Genesis Mechanism of Tuffaceous Materials in Paleogene Large-Scale Glutenite Reservoirs and Implications for Hydrocarbon Exploration in the Huizhou Depression, Pearl River Mouth Basin
-
摘要: 随着全球能源需求日益增长,砂砾岩油气藏研究逐步深入,新疆准噶尔盆地玛湖大型砾岩油藏、渤海海域渤中19-6大型整装凝析气田及珠江口盆地H6-6构造超百亿方天然气勘探获重大发现,使得砂砾岩体成为油气勘探新领域.基于镜下薄片、扫描电镜与振幅-方差体地震属性分级-拾取-融合分析,综合表征砂砾岩储层中凝灰质性质、分布、来源及其对储层物性与含油气性影响.结果表明弥散分布凝灰质是H6-6构造古近系规模性砂砾岩储层异常的内在原因,其中文昌组和恩平组存在3个火山口,文昌期火山活动持续强烈,以基性和中酸性岩浆溢流或爆炸式喷发,凝灰质大多以相对粗的火山碎屑颗粒形式存在,缺少细粒凝灰质充填孔隙;恩平期火山活动减弱,以中酸性岩浆爆炸式喷发,凝灰质多以细粒凝灰质充填粒间孔隙,对储层破坏作用明显,整体上低凝灰质含量有利于储层孔隙保存,储层含油性好.系统解析砂砾岩储层中凝灰质成因机制对揭示珠江口盆地古近系形成演化有理论意义,同时可服务大中型砂砾岩油气田的勘探需求.Abstract: With increasing of the global energy consumption, the study of glutenite oil and gas reservoirs have been gradually deepened. Especially, significant discoveries of conglomeratic reservoirs have been made in the Mahu area, Junggar basin of Xinjiang, integrated condensate gas field of BZ19-6 in the offshore Bohai Bay Basin, and discovered over 10 billion cubic meters of gas in the H6-6 structure, Pearl River Mouth Basin, which making the glutenite reservoirs have become a new field of oil and gas exploration.The properties, distribution and sources of volcanic tuff in the glutenite reservoir and their effects on the reservoir physical properties and oil and gas properties were comprehensively characterized based on the thin section, scanning electron microscope and amplitude-variance seismic attribute grading-picking-fusion analysis. The results show that the dispersed distribution of volcanic tuff is the inherent reason of the Paleogene large-scale glutenite reservoir anomaly in the H6-6 structure. There are 3 craters in the Wenchang and Enping formations. The Wenchang volcanic activities continued to be intensive and were represented by magma overflow or explosive eruption of mafic and intermediate-felsic compositions. Most of the tuffaceous compositions are presented as the relatively coarse rock-fragments with the lack of fine-grained tuff filling pores. The Enping volcanic period was weakened with the intermediate-felsic magmatic explosive eruption. The intergranular pores are mostly filled with fine-grained tuffaceous compositions, which had obvious damage to the reservoir of oil and gas. As a whole, low tuffaceous contents are good for the preservation of reservoir pores. Systematic analysis of the genetic mechanism of the tuffaceous compositions in the glutenite reservoir is of theoretical significance to reveal the formation and evolution of the Paleogene Pearl River Mouth Basin, and it can also meet the exploration demands of large and medium-sized glutenite oil and gas reservoirs.
