Dolomite Origin of Shahejie Formation in Huanghekou Sag, Bohai Bay Basin
-
摘要: 为了研究渤海湾盆地黄河口凹陷沙河街组白云岩成因机理,通过岩心观察、薄片鉴定、阴极发光、X衍射、扫描电镜、背散射、碳氧同位素等方法,分析白云石岩石学、形貌学和同位素地球化学特征.结果表明,白云岩呈黄棕色,发育大量溶蚀孔和高岭石、燧石等矿物,δ13C值为-0.50‰~4.58‰,δ18O值为-14.58‰~-2.19‰,总体具有δ13C低正值,δ18O负值的特点.泥晶白云石,由微米级球状白云石和白云石化蓝细菌组成,亚微米级孔隙发育,见薄片状细菌丝和草莓状黄铁矿;纤维状白云石环边胶结物充填在溶蚀孔洞或围绕颗粒表面生长;菱形白云石,漂浮状分散在孔隙中.准同生期,硫酸盐还原菌的催化作用形成球形白云石;随后,受大气淡水淋滤,在湖底成岩环境微生物影响下形成纤维状白云石环边胶结物;浅埋藏期,由于埋藏白云岩化形成菱形白云石.这为古老湖相白云岩微生物成因提供具体实例,且对该地区勘探提供参考.Abstract: To study the dolomite origin of Shahejie Formation in Huanghekou sag, Bohai Bay basin, the petrology, morphology and isotopic geochemical characteristics of the dolomite were analyzed through core observation, thin section identification, cathodoluminescence, X-ray diffractometry (XRD), scanning electron microscopy (SEM), back-scattered electrons (BSE) and carbon and oxygen isotopes. The results show that the dolomite is yellow brown and has a lot of dissolution pores, chert and kaolinite develops. δ13C values range from -0.50‰ to 4.58‰, and δ18O values range from -14.58‰ to -2.19‰. Micritic dolomite consists of microsphere dolomite and dolomized cyanbacteria accompanied with a lot of submicron pores, sheet-like bacterial filaments and strawberry pyrite. Fibrous isopachous dolomite cements fill in the dissolution pores or grow around particle surfaces. Rhombic dolomite is dispersed in pores. During penecontemporaneous stage, sulfate reducing bacteria induced spherical dolomite precipitation. Subsequently, fibrous isopachous dolomite cements were influenced by microbes under lake floor diagenetic environment, being affected by meteoric fresh water. During shallow burial stage, rhombic dolomite precipitates by buried dolomitization. This study can provide a specific sample for microbial induced lacustrine dolomite precipitation in ancient strata and reference for exploration in the study area.
-
Key words:
- Bohai Bay basin /
- Huanghekou sag /
- Shahejie Formation /
- dolomite origin /
- microbial dolomite /
- buried dolomitization /
- sedimentation
-
图 2 黄河口凹陷混积岩岩性特征
a. H-2-W井,2 395.40 m,黄棕色白云岩(黄色箭头)与灰绿色火山岩岩屑(蓝色箭头)混合沉积;b. H-2-W井,2 396.55 m,白云岩(黄色箭头)与碎屑颗粒(石英:红色箭头,长石:蓝色箭头)成渐变接触,阴极发光;c. H-4-5井,2 352.03 m,岩屑(蓝色箭头)、石英(红色箭头)与生物碎屑(黄色箭头)混合沉积,单偏光;d. H-2-1井,3 750.00 m,藻云岩(黄色箭头)与碎屑颗粒(石英:红色箭头)混合沉积,单偏光
Fig. 2. Lithologic characters of mixed rocks in Huanghekou sag
图 4 泥晶白云石形貌特征
a. H-2-W井,2 396.50 m,高倍显微镜下泥晶白云石中微米球状白云石(黄色箭头),见小管状蓝细菌铸膜孔(蓝色箭头),正交光;b. H-2-W井,2 396.50 m,小管状蓝细菌铸膜孔(蓝色箭头),泥晶白云石中见大量亚微米级微孔(黄色箭头),背散射;c. H-2-W井,2 396.50 m,泥晶白云石(图a, b同深度)由球状白云石(1~2 μm)组成,扫描电镜;d. H-2-W井,2 390.00 m,微米级球状白云石化蓝细菌(15~20 μm)由大量纳米球组成,且边缘重结晶成自形白云石,扫描电镜;e. H-2-W井,2 386.42 m,微米球状白云石(黄色箭头)之间薄片状细菌丝(蓝色箭头);f. H-2-W井,2 395.00 m,丝状蓝细菌白云岩化(黄色箭头),表面重结晶成菱形白云石,见自形微米级燧石小晶体(蓝色箭头)和菱形白云石(红色箭头),扫描电镜;g. H-2-1井,3 750.00 m,泥晶藻云岩,阴极发光;h. H-2-W井,2 393.25 m,草莓状黄铁矿,扫描电镜;i. H-2-1井,3 825.00 m,粒间充填大量不完整书堆状高岭石(黄色箭头),背散射
Fig. 4. Morphological characteristics of micrite dolomite
表 1 黄河口凹陷沙河街组沙一二段主要藻类化石和介形化石的相对含量
