Paleoclimate Evolution and Elemental Geochemical Response during Middle Jurassic-Early Cretaceous in Tectonic Regime Transition Period in the North Yellow Sea Basin
-
摘要: 中侏罗世-早白垩世华北地台东部的北黄海盆地受古亚洲构造体制向滨太平洋构造体制转换的影响,其构造演化经历了伸展-反转挤压-伸展的转变.构造体制的差异不但表现在大地构造性质及其产生的地质效应上,也表现在盆地沉积特征、古生物及古气候等方面.本文以北黄海盆地东部坳陷X1井中侏罗统至下白垩统为研究对象,利用泥岩元素地球化学特征对古气候的指示,结合盆地沉积特征及古生物资料,对古气候演化展开研究.研究显示,中侏罗世-早白垩世X1井泥岩样品的Sr/Cu比值(2.12~34.10)、Sr/Ba比值(0.16~1.60)、Rb/Sr比值(0.13~1.23)、Fe2O3/FeO比值(0.22~11.10)、V/Cr比值(0.91~1.78)、V/Sc比值(4.89~8.33)、Ni/Co比值(1.14~3.85)、δU比值(0.50~0.84)和U/Th比值(0.11~0.24)的纵向变化反映古气候经历了温湿→整体湿润、短暂干热→干热的演化.沉积物经历了暗色细粒沉积物为主→灰色、灰色夹灰绿色、灰色与红褐色互层细粒沉积物为主→灰色粗粒沉积物和红褐色、灰黄色细粒沉积物为主的变化.古生物经历了喜湿植物丰富→喜热植物出现→喜热植物丰富的过程.结果表明,受古亚洲构造体制和滨太平洋构造体制的影响,华北地台向北漂移,北黄海盆地古气候经历了由中侏罗世-晚侏罗世早期以温湿气候为主,至晚侏罗世晚期-早白垩世早期整体相对湿润,出现短暂干热气候,到早白垩世中期-早白垩世晚期为干热气候的演化.北黄海盆地中侏罗世-早白垩世古气候由温湿向干热的转变正是对华北地台东部晚中生代两大构造体制转换的响应.Abstract: The North Yellow Sea basin in the eastern part of the North China platform from the Middle Jurassic to the Early Cretaceous was influenced by the transformation from Paleo-Asian tectonic system to Marginal Pacific tectonic system, and its tectonic evolution experienced transformations of extension-compression-extension. The differences of tectonic systems are shown not only in the geotectonic properties and their geological effects, but also in the sedimentary characteristics of the basin, paleontology and paleoclimate. In this paper, the Middle Jurassic to Lower Cretaceous of the well X1 in the eastern depression of the North Yellow Sea basin is taken as the research object, and the paleoclimate evolution is studied by using the indication of mudstone element geochemical characteristics to paleoclimate, combined with basin sedimentary characteristics and paleobiological data. Research results show that, the longitudinal changes of Sr/Cu(2.12-34.10), Sr/Ba(0.16-1.60), Rb/Sr(0.13-1.23), Fe2O3/FeO(0.22-11.10), V/Cr(0.91-1.78), V/Sc(4.89-8.33), Ni/Co(1.14-3.85), δU(0.50-0.84), U/Th(0.11-0.24) from the Middle Jurassic to the Early Cretaceous reflect that the paleoclimate evolution experienced variations from warm and humid to whole humid, short dry and hot to dry and hot. The sediments experienced the main changes form dark fine-grained sediments to gray, gray interbedded with gray-green, gray and reddish brown interbedded fine sediments to gray coarse-grained sediments and reddish-brown and grayish-yellow fine-grained sediments. Paleontology experienced the process of abundance of hygrophilous plants-appearance of heat-loving plants-abundance of heat-loving plants. The results show that the North China platform drifted northward due to the influence of Paleo-Asian tectonic system and Marginal Pacific tectonic system. At the same time, the paleoclimate evolution of the North Yellow Sea basin underwent a dramatic change from the Middle Jurassic to the late Late Cretaceous; during the Middle Jurassic to the early Late Jurassic, it was dominated by warm and humid climate; from the late Late Jurassic to the early Early Cretaceous the whole climate was relatively wet, with a short dry and hot climate; from the middle Early Cretaceous to the late Early Cretaceous it was dry and hot climate. The paleoclimate in the North Yellow Sea basin has experienced the evolution from a warm and humid climate to dry and hot climate during the Middle Jurassic-the Early Cretaceous, which is a response to the transformation of two major Mesozoic tectonic regimes in the east of North China platform.
