• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子陆块北缘西大别地区新元古界定远组双峰式火山岩地球化学特征、成因及其地质意义

    朱江 邱啸飞 周豹 张海军 吴越 邓新

    朱江, 邱啸飞, 周豹, 张海军, 吴越, 邓新, 2021. 扬子陆块北缘西大别地区新元古界定远组双峰式火山岩地球化学特征、成因及其地质意义. 地球科学, 46(4): 1311-1327. doi: 10.3799/dqkx.2020.229
    引用本文: 朱江, 邱啸飞, 周豹, 张海军, 吴越, 邓新, 2021. 扬子陆块北缘西大别地区新元古界定远组双峰式火山岩地球化学特征、成因及其地质意义. 地球科学, 46(4): 1311-1327. doi: 10.3799/dqkx.2020.229
    Zhu Jiang, Qiu Xiaofei, Zhou Bao, Zhang Haijun, Wu Yue, Deng Xin, 2021. Neoproterozoic Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Area, Northern Margin of Yangtze Block, China: Geochemistry, Petrogenesis and Geological Implications. Earth Science, 46(4): 1311-1327. doi: 10.3799/dqkx.2020.229
    Citation: Zhu Jiang, Qiu Xiaofei, Zhou Bao, Zhang Haijun, Wu Yue, Deng Xin, 2021. Neoproterozoic Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Area, Northern Margin of Yangtze Block, China: Geochemistry, Petrogenesis and Geological Implications. Earth Science, 46(4): 1311-1327. doi: 10.3799/dqkx.2020.229

    扬子陆块北缘西大别地区新元古界定远组双峰式火山岩地球化学特征、成因及其地质意义

    doi: 10.3799/dqkx.2020.229
    基金项目: 

    湖北省自然科学基金 2019CFB270

    中国地质调查局项目 DD20190050

    油气资源与勘探技术教育部重点实验室基金 KY-2018-05

    详细信息
      作者简介:

      朱江(1985-), 男, 博士, 高级工程师, 主要从事矿床学和地球化学研究.ORCID: 0000-0003-1418-7075.E-mail: zhujiang.01@foxmail.com

    • 中图分类号: P581;P56

    Neoproterozoic Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Area, Northern Margin of Yangtze Block, China: Geochemistry, Petrogenesis and Geological Implications

    • 摘要: 西大别地区定远组双峰式火山建造主要由流纹岩、流纹质凝灰岩和玄武岩组成,受区域变质作用影响较小,保留了良好的新元古代火山岩构造,成为理解扬子地块北缘大别山地区前寒武纪地质演化的极佳研究对象.为深化理解其成因和动力学背景,对该火山岩系开展了详细的岩相学、岩石地球化学和Sr-Nd-Hf同位素研究.流纹岩具较高的SiO2(70.06%~75.46%)、总碱(7.13%~7.89%)和Al2O3(12.96%~14.84%)含量,属于过铝质(A/CNK=1.05~1.27)、钙碱性系列,具S型花岗岩的亲缘性.岩石富集轻稀土((La/Yb)N=5.30~19.81),负Eu异常不明显.流纹岩锶同位素初始比值ISr为0.703 5~0.707 7,钕同位素εNdt)值为-10.6~-6.5,两阶段Nd模式年龄TDM2=1.69~2.00 Ga.其锆石εHft)值介于-19.2~-7.2,两阶段Hf模式年龄TDM2=1.77~2.59 Ga.玄武岩发育典型的气孔和杏仁构造,SiO2含量为48.26%~51.71%,Mg#值为0.32~0.59,轻稀土元素弱富集((La/Yb)N=3.21~10.23).锶同位素初始比值ISr为0.706 1~0.708 1,钕同位素εNdt)值为-6.6~+3.4,单阶段Nd模式年龄TDM=1.44~2.02 Ga.岩石地球化学和Sr-Nd-Hf同位素特征显示,定远组流纹岩起源扬子古老陆壳物质的部分熔融;玄武岩原始岩浆可能起源于富集地幔物质的部分熔融.该玄武质岩浆演化过程以分离结晶为主,可能存在少量陆壳物质混染.在陆缘拉张背景下岩石圈地幔部分熔融产生热的基性母岩浆,其底侵或上侵使得地壳岩石部分熔融,产生酸性岩浆,基性岩浆和酸性岩浆交替喷出形成了定远组双峰式火山岩系.扬子地块北缘大别地区新元古代中期(740 Ma左右)岩石圈地幔表现为富集特征,并处于岩石圈持续伸展的动力学背景.

