Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield
-
摘要: 为解释榆科油田榆108和榆24断块东营组存在的油水关系复杂、注采不对应、注水开发效率差等问题.通过采用地质、地球物理及开发动态资料,开展沉积微相、单河道及点坝砂体储层构型研究,提出2类河流相砂体连通模式;结合生产动态,在研究区内河流相储层中,划分出4类油藏单元和5类油藏单元组合.给出3个实例,证明基于沉积微相和储层构型研究划分出的油藏单元,可用于解释油藏勘探开发中暴露的矛盾.该研究可为下一步油藏精细开发调整、提高油藏开发水平提供依据.Abstract: In order to explain the problems of Dongying Formation in Yu108 and Yu24 fault blocks in Yuke Oilfield, such as complicated oil-water relationship, non-correspondence of injection-production and efficiency of water-injection development. Based on the study of microfacies and reservoir architecture of the fluvial reservoir of Dongying Formation in Yuke oilfield by using core, well loggings, seismics, lab analysis, production dynamics and reservoir monitoring data, this paper proposes two connection patterns of single channel and point bar. Combined with the production dynamic analysis, an oil reservoir unit classification scheme is proposed, consisting of four reservoir units and five combinations of reservoir units. In this paper, three examples are given to prove the reservoir units divided based on the study of sedimentary microfacies and reservoir architecture can not only explain the problems existing in the development of Dongying Formation reservoirs in the Yuke Oilfield, but also provide theoretical basis for fine development and adjustment of reservoirs and improvement of reservoir development level.
-
图 10 A4型油藏单元中注采关系、沉积微相、储层构型及示踪剂综合分析图
a. Ed1-Ⅱ-11小层Y108-10注采井组断层构造-沉积微相-储层构型-油藏单元分布图;b. 注水井(Y108-10)及采油井(Y108-27和Y108-17)注水曲线及生产曲线;c. 注采井组示踪剂分析成果表
Fig. 10. Comprehensive analysis diagram of injection-production relationship, sedimentary microfacies, reservoir configuration and tracer in A4 reservoir unit
表 1 单河道砂体和点坝构型单元定量经验公式
Table 1. Quantitative empirical formula for single sand body and point bar architecture element
公式序号 学者 经验公式 备注 1 Schumm et al.(1960) F=255M-1.08 F:河道宽深比,无量纲;
M:粉泥质含量(%);
H:满岸河道深度(m);
hm:平均交错沙丘厚度(m);
a:参数,无量纲;
Sm:平均交错层厚度(m);
h:平均砂体厚度(m);
Wm:满岸宽度(m);
WL:侧积体宽度(m);
β:侧积倾角(°);
Wc:单一曲流带宽度(m);
Wd:点坝长度(m);
Wa:侧积层最大宽度(m)2 Bridge et al.(1972) H=6hm;a=Sm/(1.8hm);hm= 2.22a1.332 3 Leeder(1973) Wm=6.8H1.54 4 Wm=1.5H/tanβ 5 WL= 2Wm/3 6 Bridge and Mackey(1993) Wm=59.9h1.8 7 Lorenz et al.(1985) Wc=7.44Wm1.01 8 岳大力等(2018) Wd=3.631 9Wm+40.612 -
[1] Bridge, J. S., Diemer, J. A., Schumm, S. A., et al., 1972. Experimental Study of Channel Patterns. Geological Society of America Bulletin, 83(6): 1755. https://doi.org/10.1130/0016-7606(1972)83[1755:esocp]2.0.co;2 [2] Bridge, J.S., Mackey, S.D., 1993. A Theoretical Study of Fluvial Sandstone Body Dimensions. In: Flint, S.S., Bryant, I.D., eds., The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues: International Association of Sedimentologists, Special Publication 15, New York, 213-236. [3] Huang, H., 2011. The Study on the Sedimentary Microfacies of Dongying Formation of Yuke Oil Field of Shenxian Depression (Dissertation). China University of Petroleum, East China, Qingdao(in Chinese with English abstract). [4] Leeder, M. R., 1973. Fluviatile Fining-Upwards Cycles and the Magnitude of Palaeochannels. Geological Magazine, 110(3): 265-276. https://doi.org/10.1017/s0016756800036098 [5] Li, J.G., 2018. Sedimentary Model of Fine-Grained Dryland Meandering River Terminus Systems in a Semi-Arid or Arid Endorheic Basin. Earth Science, 43(S1): 268-280 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1023.htm [6] Li, S. L., Yu, X. H., Jiang, T., et al., 2017. Meander-Braided Transition Features and Abandoned Channel Patterns in Fluvial Environment. Acta Sedimentologica Sinica, (1): 3-11 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-sedimentologica-sinica_thesis/0201251718311.html [7] Liang, F. K., Liu, L. P., Yu, X. H., et al., 2013. Structural Accommodation Zones in the Main Extension Period and their Effects on Depositional System in the Shenxian Sag, Jizhong Depression. Chinese Journal