-
Key words:
- H6-6 structure /
- paleogene /
- glutenite reservoir /
- tuffaceousmaterials /
- volcanic apparatus /
- petroleum geology
-
图 2 珠江口盆地H6⁃6构造文昌组与恩平组中凝灰岩或凝灰质岩石的镜下鉴定特征
a,b. 为棱角状-次棱角状的长石和石英晶屑;c,d. 为具有内凹的不规则熔蚀边的石英晶屑;e,f. 为具有火山岩结构的岩屑,其中e为具交织结构的安山岩岩屑,f为具斑状结构的流纹岩岩屑,且见碎屑石英嵌入流纹岩中(箭头所指);g. 为具霏细结构的火山玻璃;h. 为具鸡骨状和镰刀状的火山玻璃质碎屑
Fig. 2. Microscopical identification of sedimentary tuff or tuffaceous materials from Wenchang Formation and Enping Formation in the H6⁃6 structure, Pearl River Mouth Basin
图 3 珠江口盆地H6⁃6构造文昌组-恩平组火山机构三维雕刻(a, b)及火山喷发模型(c)
文昌组早期以玄武岩溢流式喷发为主,中间夹流纹质岩浆爆炸式喷发,晚期以中酸性岩浆爆炸式喷发为主;恩平组主体以中酸性岩浆爆炸式喷发为主,早期以安山质和流纹质岩浆为主,晚期以流纹质岩浆为主;蓝色区域代表受流纹质火山喷发影响的H6⁃6⁃1、H6⁃6⁃3与H6⁃6⁃5井,绿色区域代表受安山质火山喷发影响的H6⁃6⁃1、H6⁃6⁃2与H6⁃6⁃4A井,红色实线代表受玄武质火山喷发影响的H6⁃6⁃1与H6⁃6⁃4A井;左上角照片参考墨西哥科利马现代活安山岩火山爆炸式喷发,右上角照片参考夏威夷玄武岩溢流式喷发
Fig. 3. 3⁃D volcanic sculpture (a, b) and eruption model (c) of the Wenchang Formation and Enping Formation in the H6⁃6 structure, Pearl River Mouth Basin
图 5 珠江口盆地H6⁃6构造凝灰质微观赋存特征
a. 颗粒分选差,粒间充填凝灰质,H6⁃6⁃1井3 158.4 m,恩平组;b. 凝灰质蚀变为自生绿泥石强烈充填孔隙,H6⁃6⁃1井3 158.4 m,恩平组;c. 长柱状呈集合体形态的浊沸石与绿泥石伴生,HZ6⁃6⁃1井3 158.4 m,恩平组;d. 颗粒分选好,原生孔隙发育,H6⁃6⁃1井3 399.4 m,文昌组;e. 火山岩岩屑发生溶蚀形成次生孔隙,H6⁃6⁃1井3 399.4 m,文昌组;f. 粒间孔隙比较发育,可见局部发育次生石英和绿蒙混层矿物,H6⁃6⁃1井3 399.4 m,文昌组;Q. 石英;C/S. 绿蒙混层矿物
Fig. 5. Photomicrographs of tuffaceous materials in the H6⁃6 structure, Pearl River Mouth Basin
表 1 珠江口盆地H6⁃6构造井中凝灰质岩石垂向分布特征
Table 1. Vertical distribution characteristics of tuffaceous materials in the H6⁃6 structure, Pearl River Mouth Basin
H6-6-1 H6-6-4A H6-6-4 H6-6-3 H6-6-2 H6-6-5 EP21 / 中酸性
凝灰质中酸性
凝灰质/ 中酸性
凝灰质流纹质
凝灰质EP22 流纹质
凝灰质/ 中酸性
凝灰质/ 中酸性
凝灰质/ EP23 流纹质/
安山质
凝灰质中酸性凝灰质
安山质火山角砾凝灰质
安山质
火山角砾流纹质
凝灰质中酸性
凝灰质流纹质
凝灰质WC41 流纹质/
安山质
凝灰质中酸性凝灰质
安山质火山角砾安山质
火山角砾流纹质
凝灰质
安山质
火山角砾中酸性
凝灰质未钻遇 WC42 流纹质
凝灰质中酸性凝灰质
安山质火山角砾未钻遇 未钻遇 玄武岩 玄武岩 WC43 流纹质
凝灰质中酸性凝灰质
安山质火山角砾 -
[1] An, F., Wei, S. N., Fang, Z. K., et al., 2019. Petrology and Zircon U-Pb Geochronology of Tuffaceous Conglomerate in the Xibeikulasi Formation, West Junggar, and Its Implication for Sedimentary Sequence. Acta Geologica Sinica, 93(8): 1954-1967 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201908009.htm [2] Bahlis, A. B., De Ros, L. F., 2013. Origin and Impact of Authigenic Chlorite in the Upper Cretaceous Sandstone Reservoirs of the Santos Basin, Eastern Brazil. Petroleum Geoscience, 19(2): 185-199. https://doi.org/10.1144/petgeo2011-007 [3] Bloch, S., Lander, R. H., Bonnell, L., 2002. Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability. AAPG Bulletin, 86(2): 301-328. https://doi.org/10.1306/61eed634-173e-11d7-8645000102c1865d [4] Chen, C. M., Shi, H. S., Xu, S. C., et al., 2003. Tertiary Hydrocarbon Accumulation Condition in Pearl River Mouth Basin. Science Press, Beijing(in Chinese with English abstract). [5] Chen, X., Zhang, C., Qin, C. G., et al., 2018. Characteristics and Evolutionary Model of Paleogene Structures