       

    • 图  1  西大别地区大地构造位置(a, b)和地质简图(c)

      图a和b据Yang et al.(2016)Dong and Santosh (2016); 图c据Liu et al.(2004)修改

      Fig.  1.  The tectonic setting (a, b) and geological sketch map(c) of the western Dabie area

      图  2  定远组双峰式火山岩野外露头、手标本和镜下照片

      a. 双峰式火山岩系典型野外露头,见变流纹岩和变玄武岩呈互层产出;b.流纹岩手标本照片,见流纹构造;c.变玄武岩手标本照片,见气孔构造和辉石斑晶;d. 流纹岩正交偏光显微照片,见石英和条纹长石斑岩,条纹长石斑晶不在视域内,基质呈条带状相间排列构成流纹构造,遇斑晶绕过;e. 变玄武岩正交偏光显微照片,间粒结构,可见绿帘石化和部分辉石残留.Qz.石英;Pl.斜长石;Px.辉石;Ep.绿帘石

      Fig.  2.  Field photo, hand specimens and photomicrographs of the bimodal volcanic rocks from the Dingyuan Formation

      图  3  定远组双峰式火山岩SiO2-Na2O+K2O图解(a),Nb/Y-SiO2图解(b),SiO2-K2O图解(c)和A/CNK-A/NK图解(d)

      图a据Le Maitre(1989);图b据Winchester and Floyd(1977);图c据Pearce and Norry(1979);图d据Maniar and Piccoli(1989)

      Fig.  3.  SiO2 versus Na2O+K2O(a), Nb/Y versus SiO2(b), SiO2 versus K2O(c) and A/CNK versus A/NK (d) for the bimodal volcanic rocks from the Dingyuan Formation

      图  4  定远组流纹岩(a, b)和玄武岩(c, d)的稀土元素配分图和微量元素标准化蛛网图

      球粒陨石和N-MORB标准化值据Sun and McDonough (1989); 红安岩群七角山岩组数据据Zhu et al.(2019)

      Fig.  4.  Chondrite-normalized REE pattern and normal mid-ocean ridge basalts (N-MORB)-normalized trace element diagrams for the rhyolite (a, b) and basalt (c, d) from the Dingyuan Formation

      图  5  定远组流纹岩的锆石εHf(t)-t图解

      前寒武纪早期地壳范围依据大陆地壳平均演化线(176Lu/177Hf=0.015,Griffin et al., 2002)计算. 红安岩群七角山岩组火山岩及西大别地区新元代花岗岩数据引自Zhu et al.(2019)

      Fig.  5.  Zircon εHf(t) vs. age diagram for the rhyolite from the Dingyuan Formation

      图  6  定远组双峰式火山岩Sr-Nd同位素组成

      华北地块下地壳、中上地壳和扬子地块下地壳范围引自Zhao and Zhou(2009). 大别山片麻岩数据引自Ma et al. (2000). 武当地区耀岭河基性火山岩数据引自Zhu et al. (2014), 西大别地区王母观辉长岩数据由张旗等(1995)重新计算(t=635 Ma)

      Fig.  6.  εNd(t) vs. (87Sr/86Sr)i diagram for the bimodal volcanic rocks from the Dingyuan Formation

      图  7  定远组玄武岩Zr-Ti图解(a,据Pearce, 1982)和Zr-Zr/Y图解(b, 据Pearce and Norry, 1979

      IAB.岛弧玄武岩;MORB.洋中脊玄武岩;WPB.板内玄武岩

      Fig.  7.  Zr versus Ti diagram (a) (after Pearce, 1982) and Zr versus Zr/Y diagram (b) (after Pearce and Norry, 1979) for basalt from the Dingyuan Formation

      图  8  定远组变玄武岩Th/Y-Sm/Th(a)和Nd/U-Sm/Th图解(b)(据Zhao and Zhou, 2009; Zhu et al., 2019)

      原始地幔、洋岛玄武岩和正常洋中脊玄武岩数据引自Sun and McDonough (1989),南秦岭地区和红安岩群幔源基性岩数据引自Zhao and Zhou(2009)Zhu et al.(2019).OIB.洋岛玄武岩, N-MORB.正常洋中脊玄武岩

      Fig.  8.  Th/Y versus Sm/Th(a) and Nd/U versus Sm/Th (b) diagrams for basalt from the Dingyuan Formation (after Zhao and Zhou, 2009; Zhu et al., 2019)

      图  9  扬子陆块北缘南秦岭、随枣和大别地区新元古界岩系记录联系对比

      武当岩群和耀岭河组年龄凌文黎等(2007); Zhu et al.(2014);随县群年龄引自Yang et al.(2016); 七角山岩组和定远组年龄引自Zhu et al.(2019); 朱江等(2019); 王母观基性岩年龄数据刘贻灿等(2006)

      Fig.  9.  Stratigraphic correlation diagram of Neoproterozoic rock series in the South Qinling, Suizhou-Zhaoyang, and Dabie areas

      图  10  扬子陆块北缘大别地区新元古代740~635 Ma地质构造模式

      Fig.  10.  Schematic model showing the extensional setting with magmatism during 740 to 635 Ma in the Dabie area, northern margin of the Yangtze block