-
Key words:
- Middle Jurassic /
- Late Jurassic /
- Early Cretaceous /
- North Yellow Sea basin /
- geochemistry /
- paleoclimate /
- response
-
图 1 北黄海盆地构造位置(a)及X1井位置(b)
图a据Zhang et al.(2018);图b据Gao et al.(2018);1.燕辽隆起区;2.辽东隆起区;3.狼林地块;4.京畿地块;5.渤海湾盆地;6.北黄海盆地;7.莱阳盆地;8.胶东隆起;9.鲁西隆起区;10.南黄海盆地;11.岭南地块;①.西北凹陷;②.西北隆起;③.北部隆起;④.中部凹陷;⑤.东部隆起;⑥.东南凹陷;⑦.南部隆起
Fig. 1. Geotectonics of North Yellow Sea basin (a) and location map (b) of the well X1
图 6 X1井典型岩心照片岩石颜色变化
a. 2 415.43~2 415.49 m灰色砂砾岩;b. 2 333.15~2 333.25 m红褐色泥岩;c. 2 623.15~2 623.23 m灰色泥质粉砂岩;d.2 552.34~2 552.44 m红褐色泥岩;e. 2 732.18~2 732.26 m灰色泥岩;f. 2 733.53 m灰绿色粉砂岩;g. 3 208.07~3 208.15 m深灰色泥岩;h. 3 088.41~3 088.53 m黑色泥岩
Fig. 6. Color change map of rock in typical core photos of the well X1
图 7 华北地台东部侏罗纪‒白垩纪古气候及大地构造演化
底图据李三忠等(2018)、冯岩(2012)、Sengör and Natal’in(1996);图a华北地台东部侏罗纪初期古气候及大地构造重建;图b华北地台东部侏罗纪‒白垩纪转换时期古气候及大地构造重建;1.北黄海盆地X1井古气候资料;2.苏北地区古气候资料据徐宝亮(2008);3.莱阳盆地古气候资料据金培红(2018);4.冀北‒辽西地区古气候资料据王大宁等(2016);5.辽东地区古气候资料据徐宝亮(2008);6.朝鲜安州盆地古气候资料据成海燕(2009)和江德昕和杨慧秋(1996);7.辽宁北票;8.辽宁南票;9.北京西山(7,8,9古气候资料据都晓菁(2015));GU,京畿地块;RY,岭南地块.古纬度数据来自冯岩(2012)
Fig. 7. Paleoclimate and tectonic evolution of Jurassic-Cretaceous in the east of North China platform
表 1 中侏罗统至下白垩统泥岩样品常量(%)、微量及稀土元素(10-6)含量和元素比值
Table 1. Content and element ratio of main elements (%), trace elements (10-6) and rare elements (10-6) in the mudstone samples from Middle Jurassic to Lower Cretaceous
时代 中侏罗世 晚侏罗世早期 晚侏罗晚期 早白垩世早期 早白垩世中期 早白垩世晚期 样品号 X7-2 X7-3 X7-4 X7-5 X7-6 X7-7 X6-2 X6-3 X6-4 X5-1 X5-2 X5-3 X5-4 X4-2 X4-3 X3-2 X3-3 X3-4 X3-5 X3-6 X1-2 X1-3 SiO2 54.1 52.4 53.5 58.8 49.2 51.2 48.8 57.4 55.6 62.1 50.2 30.4 53.3 60.1 62.0 61.5 43.1 48.2 46.0 48.0 62.9 51.5 Al2O3 16.9 15.5 16.4 17.7 15.9 16.3 22.0 15.2 18.4 13.8 16.2 9.48 18.3 14.8 13.0 17.1 13.7 17.9 17.4 17.3 17.8 15.7 Fe2O3 1.47 2.31 2.23 1.92 2.52 1.52 1.51 0.37 1.65 2.17 3.47 1.76 3.10 3.56 2.30 8.22 7.10 8.49 8.53 7.72 3.10 5.68 FeO 3.52 5.64 3.68 1.72 6.87 3.89 6.87 0.41 5.60 1.64 2.78 1.76 1.64 2.21 3.64 0.74 3.35 4.99 6.34 5.03 0.86 1.51 TiO2 0.70 0.66 0.80 0.72 0.66 0.70 1.10 0.76 0.84 0.70 0.70 0.50 0.70 0.84 0.76 1.00 0.66 0.76 0.60 0.72 0.80 0.70 P2O5 0.15 0.25 0.25 0.20 0.40 0.45 0.15 0.15 0.20 0.15 0.30 0.20 0.15 0.15 0.15 0.10 0.20 0.25 0.20 0.20 0.20 0.20 MnO 0.10 0.18 0.12 0.03 0.22 0.14 0.08 0.02 0.06 0.04 0.11 0.09 0.06 0.06 0.06 0.03 0.27 0.13 0.16 0.13 0.03 0.10 CaO 3.11 2.75 3.46 1.65 2.97 4.26 0.49 0.35 0.51 3.93 6.80 26.1 5.45 2.99 3.38 0.79 11.5 2.05 2.54 3.41 0.82 5.64 MgO 2.99 3.00 2.96 1.62 2.88 3.36 2.66 0.33 2.12 2.44 3.34 1.98 2.83 2.34 2.17 1.00 1.56 1.92 2.43 2.36 1.64 2.74 K2O 4.57 4.50 4.68 5.10 4.42 4.82 2.61 2.31 1.89 3.08 3.15 1.98 3.84 3.48 2.78 3.74 2.38 3.69 3.43 3.35 5.10 4.32 Na2O 1.28 0.95 0.92 0.86 1.39 0.74 0.10 0.06 0.08 0.94 0.65 0.57 0.68 0.38 0.17 0.35 0.39 0.30 0.30 0.35 0.25 0.19 LOI 10.7 11.5 10.7 9.26 12.4 12.5 13.4 22.5 12.5 8.44 12.1 24.6 10.1 8.96 9.16 5.24 15.8 11.0 11.9 11.4 5.91 11.3 Total 99.6 99.6 99.7 99.6 99.8 99.9 99.8 99.9 99.5 99.4 99.8 99.4 100.2 99.9 99.6 99.8 100 99.7 99.8 100 99.4 99.6 B 76.9 77.1 78.5 63.8 86.5 82.3 45.2 51.0 26.8 75.8 55.7 30.0 74.3 62.0 65.7 98.7 65.8 79.3 81.3 82.5 110 96.9 Sc 15.7 16.2 15.1 14.5 18.1 15.5 32.3 10.5 26.2 14.7 11.6 10.3 19.8 19.4 13.6 16.8 17.0 23.4 21.9 19.3 12.6 12.9 V 108 110 111 112 95.6 110 176 81.9 128 106 79.3 70.1 126 130 100 140 117 144 143 155 96.3 96.3 Cr 79.2 71.9 76.2 87.3 70.8 74.0 142 80.2 141 78.9 58.0 47.0 89.5 79.1 64.7 87.2 67.2 85.4 84.4 87.1 87.6 75.0 Co 26.5 12.8 11.0 33.1 19.0 18.7 35.3 55.8 32.7 14.2 11.0 8.44 15.8 14.7 14.9 9.95 23.3 28.2 32.0 26.4 9.16 13.3 Ni 36.5 25.3 23.7 51.1 29.8 28.7 136 63.5 88.2 33.3 24.7 24.0 40.7 26.7 27.8 26.1 32.9 40.0 42.4 37.9 28.2 37.0 Cu 37.0 36.2 36.3 51.5 39.5 38.1 50.0 47.7 56.5 36.6 33.1 21.2 43.1 33.1 28.2 20.8 24.8 40.6 44.3 41.4 62.9 22.3 Zn 249 123 84.6 129 104 102 170 139 197 95.3 142 55.1 160 62.3 78.1 86.7 103 125 146 130 63.7 89.1 Ga 35.3 32.1 33.3 37.2 32.5 30.7 76.9 18.6 45.0 26.4 22.5 19.4 32.6 28.5 24.3 31.6 22.4 30.5 29.2 30.1 30.4 32.1 Ge 2.34 2.72 2.58 2.52 2.74 2.27 2.76 1.49 2.19 1.70 1.72 1.16 1.84 1.94 1.83 2.71 2.44 3.13 3.21 3.00 1.97 2.05 As 10.8 5.46 7.33 61.7 1.38 1.58 28.4 