in Southern Huizhou Depression, Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 38(2): 88-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201802009.htm [6] Cheng, R. H., Shen, Y. J., Yan, J.B., et al., 2010. Diagenesis of Volcaniclastic rocks in Hailaer Basin. Acta Petrologica Sinica, 26(1): 47-54 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201001007.htm [7] Colella, A., Prior, D. B., 2009. Coarse-Grained Deltas. Blackwell Publishing Ltd., London, 1-10. [8] Guo, M. Z., Shou, J. F., Xu, Y., et al., 2016. Distribution and Controlling Factors of Permian Zeolite Cements in Zhongguai-Northwest Margin of Junggar Basin. Acta Petrolei Sinica, 37(6): 695-705 (in Chinese with English abstract). http://www.researchgate.net/publication/305375068_Distribution_and_controlling_factors_of_Permian_zeolite_cements_in_Zhongguai-Northwest_margin_of_Junggar_Basin [9] Hassan, B., Reza, R. M., Nazhat, D., et al., 2011. Evaluation of Damage Mechanisms and Skin Factor in Tight Gas Reservoirs. SPE European Formation Damage Conference, Netherlands, 1-13. [10] Itoh, T., Kato, S., Miyairi, M., 1982. A Quick Method of Log Interpretation for Very Low Resistivity Volcanic Tuff by the Use of CEC Data. Proceedings of the 23rd SPWLA Annual Logging Symposium. Corpus Christi, Texas. [11] Jia, Z. Z., Lin, C. Y., Ren, L. H., et al., 2016. Diagenesis and Reservoir Quality Evolution of Low Permeability Tuffaceous Sandstones in Suderte Oilfield. Journal of Jilin University (Earth Science Edition), 46(6): 1624-1636 (in Chinese with English abstract). http://www.researchgate.net/publication/311930943_Diagenesis_and_reservoir_quality_evolution_of_low_permeability_tuffaceous_sandstones_in_suderte_oilfield [12] Khatchikian, A., Lesta, P., 1973. Log Evaluation of Tuffites and Tuffaceous Sandstones in Southern Argentina. Proceedings of the SPWLA 14th Annual Logging Symposium. Lafayette, Louisiana. [13] Li, X. B., Wang, J. W., 2007. The Formation and Evolution of Volcanicdust Fillings of Sandstone in Coal Measures Strata of Ordos Basin. Acta Petrologica et Mineralogica, 26(1): 42-48(in Chinese with English abstract). http://www.cqvip.com/QK/94932X/20071/23722633.html [14] Li, Z., Guo, H., Wang, D. X., et al., 2005. Mesozoic-Cenozoic Tectonic Transition in Kuqa Depression-Tianshan, Northwest China: Evidence from Sandstone Detrital and Geochemical Records. Sciencein China Series D: EarthS ciences, 48(9): 1387-1402 (in Chinese with English abstract). doi: 10.1007/BF02906648 [15] Liu, Q. F., Fu, Z., Hou, L. H., et al., 2008. Clay Complexes and Geneses of the Xinganling Group in the Beier Depression of the Hailar Basin. Acta Mineralogica Sinica, 28(1): 43-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200801007.htm [16] Meng, Q. A., Li, J. H., Li, Y., et al., 2020. Genetic Mechanism of High Content Tuffaccous Clastic Rock Reservoir in