      表  1  定远组双峰式火山岩主量元素(%)和微量、稀土元素10-6)分析结果

      Table  1.   Major elements (%), trace elements (10-6) and rare earth elements (10-6) of the bimodal volcanic rocks from the Dingyuan Formation

      样号 PM027-7 18DY-5 18DY-9 18DY-10 18DY-12 18DY-13 PM027-6 18DY-1 18DY-2 18DY-3 18DY-4 18DY-6 18DY-7 18DY-8 18DY-11
      岩性 流纹岩 流纹岩 流纹岩 流纹岩 流纹岩 流纹岩 玄武岩 玄武岩 玄武岩 玄武岩 玄武岩 玄武质 玄武岩 玄武岩 玄武岩
      SiO2 75.46 74.21 72.37 74.82 74.04 70.06 48.44 51.71 48.72 48.47 49.71 49.42 48.26 48.96 49.44
      TiO2 0.23 0.21 0.43 0.30 0.29 0.42 3.20 1.15 1.08 2.51 1.33 1.14 0.98 3.23 3.34
      Al2O3 12.96 13.83 14.47 13.86 13.52 14.84 11.95 16.17 17.54 12.56 18.36 17.71 17.34 12.16 11.98
      Fe2O3 0.61 0.50 1.92 1.33 1.52 1.26 10.52 8.68 7.59 8.11 11.52 6.38 5.26 11.83 6.48
      FeO 1.14 1.56 1.00 0.60 0.79 1.82 6.22 1.37 2.38 7.05 0.57 3.71 4.84 4.69 8.63
      MnO 0.04 0.11 0.04 0.03 0.05 0.06 0.22 0.12 0.14 0.21 0.18 0.14 0.12 0.20 0.19
      MgO 0.24 0.24 0.62 0.20 0.28 0.48 3.81 4.56 5.11 5.30 4.16 4.82 6.51 3.40 5.23
      CaO 0.28 0.24 0.26 0.82 0.20 1.64 8.21 7.87 6.84 8.34 1.34 8.29 7.41 8.08 7.28
      Na2O 3.63 5.60 5.12 6.48 5.59 5.62 2.21 3.59 1.87 1.44 1.84 1.63 1.09 2.11 2.34
      K2O 4.26 1.92 2.28 0.65 2.26 1.70 0.64 1.02 3.41 1.84 4.30 2.96 4.02 0.93 0.11
      P2O5 0.01 0.01 0.06 0.01 0.01 0.10 0.44 0.24 0.20 0.28 0.18 0.29 0.15 0.46 0.42
      灼失 0.74 0.65 1.35 0.81 2.25 0.98 3.09 3.77 4.22 2.17 6.30 3.31 3.61 3.65 3.33
      A/NK 1.22 1.22 1.33 1.22 1.16 1.34 2.76 2.31 2.59 2.88 2.39 3.01 2.82 2.72 3.02
      A/CNK 1.17 1.18 1.27 1.08 1.13 1.05 0.62 0.76 0.91 0.64 1.81 0.85 0.88 0.63 0.70
      La 23.2 39.2 31.9 77.1 24.9 45.2 27.8 18.4 14.1 14.0 15.3 24.1 11.6 27.6 24.1
      Ce 40.6 96.2 71.7 171.0 86.5 88.7 55.4 40.5 30.7 38.0 24.2 48.9 22.6 63.2 58.8
      Pr 3.82 9.20 6.27 17.60 8.12 9.69 7.98 4.88 4.51 5.30 4.46 7.02 3.97 8.54 7.43
      Nd 12.8 35.1 25.4 63.8 29.6 33.1 37.8 21.0 20.3 25.0 21.0 30.4 18.2 38.8 33.7
      Sm 1.77 6.08 3.95 10.40 5.42 5.13 9.20 4.36 4.56 6.65 4.87 6.31 4.11 9.64 8.48
      Eu 0.48 1.20 0.99 2.16 1.28 1.30 2.94 1.64 1.75 2.20 2.12 2.03 1.62 3.15 2.26
      Gd 1.64 5.22 3.44 8.38 4.67 4.50 8.74 3.56 3.77 6.18 4.17 5.24 3.21 8.81 7.57
      Tb 0.20 0.80 0.46 1.08 0.77 0.59 1.58 0.54 0.60 1.12 0.68 0.81 0.51 1.53 1.33
      Dy 1.07 4.98 2.48 5.62 4.99 3.26 9.73 2.98 3.54 6.91 3.85 4.64 2.86 9.34 7.99
      Ho 0.22 1.06 0.51 1.10 1.09 0.66 1.92 0.57 0.69 1.37 0.74 0.90 0.55 1.83 1.56
      Er 0.64 3.00 1.44 2.99 3.07 1.83 4.83 1.45 1.77 3.42 1.83 2.24 1.37 4.56 3.95