45.9 26.2 3.28 2.00 1.90 4.95 3.15 1.74 6.41 4.50 7.21 6.52 5.77 1.79 3.85 Rb 155 158 151 185 164 149 79.4 91.3 51.0 101 104 96.4 149 141 123 203 127 168 160 113 224 166 Sr 223 206 225 246 205 211 301 101 239 141 170 722 189 164 140 165 334 504 396 466 643 427 Zr 310 306 333 342 310 316 161 282 270 233 138 95.0 159 242 220 225 162 157 148 174 186 135 Nb 27.7 26.4 28.3 29.5 27.6 27.8 20.9 13.5 19.4 18.7 12.1 9.04 16.3 19.4 16.6 20.6 15.3 17.4 16.3 17.9 17.3 16.3 Ag 0.22 0.20 0.19 0.26 0.21 0.22 0.26 0.20 0.29 0.16 0.13 0.08 0.14 0.16 0.15 0.14 0.10 0.11 0.11 0.11 0.21 0.10 Sn 3.71 3.52 3.79 4.01 3.64 3.77 3.13 2.37 2.41 3.35 2.40 1.93 3.44 3.04 2.61 3.48 2.75 3.49 3.40 3.50 3.62 3.14 Ba 814 709 756 813 734 630 1860 277 915 512 518 450 661 585 520 579 395 532 494 541 637 837 Hf 8.04 7.73 8.34 9.03 7.80 7.96 4.56 7.20 7.22 6.16 4.01 2.75 4.49 6.48 5.84 6.09 4.35 4.38 4.16 4.76 5.29 4.02 Ta 1.91 1.79 1.95 2.09 1.86 1.94 1.37 1.01 1.24 1.45 1.00 0.91 1.30 1.47 1.29 1.59 1.31 1.45 1.46 1.70 1.36 1.32 Pb 45.4 31.4 35.2 52.5 36.2 41.1 55.4 52.3 43.4 28.4 28.4 13.2 21.4 25.3 17.2 27.3 25.0 37.6 31.14 32.0 43.0 26.3 Bi 0.55 0.51 0.54 0.65 0.48 0.55 0.38 0.31 0.17 0.37 0.38 0.17 0.36 0.32 0.23 0.40 0.29 0.47 0.46 0.46 0.58 0.51 Th 25.3 23.6 26.0 26.6 23.4 24.4 24.8 16.3 19.1 16.7 12.31 9.65 16.2 17.5 14.3 17.4 14.7 20.3 19.4 16.8 18.8 21.1 U 3.95 4.12 4.04 4.93 4.21 4.16 2.73 2.92 3.16 3.00 2.87 2.33 2.48 2.27 2.14 2.29 1.86 2.23 2.15 2.20 2.13 2.52 Y 32.7 37.2 34.7 32.3 39.8 34.3 26.5 25.4 33.0 30.8 26.7 19.4 25.6 29.1 22.8 23.5 43.5 39.1 36.0 36.9 24.8 24.7 La 84.3 83.0 83.6 94.7 76.5 77.0 208 63.5 117 50.0 40.1 29.5 44.4 55.7 40.6 38.1 51.7 60.3 54.6 51.2 55.3 44.5 Ce 144 147 150 169 144 140 394 106 208 93.3 74.5 58.4 80.0 103 73.6 68.9 88.9 113 105 102 99.8 81.1 Pr 17.6 17.6 17.0 19.8 16.6 16.3 43.1 12.0 27.1 11.6 9.68 7.02 9.87 12.0 8.67 7.98 11.1 13.7 12.2 12.3 12.6 9.47 Nd 56.7 59.7 57.7 65.8 57.7 53.9 131 37.2 80.8 40.4 34.5 25.4 33.8 41.1 29.5 27.3 40.3 49.9 44.5 46.4 43.9 32.5 Sm 10.3 10.9 9.93 11.2 11.3 9.90 15.1 7.89 12.1 8.31 7.56 5.00 6.79 7.63 5.59 5.18 8.32 10.6 9.0 9.89 8.93 6.37 Eu 1.67 1.85 1.82 1.76 1.97 1.65 2.42 1.57 2.12 1.62 1.57 1.04 1.35 1.49 1.04 1.05 1.83 2.23 1.92 2.14 1.64 1.19 Gd 7.36 8.61 8.11 8.12 9.59 7.65 8.15 6.26 8.31 6.69 6.65 4.35 5.51 5.98 4.50 4.37 8.10 9.73 8.27 9.01 7.04 5.30 Tb 1.10 1.26 1.18 1.17 1.40 1.17 1.01 1.00 1.23 1.06 1.01 0.73 0.89 0.96 0.76 0.78 1.27 1.44 1.28 1.33 1.02 0.87 Dy 6.00 6.74 6.22 6.25 7.44 6.34 5.02 5.35 6.70 5.78 5.27 3.61 4.85 5.23 4.09 4.45 7.11 7.66 6.91 7.08 5.18 4.75 Ho 1.23 1.36 1.27 1.25 1.46 1.28 1.04 1.05 1.34 1.17 1.07 0.75 1.01 1.12 0.89 0.95 1.45 1.48 1.34 1.40 1.05 1.00 Er 3.39 3.71 3.52 3.37 4.02 3.51 2.92 2.76 3.66 3.25 2.84 1.91 2.75 3.26 2.53 2.71 3.97 3.91 3.61 3.76 2.89 2.77 Tm 0.53 0.57 0.55 0.52 0.60 0.55 0.46 0.42 0.55 0.50 0.44 0.32 0.45 0.53 0.43 0.45 0.59 0.59 0.55 0.57 0.46 0.45 Yb 3.21 3.53 3.40 3.16 3.72 3.35 2.76 2.41 3.37 3.06 2.60 1.74 2.67 3.30 2.58 2.79 3.56 3.54 3.31 3.50 2.85 2.68 Lu 0.54 0.59 0.57 0.52 0.61 0.55 0.48 0.42 0.55 0.52 0.44 0.33 0.47 0.56 0.46 0.48 0.59 0.58 0.56 0.58 0.49 0.46 ∑REE 371 384 380 419 377 357 842 273 506 258 215 160 220 271 198 189 272 318 289 288 268 218 HREE 56.1 63.6 59.5 56.7 68.6 58.7 48.3 45.1 58.7 52.8 47.0 33.1 44.2 50.0 39.0 40.5 70.1 68.0 61.8 64.1 45.8 43.0 LREE/HREE 5.61 5.03 5.38 6.39 4.49 5.09 16.4 5.06 7.62 3.88 3.57 3.81 3.99 4.41 4.07 3.67 2.88 3.67 3.67 3.49 4.85 4.07 Rb/Sr 0.70 0.77 0.67 0.75 0.80 0.71 0.26 0.90 0.21 0.72 0.61 0.13 0.79 0.86 0.88 1.23 0.38 0.33 0.40 0.24 0.35 0.39 Sr/Ba 0.27 0.29 0.30 0.30 0.28 0.33 0.16 0.36 0.26 0.28 0.33 1.60 0.29 0.28 0.27 0.28 0.85 0.95 0.80 0.86 1.01 0.51 V/Cr 1.36 1.53 1.46 1.28 1.35 1.49 1.24 1.02 0.91 1.34 1.37 1.49 1.41 1.64 1.55 1.61 1.74 1.69 1.69 1.78 1.10 1.28 Ni/Co 1.38 1.98 2.15 1.54 1.57 1.53 3.85 1.14 2.70 2.35 2.25 2.84 2.58 1.82 1.87 2.62 1.41 1.42 1.33 1.44 3.08 2.78 U/Th 0.16 0.17 0.16 0.19 0.18 0.17 0.11 0.18 0.17 0.18 0.23 0.24 0.15 0.13 0.15 0.13 0.13 0.11 0.11 0.13 0.11 0.12 δU 0.64 0.69 0.64 0.71 0.70 0.68 0.50 0.70 0.66 0.70 0.82 0.84 0.63 0.56 0.62 0.57 0.55 0.50 0.50 0.56 0.51 0.53 Sr/Cu 6.03 5.69 6.20 4.78 5.19 5.54 6.02 2.12 4.23 3.85 5.14 34.1 4.39 4.95 4.96 7.93 13.5 12.4 8.94 11.3 10.2 19.1 Fe2O3/FeO 0.42 0.41 0.61 1.12 0.37 0.39 0.22 0.90 0.29 1.32 1.25 1.00 1.89 1.61 0.63 11.1 2.12 1.70 1.35 1.53 3.60 3.76 V/Sc 6.88 6.79 7.35 7.72 5.28 7.10 5.45 7.80 4.89 7.21 6.84 6.81 6.36 6.70 7.35 8.33 6.88 6.15 6.53 8.03 7.64 7.47 注:样品由吉林大学测试中心完成,常量元素用X-射线荧光光谱仪测定;微量稀土元素用ICP-MS质谱仪测定;下标n为球粒陨石标准化值,δU=2U/(U+Th/3)(球粒陨石标准化值引自Sun and Mcdnough, 1989). 表 2 中侏罗统至下白垩统泥岩样品氧化还原指标判别