Table 1. Relative contents of main algae and main ostracoda in the first and second members of Shahejie Formation of Huanghekou sag
井号 层位 类型及相对含量(%) 藻类化石 H-2-1 沙一段 盘星藻属38.4 多刺甲藻属6.3 光面球藻属19.5 沧县藻属4 破裂沧县藻18 伸长沧县藻13.3 H-4-5 沙一段 对裂藻属7.56 穴面球藻属7.81 光面藻属26.73 网、皱、瘤面藻属3.82 毛球藻属+葡萄藻属2.15 刺球藻属3.89 锥藻属+繁棒球藻属2.33 方胜藻属+稀管藻属3.34 多刺甲藻属21.84 H-4-5 沙二段 对裂藻属13.78 光面藻属6.37 毛球藻属+葡萄藻属4.60 方胜藻属+稀管藻属9.18 多刺甲藻属55.12 介形化石 H-2-1 沙一段 华花介属(未定种)22.22 玻璃介属(未定种)33.33 李家广北介(比较种)22.22 真星介属(未定种)11.11 拱星介属?(未定种)11.11 H-4-5 沙一段 华花介9.02 明亮丽星介13.46 小豆介属8.63 惠民小豆介9.02 近三角小星介13.46 东营介属3.92 宽卵小豆介12.55 玻璃介6.67 H-2-W 沙一段 华花介属5.67 惠民小豆介 > 21 具刺湖化介 > 11 玻璃介属9.5 明亮丽星介 > 10 乐陵真星介 > 10 沙河街似玻利介12.5 伸玻璃介 > 10 细长小豆介 > 10 普通小豆介 > 10 中华玻璃介 > 10 盘河小豆介 > 10 H-4-5 沙二段 伸玻璃介5.06 华花介6.75 丽星介5.06 明亮丽星介9.22 小豆介属16.87 惠民小豆介37.46 近三角小星介9.22 乐陵真星介3.61 玻璃介6.75 表 2 黄河口凹陷白云岩碳氧同位素分析
Table 2. Analysis of carbon and oxygen isotopes in dolomites from Shahejie Formation in Huanghekou sag
井号 深度(m) 层位 岩性 δ13CPDB(‰) δ18OPDB(‰) 古盐度S(‰) 古盐度指数Z 古温度T(℃) H-2-W 2 381.80 沙一段 泥晶颗粒云岩1 1.27 -5.92 28.83 126.95 42.13 H-2-W 2 381.80 沙一段 泥晶颗粒云岩1 1.20 -6.00 28.75 126.77 42.53 H-2-W 2 384.97 沙一段 泥晶颗粒云岩1 4.58 -3.55 31.20 134.91 30.47 H-2-W 2 384.97 沙一段 泥晶颗粒云岩2 3.55 -6.25 28.50 131.46 43.79 H-2-W 2 386.42 沙一段 泥晶颗粒云岩 2.60 -7.22 27.53 129.03 48.71 H-2-W 2 386.95 沙一段 泥晶颗粒云岩 1.97 -9.40 25.35 126.65 60.06 H-2-W 2 390.50 沙一段 泥晶套 1.76 -9.91 24.84 125.97 62.77 H-2-W 2 390.50 沙一段 泥晶颗粒云岩 1.81 -11.98 22.77 125.04 73.98 H-2-W 2 391.00 沙一段 泥晶颗粒云岩1 0.15 -14.85 19.90 120.21 90.09 H-2-W 2 391.00 沙一段 泥晶颗粒云岩2 0.70 -13.28 21.47 122.12 81.20 H-2-W 2 392.45 沙一段 云质砂岩 1.75 -11.30 23.45 125.26 70.26 H-2-W 2 394.20 沙一段 泥晶颗粒云岩 2.55 -5.57 29.18 129.75 40.38 H-2-W 2 395.70 沙一段 泥晶云岩 -0.50 -6.53 28.22 123.02 45.20 H-2-W 2 395.00 沙一段 泥晶颗粒云岩1 2.76 -6.00 28.75 129.96 42.53 H-2-W 2 395.00 沙一段 洞穴白云石充填物 1.49 -6.70 28.05 127.01 46.06 H-2-W 2 396.10 沙一段 泥晶云岩1 0.04 -2.62 32.13 126.08 26.02 H-2-W 2 396.10 沙一段 泥晶云岩2 0.40 -3.70 31.05 126.28 31.20 H-2-W 2 396.50 沙一段 泥晶云岩 0.74 -2.19 32.56 127.72 23.98 H-2-2 3 746.93 沙一段 云质砂岩 2.12 -7.48 27.27 127.92 50.05 H-2-2 3 787.70 沙一段 泥晶颗粒云岩 2.70 -4.97 29.78 130.35 37.40 H-2-2 3 788.39 沙一段 云质砂岩 2.23 -8.04 26.71 127.86 52.94 H-2-2 3 788.44 沙一段 云质砂岩 1.99 -8.15 26.60 127.32 53.51 -
[1] Berner, R.A., 1980.Early Diagenesis: A Theoretical Approach. Princeton University Press, New Jersey. [2] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2010. Dolomite Formation within Microbial Mats in the Coastal Sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57(3): 824-844. https://doi.org/10.1111/j.1365-3091.2009.01121.x [3] Bosak, T., Souza-Egipsy, V., Corsetti, F.A., et al., 2004. Micrometer-Scale Porosity as a Biosignature in Carbonate Crusts. Geology, 32(9): 781-784. https://doi.org/10.1130/g20681.1 [4] Brooks, G.R., Doyle, L.J., Suthard, B.C., et al., 2003. Facies Architecture of the Mixed Carbonate/Siliciclastic Inner Continental Shelf of West-Central Florida: Implications for Holocene Barrier Development. Marine Geology, 200(1-4): 325-349. https://doi.org/10.1016/S0025-3227(03)00190-7 [5] Dai, C.C., Zheng, R.C., Wen, H.G., et