      Tm 0.12 0.49 0.23 0.46 0.49 0.28 0.73 0.21 0.25 0.50 0.25 0.32 0.19 0.64 0.56
      Yb 0.84 3.34 1.63 3.10 3.37 1.94 4.48 1.29 1.54 3.13 1.58 1.94 1.20 3.88 3.42
      Lu 0.12 0.47 0.24 0.42 0.47 0.27 0.57 0.16 0.19 0.39 0.20 0.23 0.14 0.48 0.37
      Y 6.2 28.5 13.8 27.8 27.1 18.7 45.9 15.0 18.1 33.7 20.0 23.6 14.0 46.0 39.5
      Cr 21.70 5.46 7.50 7.67 2.96 8.23 24.80 134.00 109.00 57.20 109.00 58.60 145.00 9.13 29.10
      Co 0.90 0.76 2.72 1.58 0.68 2.69 40.10 30.20 30.60 48.40 39.70 25.50 35.50 40.50 51.80
      Ni 2.64 2.12 2.35 3.14 2.11 2.95 33.40 46.00 71.90 58.80 81.70 16.50 124.00 28.60 44.50
      Ga 13.4 18.2 15.4 16.2 16.9 16.7 24.6 18.4 19.8 23.6 18.8 22 18.4 24.3 19.7
      Rb 68.6 39.6 54.0 15.4 37.1 40.8 19.4 28.3 64.8 46.4 101.0 70.4 96.2 31.6 4.5
      Sr 33.6 31.9 38.1 81.6 26.7 166.0 478.0 1 020.0 754.0 608.0 84.2 848.0 751.0 590.0 378.0
      Zr 133.0 185.0 252.0 414.0 390.0 219.0 264.0 101.0 86.9 211.0 78.6 143.0 77.3 282.0 269.0
      Nb 10.60 21.00 13.40 23.00 22.90 13.60 16.40 4.75 4.18 15.00 3.08 6.84 2.96 20.20 19.90
      Ba 1 820 935 734 348 1 160 862 952 590 1 580 1 320 1 610 1 250 1 390 612 135
      Li 2.56 3.68 9.75 4.32 3.23 7.87 7.62 20.40 25.20 15.10 35.30 21.40 26.70 10.60 21.80
      Hf 3.58 5.27 5.60 8.65 8.51 5.00 6.13 2.25 1.95 4.85 1.75 3.00 1.73 6.44 6.07
      Ta 0.860 0.980 0.760 1.100 1.120 0.740 1.020 0.220 0.130 0.750 0.089 0.220 0.120 1.090 1.020
      Pb 17.70 25.10 9.82 30.00 25.70 26.60 16.70 10.30 7.78 53.90 14.30 14.90 9.53 10.90 49.10
      Th 1.31 2.12 1.33 2.20 1.69 2.64 2.72 2.38 0.90 1.65 0.35 1.49 1.19 2.66 2.47
      U 0.85 0.85 0.65 1.36 0.62 1.75 1.10 0.55 0.20 0.40 0.21 0.31 0.29 0.64 0.48
      Cs 0.78 0.43 1.00 0.32 0.74 1.24 9.92 0.44 0.91 1.19 1.44 0.79 1.08 8.70 0.89
      V 6.86 17.00 44.20 24.50 23.60 43.80 488.00 206.00 210.00 414.00 233.00 236.00 192.00 409.00 387.00
      Sc 7.50 6.70 6.17 10.30 6.32 4.66 37.4 25.60 26.50 40.10 18.10 27.80 21.60 38.90 37.80
      Be 1.69 2.55 2.54 1.68 2.09 2.38 1.25 0.74 1.37 1.55 1.15 1.48 1.12 2.05 1.36
      F 226 233 315 212 214 326 602 933 526 409 646 846 647 567 607
      Cl 24.60 31.30 28.30 33.00 26.40 34.20 67.20 60.70 64.80 143.00 60.30 65.50 69.80 84.20 253.00
      ΣREE 88 206 151 365 175 196 174 102 88 114 85 135 72 182 162
      (La/Yb)N 19.81 8.42 14.04 17.84 5.30 16.71 4.45 10.23 6.57 3.21 6.95 8.91 6.93 5.10 5.05
      δEu 0.86 0.65 0.82 0.71 0.78 0.83 1.00 1.27 1.29 1.05 1.44 1.08 1.36 1.04 0.86
      δCe 1.06 1.24 1.24 1.14 1.49 1.04 0.91 1.05 0.94 1.08 0.72 0.92 0.82 1.01 1.08
      下载: 导出CSV