Table 2. Redox index discrimination of the mudstone samples of Upper Jurassic-Lower Cretaceous
指标 样品范围 氧化环境 弱氧化‒弱还原环境 弱还原环境 V/Cr 0.91~1.78 < 2 2.00~4.25 > 4.25 Ni/Co 1.14~3.85 < 5 5~7 > 7 U/Th 0.11~0.24 < 0.75 0.75~1.25 > 1.25 δU 0.50~0.84 < 1 > 1 V/Sc 4.89~8.33 < 9.1 > 9.1 注:V/Cr、Ni/Co、U/Th判别指标据Jones and Manning(1994); δU判别指标据王峰等(2017); V/Sr判别指标据Kimura and Watanabe(2001) -
[1] Ben-Awuah, J., Padmanabhan, E., Sokkalingam, R., 2017. Geochemistry of Miocene Sedimentary Rocks from Offshore West Baram Delta, Sarawak Basin, Malaysia, South China Sea: Implications for Weathering, Provenance, Tectonic Setting, Paleoclimate and Paleoenvironment of Deposition. Geosciences Journal, 21(2): 167-185. https://doi.org/10.1007/s12303-016-0056-3 [2] Cai, L. X., Xiao, G. L., Dong, H. P., et al., 2020. Characteristics of Mesozoic Source Rocks and Exploration Direction of Oil and Gas in the Eastern Depression, North Yellow Sea Basin. Earth Science, 45(2): 583-601 (in Chinese with English abstract). [3] Chen, H. Y., 2009. The Evaluation Study of Source of Rock in the North Yellow Sea and Peripheral Basin (Dissertation). Ocean University of China, Qingdao (in Chinese with English abstract). [4] Chen, S. W., Wei, W. Y., Gong, S. L., et al., 2019. Middle Jurassic to Early Cretaceous Palynological Assemblages in the Eastern Depression, North Yellow Sea Basin. Journal of Stratigraphy, 43(1): 51-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DCXZ201901005.htm [5] Deng, S. H., Lu, Y. Z., Zhao, Y., et al., 2017. The Jurassic Palaeoclimate Regionalization and Evolution of China. Earth Science Frontiers, 24(1): 106-142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201701008.htm [6] Du, X. J., 2015. Characteristics of Jurassic Plant Fossils and Floras in North China and the Implication of Paleoclimate Change (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [7] Enkin, R. J., Yang, Z. Y., Chen, Y., et al., 1992. Paleomagnetic Constraints on the Geodynamic History of the Major Blocks of China from the Permian to the Present. Journal of Geophysical Research: Solid Earth, 97(B10): 13953-13989. https://doi.org/10.1029/92JB00648 [8] Feng, Y., 2012. The Paleomagnetic Research and Kinematics Characteristic Discusse of China's Major Blocks during Late Paleozoic to Mesozoic (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [9] Gao, D., 2018. Characterization of Provenance-Sedimentary System and Reservoir in Mesozoic in Eastern Depression of North Yellow (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [10] Gao, D., Cheng, R. H., Shen, Y. J., et al., 2018. Weathered and Volcanic Provenance-Sedimentary System and Its Influence on Reservoir Quality in the East of the Eastern Depression, the North Yellow Sea Basin. Journal of Earth Science, 29(2): 353-368. https://doi.org/10.1007/s12583-017-0945-z [11] Gao, X. Y., Zhao, T. P., 2017. Late Mesozoic Magmatism and Tectonic Evolution in the Southern Margin of the North China Craton. Science China Earth Sciences, 60(11): 1959-1975. https://doi.org/10.1007/s11430-016-9069-0 [12] Ge, R. F., Zhang, Q. L., Wang, L. S., et al., 2010. Tectonic Evolution of Songliao Basin and the Prominent Tectonic Regime Transition in Eastern China. Geological Review, 56(2): 180-195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201002005.htm [13] Ge, X. H., Liu, J. L., Ren, S. M., et al., 2014. The Formation and Evolution of the Mesozoic-Cenozoic Continental Tectonics in Eastern China. Geology in China, 41(1): 19-38 (in Chinese with English abstract). http://www.researchgate.net/publication/286072656_The_formation_and_evolution_of_the_Mesozoic-Cenozoic_continental_tectonics_in_eastern_China/download [14] Gong, C., Cheng, R. H., Shen, Y. J., et al., 