Hailar-Tamucage Basin. Journal of Jilin University (Earth Science Edition), 50(2): 569-578 (in Chinese with English abstract). [17] Mishra, B., Pandya, K. L., Maejima, W., 2004. Alluvial Fan-Lacustrine Sedimentation and Its Tectonic Implications in the Cretaceous Athgarh Gondwana Basin, Orissa, India. Gondwana Research, 7(2): 375-385. https://doi.org/10.1016/s1342-937x(05)70791-7 [18] Pan, B. Z., Liu, S. H., Huang, B.G., et al., 2016. Application of the CEC Ratio Method in Evaluation of Tuffaccous Sandstone Reservoirs: an Example in the X Depressionof Hailar-Tamtsag Basin. Chinese Journal of Geophysics, 59(5): 1920-1926 (in Chinese with English abstract). doi: 10.1002/cjg2.20242 [19] Scholz, C. A., Rosendahl, B. R., Scott, D. L., 1990. Development of Coarse-Grained Facies in Lacustrine Rift Basins: Examples from East Africa. Geology, 18(2): 140. https://doi.org/10.1130/0091-7613(1990)018<0140:docgfi>2.3.co;2 doi: 10.1130/0091-7613(1990)018<0140:docgfi>2.3.co;2 [20] Shi, H.S., Shu, Y., Du, J. Y., et al., 2017. Petroleum Geology of Paleogene in Pearl River Mouth Basin. Geology Press, Beijing(in Chinese with English abstract). [21] Shi, H. S., Yu, S. M., Mei, L. F., et al., 2009. Features of Paleogene Episodic Rifting in Huizhou Fault Depression in the Pearl River Mouth Basin. Natural Gas Industry, 29(1): 1-5 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_natural-gas-industry_thesis/0201218643919.html [22] Sun, S.P., Liu, Y. S., Zhong, R., et al., 2001. Classification of Pyroclastic Rocks and Trend of Volcanic Sedimentology: A Review. Acta Petrologica et Mineralogic, 20(3): 313-317 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200103013.htm [23] Wang, H. Y., Fan, T. L., Xiao, Y. Y., et al., 2010. EffectofTuffaceous Componentson Physical Property of Sandstone Reservoir. Acta Pet. Rolel. Sinica, 31(3): 432-439(in Chinese with English abstract). http://www.researchgate.net/publication/287469833_Effect_of_tuffaceous_components_on_physical_property_of_sandstone_reservoir [24] Wanas, H. A., Sallam, E., Zobaa, M. K., et al., 2015. Mid-Eocene Alluvial-Lacustrine Succession at Gebel El-Goza El-Hamra (Shabrawet Area, NE Eastern Desert, Egypt): Facies Analysis, Sequence Stratigraphy and Paleoclimatic Implications. Sedimentary Geology, 329: 115-129. https://doi.org/10.1016/j.sedgeo.2015.09.006 [25] Wang, P., 2009. Study of Logging Interpretation for Tuffaceous Sands Reservoir in Wuerxun Depression(Dissertation). Jilin University, Changchun, 1-4(in Chinese with English abstract). [26] Wang, Z. H., Zhu, X. M., Sun, Z. C., et al., 2015. Igneous Lithology Identification and Lithofacies Classification in the Basin Using Logging Data: Taking Junggar Basin as an Example. Earth Science Frontiers, 22(3): 254-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201503024.htm [27] Wu, S., Feng, W., Yin, S., et al., 2016. Research