      表  2  定远组双峰式火山岩全岩Sr-Nd同位素分析结果

      Table  2.   Rb-Sr and Sm-Nd isotopic data of the bimodal volcanic rocks from the Dingyuan Formation

      样品号 岩性 年龄(Ma) Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr ISr Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(t) T2DM(Ga) TDM(Ga)
      18DY-1 玄武岩 740 22.500 994.00 0.065 24 0.707 36 0.706 7 3.842 18.96 0.122 6 0.511 943 0.511 348 -6.6 2.02 2.02
      18DY-3 玄武岩 740 43.830 585.30 0.215 90 0.708 41 0.706 1 6.466 24.71 0.158 3 0.512 626 0.511 858 3.4 1.44 1.45
      18DY-11 玄武岩 740 3.978 390.20 0.029 40 0.708 45 0.708 1 7.959 32.00 0.150 5 0.512 554 0.511 824 2.7 1.44 1.44
      18DY-5 流纹岩 740 44.890 80.96 1.601 00 0.720 44 0.703 5 5.985 34.64 0.104 5 0.511 856 0.511 349 -6.5 1.80 1.80
      18DY-10 流纹岩 740 13.730 200.00 0.197 90 0.709 78 0.707 7 10.210 63.53 0.097 2 0.511 615 0.511 143 -10.6 2.00 2.01
      18DY-13 流纹岩 740 46.580 327.50 0.410 10 0.710 94 0.706 6 4.908 32.43 0.091 6 0.511 794 0.511 350 -6.5 1.69 1.69
      注:计算过程所用参数:(147Sm/143Nd)CHUR= 0.196 7; (143Nd/144Nd)CHUR =0.512 638; (147Sm/143Nd)DM=0.213 7; (143Nd/144Nd)DM=0.513 15.
      下载: 导出CSV

      表  3  定远组流纹岩的锆石Lu-Hf同位素LA-MC-ICP-MS原位分析结果

      Table  3.   LA-MC-ICP-MS zircon Lu-Hf isotopic data of the rhyolite from the Dingyuan Formation