2018. Sandstone Diagenesis and Its Reservoir Significance of Lower Cretaceous in North Yellow Sea Basin. Global Geology, 37(1): 171-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201801016&dbcode=CJFD&year=2018&dflag=pdfdown [15] He, Z. J., 2009. Discussion on Genesis of Red Beds of Jurassic in Yongjin Area in Junggar Basin. Xinjiang Petroleum Geology, 30(1): 133-135 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/xjsydz200901035 [16] Hu, X. Q., Tang, D. Q., Wang, L. L., et al., 2017. Fault Structures in the Eastern Depression of the North Yellow Sea Basin. Geological Science and Technology Information, 36(1): 117-127 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201701015.htm [17] Huybers, P., Langmuir, C., 2009. Feedback between Deglaciation, Volcanism, and Atmospheric CO2. Earth and Planetary Science Letters, 286(3-4): 479-491. https://doi.org/10.1016/j.epsl.2009.07.014 [18] Jiang, D. X., Yang, H. Q., 1996. Early Cretaceous Palynoflora from Anchow Basin, Korea. Acta Botanica Sinica, 38(2): 150-155, 179-180 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/288315 [19] Jiang, M., Liao, Z. H., Lu, A. K., et al., 2015. Sedimentary Environment and Lithofacies Palaeogeography of Mesozoic Strata in Northeast Guangxi. Journal of Guilin Universitiy of Technology, 35(5): 56-58 (in Chinese with English abstract). [20] Jin, P. H., 2018. Early Cretaceous Plant Fossils from the Laiyang Basin of Shandong and Their Paleoecological Characteristics (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). [21] Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-X [22] Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29(11): 995-998. https://doi.org/10.1130/0091-7613(2001)0290995:oaatpc>2.0.co;2 doi: 10.1130/0091-7613(2001)0290995:oaatpc>2.0.co;2 [23] Li, H. Y., 2013. Destruction of North China Craton: Insights from Temporal and Spatial Evolution of the Proto-Basins and Magmatism. Science China Earth Sciences, 56(3): 464-478. https://doi.org/10.1007/s11430-012-4534-9 [24] Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2018. Mesozoic Plate Subduction in West Pacific and Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone. Chinese Science Bulletin, 63(16): 1550-1593 (in Chinese with English abstract). doi: 10.1360/N972017-01113 [25] Li, W. B., Li, X. H., Ding, Q. H., et al., 2019. Geochemical Characteristics and Paleoenvironment of Cretaceous Jiufotang Formation in Xiushui Basin, Northern Liaoning. Global Geology, 38(1): 154-161 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-sjdz201901014.htm [26] Li, W. Y., Lu, W. F., Liu, Y. X., et al., 2012. Superimposed Versus Residual Basin: The North Yellow Sea Basin. Geoscience Frontiers, 3(1): 33-39. https://doi.org/10.1016/j.gsf.2011.11.001 [27] Lin, C. S., 2009. Sequence and Depositional Architecture of Sedimentary Basin and Process Responses. Acta Sedimentologica Sinica, 27(5): 849-862 (in Chinese with English abstract). http://www.researchgate.net/publication/284763735_Sequence_and_depositional_architecture_of_sedimentary_basin_and_process_responses [28] Lin, C. S., Liu, J. Y., Hu, B., 2010. Computer Simulation on the Formation of Depositional Sequences in Tectonic Active Basin: Case Study on Rift and Foreland Basins. Acta Sedimentologica Sinica, 28(5): 868-874 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201005005.htm [29] Liu, J., Zhang, J. Y., Ge, Y. K., et al., 2018. Tectonic Geomorphology: An Interdisciplinary Study of the Interaction among Tectonic Climatic and Surface Processes. Chinese Science Bulletin, 63(30): 3070-3088 (in Chinese with English abstract). doi: 10.1360/N972018-00498 [30] Liu, J. L., Davis, G. A., Lin, Z. Y., et al., 2005. The Liaonan Metamorphic Core Complex, Southeastern Liaoning Province, North China: A Likely Contributor to Cretaceous Rotation of Eastern Liaoning, Korea and Contiguous Areas. Tectonophysics, 407(1-2): 65-80. https://doi.org/10.1016/j.tecto.2005.07.001 [31] Liu, J. P., Wang, L. L., Jian, X. L., et al., 2015. Analyzing Geochemical Characteristics and Hydrocarbon Generation History of the Middle and Upper Jurassic Source Rocks in the North Yellow Sea Basin. Journal of Petroleum Science and Engineering, 