z., Han, Y., et al., 2012. Cross Wavelet Analysis of Groundwater Level Regimes and Precipitation-Groundwater Level Regime in Ji'nan Spring Region. Advances in Earth Science, 27(9): 969-978(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201209007.htm [23] Qian, J. Z., Zhan, H. B., Wu, Y. F., et al., 2006. Fractured-Karst Spring-Flow Protections: A Case Study in Jinan, China. Hydrogeology Journal, 14(7): 1192-1205. https://doi.org/10.1007/s10040-006-0061-0 [24] Rahnemaei, M., Zare, M., Nematollahi, A. R., et al., 2005. Application of Spectral Analysis of Daily Water Level and Spring Discharge Hydrographs Data for Comparing Physical Characteristics of Karstic Aquifers. Journal of Hydrology, 311(1/2/3/4): 106-116. https://doi.org/10.1016/j.jhydrol.2005.01.011 [25] Sun, B., Peng, Y. M., 2014. Boundary Condition, Water Cycle and Water Environment Changes in the Ji'nan Spring Region. Carsologica Sinica, 33(3): 272-279(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201403003.htm [26] Wang, J. L., Jin, M. G., Lu, G. P., et al., 2016. Investigation of Discharge-Area Groundwaters for Recharge Source Characterization on Different Scales: The Case of Jinan in Northern China. Hydrogeology Journal, 24(7): 1723-1737. https://doi.org/10.1007/s10040-016-1428-5 [27] Wang, J. Y., Wang, J. L., Jin, M. G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5): 821-831(in Chinese with English abstract). [28] Wang, Q. B., Duan, X. M., Gao, Z. D., et al., 2009. Groundwater Flow Modelling in the Ji'nan Karst Spring Area. Hydrogeology & Engineering Geology, 36(5): 53-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200905015.htm [29] Xing, L. T., Li C. S., Zhou J., et al., 2017. The Characteristics of Karst Channel in the Spring of Ji'nan Spring Region. Science Technology and Engineering, 17(17): 57-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS201717005.htm [30] Yuan, D. X., 1993. Karstology in China. Geological Press, Beijing, 1-8(in Chinese). [31] Zhang, J. G., Chen, H. H., Zhu, Y. F., et al., 2004. Study on the Method Multiply-Indicator Kriging in Karst-Fissure Medium in Jinan. Hydrogeology & Engineering Geology, (2): 25-28(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/swdzgcdz200402006 [32] Zheng, X., Chen, X., Zhang, Z. C., 2014. Rainfall-Runoff Response Characteristic Analysis of Chenqi Karst Watershed in Southern China. Earth and Environment, 42(2): 221-227(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-environment_thesis/0201253201654.html [33] 迟光耀, 2019. 济南岩溶大泉优势渗流通道识别(硕士学位论文). 济南: 济南大学. [34] 陈鸿汉, 朱远峰, 邹胜章, 2002. 中国北方岩溶区含水岩溶裂隙介质的序列指示模拟研究. 地球科学, 27(2): 168-172. doi: 10.3321/j.issn:1000-2383.2002.02.008 [35] 刘建, 刘丹, 2010. 岩溶隧道涌水对降雨的响应特征. 煤田地质与勘探, (2): 32-35. doi: 10.3969/j.issn.1001-1986.2010.02.008 [36] 李常锁, 武显仓, 孙斌, 等, 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(增刊1): 313-325. doi: 10.3799/dqkx.2018.206 [37] 祁晓凡, 杨丽芝, 韩晔, 2012. 济南泉域地下水位动态及其对降水响应的交叉小波分析. 地球科学进展, (9): 969-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201209007.htm [38] 孙斌, 彭玉明, 2014. 济南泉域边界条件、水循环特征及水环境问题. 中国岩溶, 33(3): 272-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201403003.htm [39] 王珺瑜, 王家乐, 靳孟贵, 2017. 济南泉域岩溶水水化学特征及其成因. 地球科学, 42(5): 821-831. doi: 10.3799/dqkx.2017.070 [40] 王庆兵, 段秀铭, 高赞东, 等, 2009. 济南岩溶泉域地下水流模拟. 水文地质工程地质, 36(5): 53-60. doi: 10.3969/j.issn.1000-3665.2009.05.013 [41] 邢立亭, 李常锁, 周娟, 等, 2017. 济南泉域岩溶径流通道特征. 科学技术与工程, 17(17): 57-65. doi: 10.3969/j.issn.1671-1815.2017.17.005 [42] 袁道先, 1993. 中国岩溶学. 北京: 地质出版社, 1-8. [43] 郑雪, 陈喜, 张志才, 2014. 贵州普定陈旗喀斯特泉的降雨-径流响应特征分析. 地球与环境, 42(2): 221-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201402014.htm [44] 张建国, 陈鸿汉, 朱远峰, 等, 2004. 济南泉域岩溶裂隙介质的多重指示克里格法研究. 水文地质工程地质, (2): 25-28. doi: 10.3969/j.issn.1000-3665.2004.02.006