      激光点号 年龄(Ma) 176Lu/177Hf 176Yb/177Hf 176Hf/177Hf 1σ εHf(0) 1σ εHf(t) 1σ T2DM(Ga) fLu/Hf
      流纹岩样品PM027-7
      PM027-7@01 740 0.001 697 0.059 479 0.281 896 0.000 019 -31.0 0.9 -15.5 0.9 2.38 -0.95
      PM027-7@02 740 0.001 863 0.063 458 0.281 872 0.000 020 -31.8 0.9 -16.5 0.9 2.43 -0.94
      PM027-7@03 740 0.002 255 0.078 416 0.281 838 0.000 021 -33.0 0.9 -17.8 0.9 2.51 -0.93
      PM027-7@04 740 0.000 996 0.044 576 0.281 782 0.000 026 -35.0 1.1 -19.2 1.1 2.59 -0.97
      PM027-7@05 740 0.007 678 0.307 686 0.282 105 0.000 034 -23.6 1.3 -11.1 1.4 2.14 -0.77
      PM027-7@06 740 0.001 477 0.050 172 0.281 795 0.000 024 -34.6 1.0 -19.0 1.1 2.57 -0.96
      PM027-7@07 740 0.002 467 0.085 258 0.281 847 0.000 023 -32.7 1.0 -17.6 1.0 2.50 -0.93
      PM027-7@08 740 0.002 535 0.106 847 0.281 913 0.000 034 -30.4 1.3 -15.3 1.4 2.37 -0.92
      PM027-7@09 740 0.002 089 0.072 915 0.281 902 0.000 020 -30.8 0.9 -15.5 0.9 2.38 -0.94
      PM027-7@10 740 0.003 175 0.112 580 0.281 975 0.000 020 -28.2 0.9 -13.4 0.9 2.27 -0.90
      PM027-7@11 740 0.002 449 0.083 438 0.282 007 0.000 019 -27.0 0.8 -11.9 0.9 2.19 -0.93
      PM027-7@12 740 0.001 769 0.061 157 0.282 023 0.000 018 -26.5 0.8 -11.0 0.9 2.14 -0.95
      PM027-7@13 740 0.001 700 0.059 541 0.282 070 0.000 019 -24.8 0.9 -9.4 0.9 2.05 -0.95
      PM027-7@14 740 0.003 138 0.109 431 0.282 124 0.000 021 -22.9 0.9 -8.1 1.0 1.98 -0.91
      流纹岩样品PM027-10
      PM027-10@01 739 0.000 556 0.022 472 0.281 980 0.000 020 -28.0 0.9 -12.0 0.9 2.19 -0.98
      PM027-10@02 739 0.001 322 0.043 633 0.282 020 0.000 021 -26.6 0.9 -10.9 0.9 2.13 -0.96
      PM027-10@03 739 0.002 397 0.085 486 0.282 140 0.000 020 -22.4 0.9 -7.2 0.9 1.93 -0.93
      PM027-10@04 739 0.003 071 0.107 312 0.282 100 0.000 025 -23.8 1.0 -9.0 1.0 2.03 -0.91
      PM027-10@05 739 0.002 876 0.104 603 0.282 051 0.000 025 -25.5 1.0 -10.6 1.1 2.12 -0.91
      PM027-10@06 739 0.001 205 0.053 666 0.281 846 0.000 036 -32.7 1.4 -17.1 1.4 2.47 -0.96
      PM027-10@07 739 0.002 497 0.084 565 0.281 994 0.000 022 -27.5 0.9 -12.4 1.0 2.22 -0.92
      PM027-10@08 739 0.002 664 0.097 001 0.281 947 0.000 022 -29.2 0.9 -14.2 1.0 2.31 -0.92
      PM027-10@09 739 0.002 321 0.082 449 0.281 963 0.000 023 -28.6 1.0 -13.5 1.0 2.27 -0.93
      下载: 导出CSV
    • [1] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
      [2] Cai, Z.Y., Xiong, X.L., Luo, H., et al., 2007. Forming Age of the Volcanic Rocks of the Yaolinghe Group from Wudang Block, Southern Qinling Mountain: Constraint from Grain-Zircon U-Pb Dating. Acta Geologica Sinica, 81(5): 620-625(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200705004.htm
      [3] Chen, L., Ma, C.Q., She, Z.B., et al., 2006. Liulin Gabbro in the Beihuaiyang Tectonic Belt of the Dabie Orogen: A Witness of the Late Neoproterozoic Rifting Event. Earth Science, 31(4): 578-584(in Chinese with English abstract). http://www.researchgate.net/publication/283167567_Liulin_gabbro_in_the_Beihuaiyang_tectonic_belt_of_the_Dabie_orogen_A_witness_of_the_late_neoproterozoic_rifting_event
      [4] Christiansen, R L., 1984. Yellowstone Magmatic Evolution: Its Bearing on Understanding Large-Volume Explosive Volcanism. In: Tait, S., ed., Explowive Volcanism: Inception, Evolution and Hazards. National Academy Press, Washington D.C., 84-95.
      [5] Deng, Q.Z., Li, X.W., Deng, Z., et al., 2013. Further Discussion on Stratigraphic Sequence of Hong'an Group and Relevant Problems. Resources Environment & Engineering, 27(2): 125-132(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HBDK201302005.htm
      [6] Dong, Y. P., Liu, X. M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196-197: 247-274. https://doi.org/10.1016/j.precamres.2011.12.007
      [7] Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr.2015.06.009
      [8] Glazner, A. F., Farmer, G. L., Hughes, W. T., et al., 1991. Contamination of Basaltic Magma by Mafic Crust at Amboy and Pisgah Craters, Mojave Desert, California. Journal of Geophysical Research: Solid Earth, 96(B8): 13673-13691. https://doi.org/10.1029/91jb00175
      [9] Green, D. H., 1973. Experimental Melting Studies on a Model Upper Mantle Composition at High Pressure under Water-Saturated and Water-Undersaturated Conditions. Earth and Planetary Science Letters, 19(1): 37-53. https://doi.org/10.1016/0012-821x(73)90176-3
      [10] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      [11] Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. https://doi.org/10.1016/0012-821x(86)90038-5
      [12] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
      [13] Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193.
      [14] Li, H.K., Lu, S.N., Chen, Z.H., et al., 2003. Zircon U-Pb Geochronology of Rift-Type Volcanic Rocks of the Yaolinghe Group in the South Qinling Orogen. Geological Bulletin of China, 22(10): 775-781(in Chinese with English abstract). http://www.researchgate.net/publication/284399902_Zircon_U-Pb_geochronology_of_rift-type_volcanic_rocks_of_the_Yaolinghe_Group_in_the_South_Qinling_orogen
      [15] Li, S., Han, W., Huang, F., et al., 1998. Sm-Nd and Rb-Sr Ages and Geochemistry of Volcanics from the Dingyuan Formation in Dabie Mountains, Central China: Evidence to the Paleozonic Magmatic Arc. Scientia Geologica Sinica, 7(4): 461-470. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020417847639.html