126: 141-151. https://doi.org/10.1016/j.petrol.2014.10.003 [32] Liu, Y. X., Hu, W. X., Hu, G., 2014. Spores and Pollen Assemblages and Their Paleo-Climate Implication from the Early Cretaceous Dark Mudstone in Zhejiang and Fujian Provinces. Geological Journal of China Universities, 20(4): 590-601 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201404011.htm [33] Ren, S. M., Huang, B. C., 2002. Preliminary Study on Post-Late Paleozoic Kinematics of the Main Blocks of the Paleo-Asian Ocean. Progress in Geophysics, 17(1): 113-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200201016.htm [34] Scheffler, K., Buehmann, D., Schwark, L., 2006. Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africa by Geochemical Proxies - Response to Climate Evolution and Sedimentary Environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 184-203. https://doi.org/10.1016/j.palaeo.2006.03.059 [35] Sengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evalution of Asia. Cambridge University Press, Cambridge. [36] Song, X., Cheng, R. H., Gao, D., et al., 2015. Mineral and Lithological Features of North Provenance-Depositional System of Jurassic in Eastern Depression of North Yellow Sea Basin. Global Geology, 34(4): 1002-1012 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201504013&dbcode=CJFD&year=2015&dflag=pdfdown [37] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [38] Tan, H. B., Yu, S. S., 1999. Present Situation and Future Development of Elemental Geochemistry in the Study of Lake Sediments' Evolution. Journal of Salt Lake Research, 7(3): 58-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YHYJ199903010.htm [39] Tian, X. X., Luo, K. L., Tan, J. N., et al., 2005. Analysis on Palaeoclimate Neighbouring the Cretaceous and Paleogene Boundary in Jiayin Area, Heilongjiang Province. Journal of Palaeogeography, 7(3): 425-432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200503016.htm [40] Tian, Y., Ye, J. R., Lei, C., et al., 2019. Development Model for Source Rock of Marine-Continental Transitional Face in Faulted Basins: A Case Study of Pinghu Formation in Xihu Sag. Earth Science, 44(3): 898-908 (in Chinese with English abstract). http://www.researchgate.net/publication/333043436_Development_Model_for_Source_Rock_of_Marine-Continental_Transitional_Face_in_Faulted_Basins_A_Case_Study_of_Pinghu_Formation_in_Xihu_Sag [41] Wang, D. N., Wang, X. R., Ji, Q., 2016. The Palynoflora Alternation and the Paleoclimate Change at the Turning Time between Late Jurassic and Early Cretaceous in Northern Hebei and Western Liaoning. Acta Geoscientia Sinica, 37(4): 449-459 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201604009.htm [42] Wang, F., Liu, X. C., Deng, X. Q., et al., 2017. Geochemical Characteristics and Environmental Implications of Trace Elements of Zhifang Formation in Ordos Basin. Acta Sedimentologica Sinica, 35(6): 1265-1273 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201706017.htm [43] Wang, G. Y., Liu, J. P., Jian, X. L., et al., 2016. Sedimentary Filling and Favorable Source-Reservoir-Seal Rock Assemblage of Mesozoic in the North Yellow Sea Basin. Geology and Exploration, 52(1): 191-198 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZKT201601020&dbcode=CJFD&year=2016&dflag=pdfdown [44] Wang, H. J., Wang, L. L., Feng, C. M., 2014. On Dynamic Mechanism of Tectonic Evolution in the North Yellow Sea Basin. Journal of Oil and Gas Technology, 36(5): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201405001.htm [45] Wang, P. J., Xie, X. A., Frank, M., et al., 2007. The Cretaceous Songliao Basin: Volcanogenic Succession, Sedimentary Sequence and Tectonic Evolution, NE China. Acta Geologica Sinica (English Edition), 81(6): 1002-1011. https://doi.org/10.1111/j.1755-6724.2007.tb01022.x [46] Wang, S. J., Huang, X. Z., Tuo, J. C., et al., 1997. Evolutional Characteristics and Their Paleoclimate Significance of Trace Elements in the Hetaoyuan Formation, Biyang Depression. Acta Sedimentologica Sinica, 15(1): 66-71 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=2552125 [47] Wang, W., Liu, S. W., Bai, X., et al., 2013. Geochemistry and Zircon U-Pb-Hf Isotopes of the Late Paleoproterozoic