al., 2008.Origin of Lacustrine Dolomite in the Paleogene Shahejie Formation of Liaodongwan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 35(2): 187-193(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200802014 [6] Dong, G.Y., Chen, H.D., He, Y.B., et al., 2007. Some Problems on the Study of the Mixed Siliciclastic-Carbonate Sediments. Advances in Earth Science, 22(9): 931-939(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200709007 [7] Gao, G., Yang, S.R., Qu, T., 2018. Research Status of Mixing Sediments and Their Relationship with Petroleum Enrichment. Geological Science and Technology Information, 37(6):82-88(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201806010 [8] García-Hidalgo, J.F., Gil, J.G., Segura, M., et al., 2007. Internal Anatomy of a Mixed Siliciclastic-Carbonate Platform: The Late Cenomanian-Mid Turonian at the Southern Margin of the Spanish Central System. Sedimentology, 54(6): 1245-1271. https://doi.org/10.1111/j.1365-3091.2007.00880.x [9] Huo, S.J., Yang, X.H., Wang, Q.B., et al., 2015. Controlling Factors on Diamictite Reservoir in Shahejie Formation, H-1 Structure, Huanghekou Depression. Geoscience, 29 (6): 1348-1359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201506009 [10] Keith, M.L., Weber, J.N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11): 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5 [11] Krause, S., Liebetrau, V., Gorb, S.N., et al., 2012. Microbial Nucleation of Mg-Rich Dolomite in Exopolymeric Substances under Anoxic Modern Seawater Salinity: New Insight into an Old Enigma. Geology, 40(7): 587-590. https://doi.org/10.1130/G32923.1 [12] Li, D.S., 1981. Geological Structure and Hydrocarbon Occurrence of Bohai Gulf Oil and Gas Basin (China). Marine Geological Research, 1(1):3-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198101001.htm [13] Li, J.Y., Wan, C.F., Fan, T.Z., 1991. Weathering Crust of Carbonate Rocks and Process of Karst Earth Formation. Carsologica Sinica, 10(1): 29-38(in Chinese with English abstract). [14] Liao, J., Dong, Z.X., Zhai, G.Y., et al., 2008. Feature of Oligocene Shahejie Lower-lst Member Lacustrine Dolostone in Qikou Depression, Bohaiwan Basin, and Difference of It from Marine Dolostone. Marine Origin Petroleum Geology, 13(1): 18-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ200801005.htm [15] Liu, S.L., Wang, Q.F., Gong, Y.J., et al., 2012. Paleogene Microfossil Assemblages from the Bohai Area and Their Importance for the Oil and Gas Exploration. Journal of Stratigraphy, 36(4): 700-709(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201204004.htm [16] Mount, J.F., 1984. Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments. Geology, 12(7): 432-435. https://doi.org/10.1130/0091-7613(1984)12432:MOSACS > 2.0.CO; 2 doi: 10.1130/0091-7613(1984)12432:MOSACS>2.0.CO;2 [17] Pan, W.J., Wang, Q.B., Liu, S.L., et al., 2017.Origin of Lacustrine Bioclastic Dolostone in the Paleogene Shahejie Formation: A Case Study in Shijiutuo Area, Bohai Sea. Journal of Palaeogeography, 19(5): 835-848(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201705008.htm [18] Perri, E., Tucker, M.E., 2007. Bacterial Fossils and Microbial Dolomite in Triassic Stromatolites. Geology, 35(3): 207-210. https://doi.org/10.1130/G23354A.1 [19] Qu, C.W., Lin, C.M., Cai, M.J., et al., 2014. Characteristics of Dolostone Reservoir in Sha 3 Group from Palaeogene Shahejie Formation in Beitang Sag, Bohaiwan Basin. Acta Geologica Sinica, 88(8): 1588-1602(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201408019 [20] Sánchez-Román, M., Vasconcelos, C., Schmid, T., et al., 2008. Aerobic Microbial Dolomite at the Nanometer Scale: Implications for the Geologic Record. Geology, 36(11): 879-882. https://doi.org/10.1130/G25013A.1 [21] Song, B.R., Han, H.D., Cui, X.D., et al., 2015. Petrogenesis Analysis of Lacustrine Analcite Dolostone of the Member 4 of Paleogene Shahejie Formation in Liaohe Depression, Bohai Bay Basin. Journal of Palaeogeography, 17(1): 33-44(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201501004 [22] Tang, L.J., Wan, G.M., Zhou, X.H., et al., 2008. Cenozoic Geotectonic Evolution of the Bohai Basin. Geological Journal of China Universities, 14(2):191-198 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200802008 [23] Tian, J.C., Yin, G., Qin, J.X., et al., 1998. The Relationship between the Transgression of Eogene and the Origin of Lacustrine Dolomitite in Eastern China-Taking the Shahejie Formation of Dongying Sag as Example. China Offshore Oil and Gas (Geology), 12(4): 34-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD199804008.htm [24] van Lith, Y., Warthmann, R., Vasconcelos, C., et al., 2003. Sulphate‐Reducing Bacteria Induce Low‐Temperature Ca‐Dolomite and High Mg‐Calcite Formation. Geobiology, 1(1): 71-79. https://doi.org/10.1046/j.1472-4669.2003.00003.x [25] Vasconcelos, C., McKenzie, J.A., Bernasconi, S.M., et al., 1995. Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 377(6546): 220-222. https://doi.org/10.1038/377220a0 [26] Wang, B.J., Cai, M.J., Lin, C.M., et al., 2014. Characteristics and Origin of Lacustrine Dolostone of the Paleogene Shahejie Formation in Tanggu area, Bohai Bay Basin. Journal of Palaeogeography, 16(1): 65-76 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201401007 [27] Wang, G.Z., 2001.Mixed Sedimentation of Recent Reefoid Carbonates and Terrigenous Clastics in the North Continental Shelf of the South China Sea. Journal of Palaeogeography, 3(2): 47-54(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200102007 [28] Wang, J.Q., Liu, B., Luo, P., et al., 2014. Classification and Genesis of Sinian Mixosedimentite from Northwest Margin of Tarim Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 339-346 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201403010 [29] Wang, Q.B., Liu, L., Niu, C.M., et al., 2018. Impacts of the Freshwater Diagenetic Environment to the Mix-Deposition of Lacustrine Carbonate and Clastic at the Steep Slope of Shijiutuo Uplift, Bohai