      [16] Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the ∼850 Ma Gangbian Alkaline Complex in South China: Evidence from In Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1-2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      [17] Li, X.H., Li, Z.X., Ge, W., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/s0301-9268(02)00207-3
      [18] Liew, T. C., Hofmann, A.W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. https://doi.org/10.1007/bf00402106
      [19] Ling, W. L., Ren, B. . F., Duan, R. C., et al., 2007. Timing of the Wudangshan, Yaolinghe Volcanic Sequences and Mafic Sills in South Qinling: U-Pb Zircon Geochronology and Tectonic Implication. Chinese Science Bulletin, 52(12): 1445-1456 (in Chinese)
      [20] Liu, X., Wei, C., Li, S., et al., 2004. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22: 361-379. https://doi.org/10.1111/j.1525-1314.2004.00519.x
      [21] Liu, Y. C., Li, S. G., Gu, X. F., et al., 2006. Zircon SHRIMP U-Pb Dating for Olivine Gabbro at Wangmuguan in the Beihuaiyang Zone and Its Geological Significance. Chinese Science Bulletin, 51(18): 2175-2180 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW200620011.htm
      [22] Liu, Y.C., Liu, L.X., Gu, X.F., et al., 2010. Occurrence of Neoproterozoic Low-Grade Metagranite in the Western Beihuaiyang Zone, the Dabie Orogen. Chinese Science Bulletin, 55(30): 3490-3498(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW201030019.htm
      [23] Luo, B. J., Liu, R., Zhang, H. F., et al., 2018. Neoproterozoic Continental Back-Arc Rift Development in the Northwestern Yangtze Block: Evidence from the Hannan Intrusive Magmatism. Gondwana Research, 59: 27-42. https://doi.org/10.1016/j.gr.2018.03.012
      [24] Ma, C., Ehlers, C., Xu, C., et al., 2000. The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102(3-4): 279-301. http://www.sciencedirect.com/science/article/pii/S0301926800000693
      [25] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101: 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2
      [26] Mao, X.W., Chen, C., Chen, M., et al., 2016. Detrital-Zircon Geochronology for the Metasedimentary Rocks of Hong'an Group Huangmailing Formation in the Northern Hubei and Its Geological Significance. Geological Science and Technology Information, 35(3): 49-55, 86(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201603006.htm
      [27] McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. https://doi.org/10.1093/petrology/29.3.625
      [28] O'Hara, M.J., 1965. Primary Magmas and the Origin of Basalts. Scottish Journal of Geology, 1(1): 19-40. https://doi.org/10.1144/sjg01010019
      [29] Pearce, J., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Willey & Sons, 525-548.
      [30] Pearce, J.A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      [31] Said, N., Kerrich, R., 2009. Geochemistry of Coexisting Depleted and Enriched Paringa Basalts, in the 2.7 Ga Kalgoorlie Terrane, Yilgarn Craton, Western Australia: Evidence for a Heterogeneous Mantle Plume Event. Precambrian Research, 174(3-4): 287-309. https://doi.org/10.1016/j.precamres.2009.08.002
      [32] Sigurdsson, H., 1977. Generation of Icelandic Rhyolites by Melting of Plagiogranites in the Oceanic Layer. Nature, 269: 25-28. https://doi.org/10.1038/269025a0
      [33] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [34] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific, Oxford.
      [35] Wang, J., Li, Z.X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7
      [36] Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf–Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3/4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020
      [37] Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [38] Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      [39] Wu, Y. B., Zheng, Y. F., Tang, J., et al., 2007. Zircon U-Pb Dating of Water-Rock Interaction during Neoproterozoic Rift Magmatism in South China. Chemical Geology, 246(1/2): 65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004
      [40] Xu, H. J., Ma, C. Q., Zhang, J. F., et al., 2013. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23(1): 190-207. https://doi.org/10.1016/j.gr.2011.12.009
      [41] Xu, S.T., Wu, W.P., Lu, Y.Q., et al., 2010. Low-Grade Metamorphic Rocks in Southern Dabie Mt. : The Susong and Zhangbaling Group. Geology of Anhui, 20(1): 5-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHDZ201001005.htm
      [42] Xue, H.M., Ma, F., Song, Y. Q, 2011. Geochemistry and SHRIMP Zircon U-Pb Data of Neoproterozoic Meta-Magmatic Rocks in the Suizhou-Zaoyang Area, Northern Margin of the Yangtze Craton, Central China. Acta Petrologica Sinica, 27(4): 1116-1130(in Chinese with English abstract). http://www.researchgate.net/publication/285943391_Geochemistry_and_SHRIMP_zircon_U-Pb_data_of_Neoproterozoic_meta-magmatic_rocks_in_the_Suizhou-Zaoyang_area_northern_margin_of_the_Yangtze_Craton_Central_China
      [43] Yang, Y. N., Wang, X. C., Li, Q. L., et al., 2016. Integrated in Situ U-Pb Age and Hf-O Analyses of Zircon from Suixian Group in Northern Yangtze: New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block. Precambrian Research, 273: 151-164. https://doi.org/10.1016/j.precamres.2015.12.008