Advances in Alluvial Fan Depositional Architecture. Journal of Paleogeography, 18(4): 497-512 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GDLX201604002&dbcode=CJFD&year=2016&dflag=pdfdown [28] Xu, C.G., Yu, H.B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 1-14(in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30001-1 [29] Xue, Y.A., Zhao, M., Liu, X.J., 2021. Reservoir Characteristics and Controlling Factors of the Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin. Journal of Earth Science, 32(4): 919-926. https://doi.org/10.1007/s12583-021-1415-1 [30] Yan, J., Chen, S., Cheng, L., et al, 2009. Simulation Experiment for Effects of Lake Level Change on Fan Delta Development. Journal of China University of Petroleum, 33(6): 1-4 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYDX200906003.htm [31] Yu, X., Qu, J., Tan, C., et al. 2014. Conglomerate Lithofacies and Origin Models of Fan Deltas of Baikouquan Formation in Mahu Sag, Junggar Basin. Xinjiang Petroleum Geology, 35(6): 619-627 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/xjsydz201406001 [32] Yuan, X.J., Qiao, H.S., 2002. Exploration of Subtle Reservoir in Prolific Depression of Bohai Bay Basin. Oil & Gas Geology, 23(2): 130-133 (in Chinese with English abstract). http://www.researchgate.net/publication/285892546_Exploration_of_subtle_reservoir_in_prolific_depression_of_Bohai_Bay_Basin [33] Zhang, H., Zhou, A. C., Guo, M. T., et al., 2000. The Effect of Depositional Setting on Alteration of Landing ASH. Acta Sedimentologica Sinica, 18(4): 515-520(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb200004006 [34] Zhu, H. T., Liu, Y.M., Wang, Y. L., et al., 2014. VolcanicEruption Phases and 3-D Characterization of Volcanic Rocks in BZ34-9 Block of Huanghekou Sag, Bohai Bay Basin. Earth Science, 39(9): 1309-1316 (in Chinese with English abstract). [35] Zhu, M., Dai, Y. D., Zhu, J. Z., et al., 2017. Geological Characteristics and Accumulation Mechanism of Paleocene Reservoir in Huizhou Sag, Pearl River Mouth Basin. China Offshore Oil and Gas, 29(1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHSD201701001.htm [36] Zhu, X. M., Sun, C., Liu C. L., et al., 2007. Reservoir Diagenesis and Fluid-Rock Interaction Simulation of the Sulige Gas Field in the Ordos Basin. Geology in China, 34(2): 276-282(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi200702009 [37] 安芳, 魏少妮, 方正坤, 等, 2019. 西准噶尔希贝库拉斯组凝灰质砂砾岩岩石学和锆石U-Pb年代学及对沉积层序的指示意义. 地质学报, 93(8): 1954-1967. doi: 10.3969/j.issn.0001-5717.2019.08.009 [38] 常丽华, 曹林, 高福红, 2009. 火成岩鉴定手册. 北京: 地质出版社, 103-113. [39] 陈翔, 张成, 秦成岗, 等, 2018. 珠江口盆地惠州凹陷西南部地区古近系构造特征及演化模式. 海洋地质与第四纪地质, 38(2): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201802009.htm [40] 陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社. [41] 程日辉, 沈艳杰, 颜景波, 等, 2010. 海拉尔盆地火山碎屑岩的成岩作用. 