Bay Basin. Earth Science, (Suppl.2): 234-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2019.htm [30] Wang, Q.B., Liu, L., Niu, C.M., et al., 2019. The Geological Evidences and Impacts of Deep Thermal Fluid on Lacustrine Carbonate Reservoir in the Actic Area of the North Part of Bozhong Depression, Bohai Bay Basin. Earth Science, 44(8): 2751-2760 (in Chinese with English abstract). [31] Wang, X.L., Chou, I.M., Hua, W.X., et al., 2016. Kinetic Inhibition of Dolomite Precipitation: Insights from Raman Spectroscopy of Mg2+-SO42- Ion Pairing in MgSO4/MgCl2/NaCl Solutions at Temperatures of 25 to 200 ℃. Chemical Geology, 435(2016): 10-21. https://doi.org/10.1016/j.chemgeo.2016.04.020 [32] Warthmann, R., van Lith, Y., Vasconcelos, C., et al., 2000. Bacterially Induced Dolomite Precipitation in Anoxic Culture Experiments. Geology, 28(12): 1091-1094. https://doi.org/10.1130/0091-7613(2000)0281091:bidpia > 2.3.co; 2 doi: 10.1130/0091-7613(2000)0281091:bidpia>2.3.co;2 [33] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43 (10): 3526-3539(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [34] Yang, C.Q., Sha, Q.A., 1990. Sedimentary Environment of the Middle Devonian Qujing Formation, Qujing, Yunnan Province: A Kind of Mixing Sedimentation of Terrigenous Clastics and Carbonate. Acta Sedimentologica Sinica, 8(2): 59-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199002008.htm [35] Zhang, F., Xu, H.F., Konishi, H., et al., 2012. Polysaccharide-Catalyzed Nucleation and Growth of Disordered Dolomite: A Potential Precursor of Sedimentary Dolomite. American Mineralogist, 97(4): 556-567. https://doi.org/10.2138/am.2012.3979 [36] Zhang, J.T., He, Z.L., Yue, X.J., et al., 2017. Genesis of Iron-Rich Dolostones in the 5th Member of the Majiagou Formation of the Ordovician in Ordos Basin. Oil & Gas Geology, 38(4): 776-783(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201704014 [37] Zhang, X.H., 2000. Classification and Origin of Mixosedimentite. Geological Science and Technology Information, 19(4): 31-34(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200004006 [38] Zhao, K., Song, Z.Q., Du, X.B., et al., 2018. Dolomitization Genetic Mechanism of Carbonate-Siliciclastic Mixed Rock Reservoir in CFD-A Tectonic Belt, Bohai Sea. Petroleum Geology & Experiment, 40(2): 218-225(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201802012 [39] Zhao, W.Z., Shen, A.J., Qiao, Z.F., et al., 2018. The Genetic Types and Distinguished Characteristics of Dolostone and the Origin of Dolostone Reservoirs. Petroleum Exploration and Development, 45(6): 923-935(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=PEAD201806002 [40] Zhu, W.L., 2009. Paleolimnology and Source Rock Studies of Cenozoic Hydrocarbon-Bearing Offshore Basins in China. Geological Publishing House, Beijing (in Chinese). [41] 戴朝成, 郑荣才, 文华国, 等, 2008.辽东湾盆地沙河街组湖相白云岩成因研究.成都理工大学学报(自然科学版), 35(2): 187-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200802014 [42] 董桂玉, 陈洪德, 何幼斌, 等, 2007.陆源碎屑与碳酸盐混合沉积研究中的几点思考.