      [44] Ye, B.D., Jian, P., Xu, J.W., et al., 1993. Sujiahe Convergent Belt in Northern Tongbai-Dabie Orogen and Its Constitution and Evolution. China University of Geoscience Press, Wuhan (in Chinese).
      [45] Zhang, C., Ma, C. Q., 2008. Large-Scale Late Mesozoic Magmatism in the Dabie Mountain: Constraints from Zircon U-Pb Dating and Hf Isotopes. Journal of Mineralogy and Petrology, 28(4): 71-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200804014.htm
      [46] Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001. Qinling Orogenic Belt and Continent Dynamics. Science Press, Beijing (in Chinese).
      [47] Zhang, Q., Ma, W.P., Jin, W.J., et al., 1995. Geochemistry and Tectonic Significance of Post-Tectonic Gabbro from Wangmuguan of Xinxian County, Henan Province. Geochimica, 24(4): 341-350(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX504.003.htm
      [48] Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8
      [49] Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017
      [50] Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie–Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
      [51] Zheng, Y. F., Gong, B., Zhao, Z. F., et al., 2008. Zircon U-Pb Age and O Isotope Evidence for Neoproterozoic Low 18O Magmatism during Supercontinental Rifting in South China: Implications for the Snowball Earth Event. American Journal of Science, 308(4): 484-516. https://doi.org/10.2475/04.2008.04
      [52] Zhong, Z. Q., Suo, S. T., You, Z. D., et al., 2001. Major Constituents of the Dabie Collisional Orogenic Belt and Partial Melting in the Ultrahigh-Pressure Unit. International Geology Review, 43(3): 226-236. https://doi.org/10.1080/00206810109465010
      [53] Zhu, J., Peng, S.G., Peng, L.H., et al., 2019. Geochronology of Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Orogen, Central China: Implications for Extension during Breakup of Rodinia. Earth Science, 44(2): 355-365(in Chinese with English abstract). http://www.researchgate.net/publication/332557958_Geochronology_of_Bimodal_Volcanic_Rocks_from_Dingyuan_Formation_in_Western_Dabie_Orogen_Central_China_Implications_for_Extension_during_Breakup_of_Rodinia
      [54] Zhu, J., Wang, L., Peng S., et al., 2017. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of the Miaoya Syenite and Carbonatite Complex, Central China. Geological Journal, 52(6): 938-954. https://doi.org/10.1002/gj.2859
      [55] Zhu, J., Wu, B., Wang, L.X., et al., 2019. Neoproterozoic Bimodal Volcanic Rocks and Granites in the Western Dabie Area, Northern Margin of Yangtze Block, China: Implications for Extension during the Break-up of Rodinia. International Geology Review, 61(11): 1370-1390. https://doi.org/10.1080/00206814.2018.1512058
      [56] Zhu, X. Y., Chen, F. K., Nie, H., et al., 2014. Neoproterozoic Tectonic Evolution of South Qinling, China: Evidence from Zircon Ages and Geochemistry of the Yaolinghe Volcanic Rocks. Precambrian Research, 245: 115-130. https://doi.org/10.1016/j.precamres.2014.02.005
      [57] 蔡志勇, 熊小林, 罗洪, 等, 2007. 武当地块耀岭河群火山岩的时代归属: 单锆石U-Pb年龄的制约. 地质学报, 81(5): 620-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200705004.htm
      [58] 陈玲, 马昌前, 佘振兵, 等, 2006. 大别山北淮阳构造带柳林辉长岩: 新元古代晚期裂解事件的记录. 地球科学, 31(4): 578-584. http://www.earth-science.net/article/id/1606
      [59] 邓乾忠, 李雄伟, 邓喆, 等2013. 再论红安群地层序列与有关问题. 资源环境与工程, 27(2): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201302005.htm
      [60] 李怀坤, 陆松年, 陈志宏, 等, 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775-781. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200310004.htm
      [61] 凌文黎, 任邦方, 段瑞春, 等, 2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 52(12): 1445-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200712014.htm
      [62] 刘贻灿, 李曙光, 古晓锋, 等, 2006. 北淮阳王母观橄榄辉长岩锆石SHRIMP U-Pb年龄及其地质意义. 科学通报, 51(18): 2175-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200618014.htm
      [63] 刘贻灿, 刘理湘, 古晓锋, 等, 2010. 大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义. 科学通报, 55(24): 2391-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201024006.htm
      [64] 毛新武, 陈超, 陈觅, 等, 2016. 鄂北红安群黄麦岭组变沉积岩碎屑锆石年代学及地质意义. 地质科技情报, 35(3): 49-55, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603006.htm
      [65] 徐树桐, 吴维平, 陆益群, 等, 2010. 大别山南部的低级变质岩: 宿松群和张八岭群. 安徽地质, 20(1): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201001005.htm
      [66] 薛怀民, 马芳, 宋永勤, 2011. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究. 岩石学报, 27(4): 1116-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104021.htm
      [67] 叶伯丹, 简平, 许俊文, 等, 1993. 桐柏-大别造山带北坡苏家河地体拼接带及其构成和演化. 武汉: 中国地质大学出版社.
      [68] 张超, 马昌前, 2008. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U-Pb年龄和Hf同位素制约. 矿物岩石, 28(4): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200804014.htm
      [69] 张国伟, 张本仁, 袁学诚, 等, 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.
      [70] 张旗, 马文璞, 金唯俊, 等, 1995. 一个造山后的辉长岩—河南新县王母观岩体的地球化学特征. 地球化学, 24(4): 341-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX504.003.htm
      [71] 朱江, 彭三国, 彭练红, 等, 2019. 扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义. 地球科学, 44(2): 355-365. doi: 10.3799/dqkx.2018.541
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  958
    • HTML全文浏览量:  215
    • PDF下载量:  82
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-26
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回