岩石学报, 26(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001007.htm [42] 郭沫贞, 寿建峰, 徐洋, 等, 2016. 准噶尔盆地中拐-西北缘地区二叠系沸石胶结物分布与控制因素. 石油学报, 37(6): 695-705. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201606001.htm [43] 贾珍臻, 林承焰, 任丽华, 等, 2016. 苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化. 吉林大学学报(地球科学版), 46(6): 1624-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201606003.htm [44] 李向博, 王建伟. 2007. 煤系地层中砂岩火山尘填隙物的成岩作用特征——以鄂尔多斯盆地天然气储层为例. 岩石矿物学杂志, 26(1): 42-48. doi: 10.3969/j.issn.1000-6524.2007.01.007 [45] 李忠, 郭宏, 王道轩, 等, 2005. 库车坳陷——天山中、新生代构造转折的砂岩碎屑与地球化学记录. 中国科学(D辑: 地球科学), 35(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200501001.htm [46] 刘钦甫, 付正, 侯丽华, 等, 2008. 海拉尔盆地贝尔凹陷兴安岭群储层粘土矿物组成及成因研究. 矿物学报, 28(1): 43-47. doi: 10.3321/j.issn:1000-4734.2008.01.007 [47] 蒙启安, 李军辉, 李跃, 等, 2020. 海拉尔-塔木察格盆地中部富油凹陷高含凝灰质碎屑岩储层成因及油气勘探意义. 吉林大学学报(地球科学版), 50(2): 569-578. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002021.htm [48] 潘保芝, 刘思慧, 黄布宙, 等, 2016. CEC比值法在凝灰质砂岩储层测井评价中的应用——以海-塔盆地X凹陷凝灰质砂岩储层为例. 地球物理学报, 59(5): 1920-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201605034.htm [49] 施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系石油地质. 北京: 地质出版社. [50] 施和生, 于水明, 梅廉夫, 等, 2009. 珠江口盆地惠州凹陷古近纪幕式裂陷特征. 天然气工业, 29(1): 1-5. doi: 10.3787/j.issn.1000-0976.2009.01.001 [51] 孙善平, 刘永顺, 钟蓉, 等, 2001. 火山碎屑岩分类评述及火山沉积学研究展望. 岩石矿物学杂志, 20(3): 313-317. doi: 10.3969/j.issn.1000-6524.2001.03.014 [52] 王宏语, 樊太亮, 肖莹莹, 等, 2010. 凝灰质成分对砂岩储集性能的影响. 石油学报, 31(3): 432-439 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003013.htm [53] 王鹏, 2009. 乌尔逊凹陷凝灰质砂岩储层测井解释方法研究(博士学位论文). 长春: 吉林大学, 1-4. [54] 王泽华, 朱筱敏, 孙中春, 等, 2015. 测井资料用于盆地中火成岩岩性识别及岩相划分: 以准噶尔盆地为例. 地学前缘, 22(3): 254-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503024.htm [55] 吴胜和, 冯文杰, 印森林, 等, 2016. 冲积扇沉积构型研究进展. 古地理学报, 18(4): 497-512. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201604002.htm [56] 徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm [57] 鄢继华, 陈世悦, 姜在兴, 2005. 东营凹陷北部陡坡带近岸水下扇沉积特征. 石油大学学报(自然科学版), (1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200501003.htm [58] 于兴河, 瞿建华, 谭程鹏, 等, 2014. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式. 新疆石油地质, 35(6): 619-627. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201406002.htm [59] 袁选俊, 谯汉生, 2002. 渤海湾盆地富油气凹陷隐蔽油气藏勘探. 石油与天然气地质, 23(2): 130-133. doi: 10.3321/j.issn:0253-9985.2002.02.005 [60] 张慧, 周安朝, 郭敏泰, 等, 2000. 沉积环境对降落火山灰蚀变作用的影响——以大青山晚古生代煤系为例. 沉积学报, 18(4): 515-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200004005.htm [61] 朱红涛, 刘依梦, 王永利, 等, 2014. 渤海湾盆地黄河口凹陷BZ34-9区带火山岩三维刻画及火山喷发期次. 地球科学, 39(9): 1309-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409006.htm [62] 朱明, 代一丁, 朱俊章, 等, 2017. 珠江口盆地惠州凹陷古近系油藏地质特征及成藏机理. 中国海上油气, 29(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201701001.htm [63] 朱筱敏, 孙超, 刘成林, 等, 2007. 鄂尔多斯盆地苏里格气田储层成岩作用与模拟. 中国地质, 34(2): 276-282. doi: 10.3969/j.issn.1000-3657.2007.02.009