地球科学进展, 22(9): 931-939. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200709007 [43] 高岗, 杨尚儒, 屈童, 2018.混合沉积研究现状及其与油气富集的关系.地质科技情报, 37(6): 82-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201806010 [44] 霍沈君, 杨香华, 王清斌, 等, 2015.黄河口凹陷H-1构造沙河街组混积岩储层控制因素.现代地质, 29(6): 1348-1359. http://d.wanfangdata.com.cn/Periodical/xddz201506009 [45] 李德生, 1981.渤海湾含油气盆地的地质构造特征与油气田分布规律.海洋地质研究, 1(1): 3-20. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ198101001.htm [46] 李景阳, 王朝富, 樊廷章, 1991.试论碳酸盐岩风化壳与喀斯特成土作用.中国岩溶, 10(1): 29-38. http://www.cnki.com.cn/Article/CJFDTotal-ZGYR199101004.htm [47] 廖静, 董兆雄, 翟桂云, 等, 2008.渤海湾盆地歧口凹陷沙河街组一段下亚段湖相白云岩及其与海相白云岩的差异.海相油气地质, 13(1): 18-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz200801004 [48] 刘士磊, 王启飞, 龚莹杰, 等, 2012.渤海海域古近纪微体化石组合特征及油气勘探意义.地层学杂志, 36(4): 700-709. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ201204004.htm [49] 潘文静, 王清斌, 刘士磊, 等, 2017.渤海海域石臼坨地区古近系沙河街组湖相生屑白云岩成因.古地理学报, 19(5): 835-848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201705006 [50] 曲长伟, 林春明, 蔡明俊, 等, 2014.渤海湾盆地北塘凹陷古近系沙河街组三段白云岩储层特征.地质学报, 88(8): 1588-1602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201408019 [51] 宋柏荣, 韩洪斗, 崔向东, 等, 2015.渤海湾盆地辽河坳陷古近系沙河街组四段湖相方沸石白云岩成因分析.古地理学报, 17(1): 33-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201501004 [52] 汤良杰, 万桂梅, 周心怀, 等, 2008.渤海盆地新生代构造演化特征.高校地质学报, 14(2): 191-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200802008 [53] 田景春, 尹观, 覃建雄, 等, 1998.中国东部早第三纪海侵与湖相白云岩成因之关系--以东营凹陷沙河街组为例.中国海上油气(地质), 12 (04): 34-38. http://www.cnki.com.cn/Article/CJFDTotal-ZHSD199804008.htm [54] 王兵杰, 蔡明俊, 林春明, 等, 2014.渤海湾盆地塘沽地区古近系沙河街组湖相白云岩特征及成因.古地理学报, 16(1): 65-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201401007 [55] 王国忠, 2001.南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用.古地理学报, 3(2): 47-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200102007 [56] 王杰琼, 刘波, 罗平, 等, 2014.塔里木盆地西北缘震旦系混积岩类型及成因.成都理工大学学报(自然科学版), 41(3): 339-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201403010 [57] 王清斌, 刘立, 牛成民, 等, 2018.石臼坨凸起陡坡带大气淡水成岩环境对湖相混积岩储层的影响.地球科学, (增刊2): 234-242. doi: 10.3799/dqkx.2018.138 [58] 王清斌, 刘立, 牛成民, 等, 2019.渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响.地球科学, 44(8): 2751-2760. doi: 10.3799/dqkx.2018.347 [59] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10): 3526-3539. doi: 10.3799/dqkx.2018.277 [60] 杨朝青, 沙庆安, 1990.云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳.沉积学报, 8(2): 59-66. http://www.cqvip.com/QK/95994X/19902/221837.html [61] 张军涛, 何治亮, 岳小娟, 等, 2017.鄂尔多斯盆地奥陶系马家沟组五段富铁白云石成因.石油与天然气地质, 38(4): 776-783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201704014 [62] 张雄华, 2000.混积岩的分类和成因.地质科技情报, 19(4): 31-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200004006 [63] 赵珂, 宋章强, 杜学斌, 等, 2018.渤海海域曹妃甸A构造带混积岩储层白云岩化成因机理分析.石油实验地质, 40(2): 218-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201802012 [64] 赵文智, 沈安江, 乔占峰, 等, 2018.白云岩成因类型、识别特征及储集空间成因.石油勘探与开发, 45(6): 923-935. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201806002 [65] 朱伟林, 2009.中国近海新生代含油气盆地古湖泊学与烃源条件.北京:地质出版社.