Jianping Diorite-Monzonite-Syenite Suite of the North China Craton: Implications for Petrogenesis and Geodynamic Setting. Lithos, 162-163: 175-194. https://doi.org/10.1016/j.lithos.2013.01.005 [48] Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155 [49] Wu, Z. P., Hou, X. B., Li, W., 2007. Discussion on Mesozoic Basin Patterns and Evolution in the Eastern North China Block. Geotectonica et Metallogenia, 31(4): 385-399 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200704002.htm [50] Xiao, D., Shi, W. Z., Wang, L. L., et al., 2016. Tectonic Characteristics and Evolution of the M Uplift in the East Area of North Yellow Sea Basin. Marine Geology & Quaternary Geology, 36(5): 75-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201605010.htm [51] Xing, Z. F., Lin, J., Zhou, H., et al., 2019. Palaeoclimate Changes Revealed by Sedimentary Records of the Upper Permian-Lower Triassic Strata in Yiyang Area, Western Henan Province, China. Geological Journal of China Universities, 25(3): 401-411 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201903008.htm [52] Xu, B. L., 2008. Study on Paleoclimate of Late Mesozoic in the North China (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [53] Xu, Z. J., Cheng, R. H., Shen, Y. J., et al., 2012. Sedimentary Records of the Climatic Transition from Warm and Humid to Dry and Hot during Late Triassic-Early Jurassic in Southwestern Fujian. Journal of China University of Mining & Technology, 41(5): 783-792 (in Chinese with English abstract). http://www.researchgate.net/publication/288396201_Sedimentary_records_of_the_climatic_transition_from_warm_and_humid_to_dry_and_hot_during_Late_Triassic-Early_Jurassic_in_Southwestern_Fujian [54] Xu, Z. J., Cheng, R. H., Wang, L. L., et al., 2015. Mineral and Elemental Geochemistry Records of the Paleoclimate and the Tectonic Background in Late Triassic Xiaoshui Formation-Early Jurassic Jinji Formation in East Guangdong. Journal of Jilin University (Earth Science Edition), 45(3): 712-723 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201503007.htm [55] Yang, D. B., Xu, W. L., Xu, Y. G., et al., 2013. Provenance of Sediments from Mesozoic Basins in Western Shandong: Implications for the Evolution of the Eastern North China Block. Journal of Asian Earth Sciences, 76: 12-29. https://doi.org/10.1016/j.jseaes.2013.07.027 [56] Yang, Y. Q., Dai, C. S., Liu, W. Z., 2003. Basement Structure of the North Yellow Sea Basin. Marine Geology Letters, 19(5): 25-26 (in Chinese with English abstract). [57] Yi, Z. Y., Liu, Y. Q., Meert, J. G., 2019. A True Polar Wander Trigger for the Great Jurassic East Asian Aridification. Geology, 47(12): 1112-1116. https://doi.org/10.1130/g46641.1 [58] Zhai, M. G., 2019. Tectonic Evolution of the North China Craton. Journal of Geomechanics, 25(5): 722-745 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905008.htm [59] Zhang, Z., Cheng, R. H., Shen, Y. J., et al., 2018. Mesozoic Sequence Stratigraphy and Its Response to Tectonic Evolution of the Eastern Depression, North Yellow Sea Basin, North China. Journal of Asian Earth Sciences, 160: 445-459. https://doi.org/10.1016/j.jseaes.2017.08.001 [60] Zhu, X. M., 2008. Sedimentary Petrology. Petroleum Industry Press, Beijing (in Chinese). [61] Zou, S., Xu, Z. J., Cheng, R. H., et al., 2018. Jurassic Palaeotopography and Sedimentary System Distribution in Eastern Sag of North Yellow Sea Basin. Global Geology, 37(1): 162-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201801015&dbcode=CJFD&year=2018&dflag=pdfdown [62] 蔡来星, 肖国林, 董贺平, 等, 2020. 北黄海盆地东部坳陷中生界烃源岩特征及其指示的油气勘探方向. 地球科学, 45(2): 583-601. doi: 10.3799/dqkx.2019.004 [63] 成海燕, 2009. 北黄海及其周边盆地烃源岩评价研究(硕士学位论文). 青岛: 中国海洋大学. [64] 陈书伟, 魏文艳, 龚胜利, 等, 2019. 北黄海东部坳陷中侏罗世-早白垩世孢粉组合序列. 地层学杂志, 43(1): 51-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201901005.htm [65] 邓胜徽, 卢远征, 赵怡, 等, 2017. 中国侏罗纪古气候分区与演变. 地学前缘, 24(1): 106-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201701008.htm [66] 都晓菁, 2015. 中国北方侏罗纪古植物化石与植物群特征及其对古气候演变的指示(硕士学位论文). 北京: 中国地质大学. [67] 冯岩, 2012. 中国主要块体晚中生代-中生代古地磁研究与运动学特征探讨(硕士学位论文). 北京: 中国地质大学. [68] 高丹, 2018. 北黄海盆地东部坳陷中生界物源-沉积体系与储层特征研究(博士学位论文). 长春: 吉林大学. [69] 葛荣峰, 张庆龙, 王良书, 等, 2010. 松辽盆地构造演化与中国东部构造体制转换. 地质论评, 56(2): 180-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002005.htm [70] 葛肖虹, 刘俊来, 任收麦, 等, 2014. 中国东部中-新生代大陆构造的形成与演化. 中国地质, 41(1): 19-38. doi: 10.3969/j.issn.1000-3657.2014.01.002 [71] 宫辰, 程日辉, 沈艳杰, 等, 2018. 北黄海盆地东部坳陷下白垩统砂岩成岩作用及其储层意义. 世界地质, 37(1): 171-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201801016.htm [72] 贺振建, 2009. 准噶尔盆地永进地区侏罗系红层成因探讨. 新疆石油地质, 30(1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200901045.htm [73] 胡小强, 唐大卿, 王嘹亮, 等, 2017. 北黄海盆地东部坳陷断裂构造分析. 地质科技情报, 36(1): 117-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701015.htm [74] 江德昕, 杨惠秋, 1996. 朝鲜安州盆地早白垩世孢粉组合. 植物学报, 38(2): 150-155, 179-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199602011.htm [75] 江媚, 廖志华, 卢安康, 等, 2015. 桂东北中生代地层沉积环境和岩相古地理分析. 桂林理工大学学报, 35(5): 56‒58. [76] 金培红, 2018. 山东莱阳早白垩世植物化石及古生态特征(博士学位论文). 兰州: 兰州大学. [77] 李三忠, 索艳慧, 李玺瑶, 等, 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应. 科学通报, 63(16): 1550-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201816006.htm [78] 李文博, 李晓海, 丁秋红, 等, 2019. 辽宁北部秀水盆地白垩系九佛堂组沉积岩地球化学特征及其古沉积环境. 世界地质, 38(1): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201901014.htm [79] 林畅松, 2009. 沉积盆地的层序和沉积充填结构及过程响应. 沉积学报, 27(5): 849-862. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905010.htm [80] 林畅松, 刘景彦, 胡博, 2010. 构造活动盆地沉积层序形成过程模拟: 以断陷和前陆盆地为例. 沉积学报, 28(5): 868-874. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005005.htm [81] 刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201830003.htm [82] 刘友祥, 胡文瑄, 胡广, 2014. 浙闽地区早白垩世暗色岩系的孢粉组合与古气候特征. 高校地质学报, 20(4): 590-601. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201404011.htm [83] 任收麦, 黄宝春, 2002. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探. 地球物理学进展, 17(1): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200201016.htm [84] 宋雪, 程日辉, 高丹, 等, 2015. 北黄海盆地东部坳陷侏罗纪北部物源-沉积体系的岩矿特征. 世界地质, 34(4): 1002-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201504013.htm [85] 谭红兵, 于升松, 1999. 我国湖泊沉积环境演变研究中元素地球化学的应用现状及发展方向. 盐湖研究, 7(3): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ199903010.htm [86] 田晓雪, 雒昆利, 谭见安, 等, 2005. 黑龙江嘉荫地区白垩系与古近系界线附近的古气候分析. 古地理学报, 7(3): 425-432. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200503016.htm [87] 田杨, 叶加仁, 雷闯, 等, 2019. 断陷盆地海陆过渡相烃源岩发育模式: 以西湖凹陷平湖组为例. 地球科学, 44(3): 898-908. doi: 10.3799/dqkx.2018.940 [88] 王大宁, 王旭日, 季强, 2016. 冀北-辽西地dfy区侏罗-白垩纪之交期的孢粉植物群演替与古气候变化. 地球学报, 37(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201604009.htm [89] 王峰, 刘玄春, 邓秀芹, 等, 2017. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义. 沉积学报, 35(6): 1265-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm [90] 王改云, 刘金萍, 简晓玲, 等, 2016. 北黄海盆地中生界沉积充填及有利生储盖组合. 地质与勘探, 52(1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201601020.htm [91] 王后金, 王嘹亮, 冯常茂, 2014. 北黄海盆地的成盆动力学机制探讨. 石油天然气学报, 36(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201405001.htm [92] 王随继, 黄杏珍, 妥进才, 等, 1997. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义. 沉积学报, 15(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB701.011.htm [93] 吴智平, 侯旭波, 李伟, 2007. 华北东部地区中生代盆地格局及演化过程探讨. 大地构造与成矿学, 31(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200704002.htm [94] 肖丹, 石万忠, 王嘹亮, 等, 2016. 北黄海盆地东部M隆起构造特征及演化. 海洋地质与第四纪地质, 36(5): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201605010.htm [95] 邢智峰, 林佳, 周虎, 等, 2019. 豫西宜阳地区晚二叠世晚期-早三叠世沉积记录及其对古气候变化的响应. 高校地质学报, 25(3): 401-411. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903008.htm [96] 徐宝亮, 2008. 华北地区晚中生代古气候研究(硕士学位论文). 成都: 成都理工大学. [97] 许中杰, 程日辉, 沈艳杰, 等, 2012. 闽西南地区晚三叠-早侏罗世温湿-干热气候转变的沉积记录. 中国矿业大学学报, 41(5): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201205016.htm [98] 许中杰, 程日辉, 王嘹亮, 等, 2015. 粤东晚三叠世小水组早侏罗世金鸡组古气候及构造背景的矿物和地球化学记录. 吉林大学学报(地球科学版), 45(3): 712-723. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201503007.htm [99] 杨艳秋, 戴春山, 刘万洙, 2003. 北黄海盆地基底结构特征. 海洋地质动态, 19(5): 25-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200305008.htm [100] 翟明国, 2019. 华北克拉通构造演化. 地质力学学报, 25(5): 722-745. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905008.htm [101] 朱筱敏, 2008. 沉积岩石学. 北京: 石油工业出版社. [102] 邹爽, 许中杰, 程日辉, 等, 2018. 北黄海盆地东部坳陷侏罗纪古地形与沉积体系分布. 世界地质, 37(1): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201801015.htm