of Geology, 48(1): 254-262 (in Chinese with English abstract). http://www.researchgate.net/publication/287267469_Structural_accommodation_zones_in_the_main_extension_period_and_their_effects_on_depositional_system_in_the_Shenxian_Sag_Jizhong_Depression [8] Liu, X. L., 2014. Controlling Factors of Complex Oil-Water Relationship in High Porosity and Permeability Sandstone Reservoirs: Taking Lower Member Reservoir of Guantao Formation in Block Zhuang 11, Changdi Oilfield as an Example. Fault-Block Oil & Gas Field, 21(2): 142-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201402002.htm [9] Lorenz, J. C., Clark, J. A., Heinze, D. M., et al., 1985. Determination of Widths of Meander-Belt Sandstone Reservoirs from Vertical Down Hole Data, Mesaverde Group, Piceance Creek Basin, Colorado. AAPG Bulletin, 69(5): 710-721. https://doi.org/10.1306/ad4627ef-16f7-11d7-8645000102c1865d [10] Ma, S. Z., Sun, Y., Fan, G. J., et al., 2008. The Method for Studying Thin Interbed Architecture of Burial Meandering Channel Sandbody. Acta Sedimentologica Sinica, 26(4): 632-639 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=27888105 [11] Palmer, M., 2015. A High-Resolution 3-D Architecture of a Cretaceous Point Bar Using Terrestrial Laser Scanning of Multiple Exposures: A Far More Complex Model of Bar Growth at the Scale of a Steam Chamber than Previously Thought. Dissertations & Theses-Gradworks, 10(1): 125. http://www.zhangqiaokeyan.com/academic-degree-foreign_mphd_thesis/02061567504.html [12] Schumm, S. A., 1960. The Shape of Alluvial Channels in Relation to Sediment Type. U.S. Geol. Surv. Prof. Pap., New York, 352-b. http://www.researchgate.net/publication/248008453_The_Shape_of_Alluvial_Channels_in_Relation_to_Sediment_Type [13] Sun, T. J., Li, S. L., Xu, L., et al., 2012. Architectural Analysis of Meandering River Reservoirs in Fuyu Oil Layer, C107 Block, Changchunling Oil Field. Earth Science Frontiers, 19(2): 126-132 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201202018 [14] Sun, X. C., Yang, C. S., Yu, X. H., et al., 2014. Characteristics and Controlling Factors of Sandstone Reservoir of Dongying Formation in Shenxian Depression, Jizhong Sub-Basin. Marine Geology & Quaternary Geology, (4): 127-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201404019.htm [15] Sun, Y., D., Yi, M., Wang, J. P., et al., 2016. Distribution Patterns of Single Sand Body in Fuyu Oil Layer in the Northern Honggang Area, Songliao Basin. Lithologic Reservoirs, 28(4): 9-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201604002.htm [16] Wang, J. H., Zhou, J. Y., Yang, X. H., et al., 2018. Sedimentary Characteristics and Geneses of Pebbly Meandering River: A Case from Dashihe River in Qinghuangdao Area. Earth Science, 43(S1): 277-286 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1024.htm [17] Wu, S. H., Yue, D. L., Liu, J. M., et al., 2008. Hierarchy Modeling of Subsurface Palaeochannel Reservoir Architecture. Science in China Series D: Earth Sciences, 51(2S): 126-137 (in Chinese with English abstract). doi: 10.1007/s11430-008-0624-0 [18] Xu, L. H., Liu, J., Gong, L. P., et al., 2015. The Mechanism of Differential Distribution of the Water Oil Contact in Block 438 of Shuanghe Oilfield. Marine Geology Frontiers, (7): 42-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201507006.htm [19] Yue, D. L., Wu, S. H., Liu, J. M., 2007. An Accurate Method for Anatomizing Architecture of Subsurface Reservoir in Point Bar of Meandering River. Acta Petrolei Sinica, 28(4): 99-103 (in Chinese with English abstract). http://www.researchgate.net/publication/287874999_Accurate_method_for_anatomizing_architecture_of_subsurface_reservoir_in_point_bar_of_meandering_river [20] Yue, D.L., Hu, G.Y., Li, W., et al., 2018. Meandering Fluvial Reservoir Architecture Characterization Method and Application by Combining Well Log and Seismic Data: A Case Study of QHD32-6 Oilfield. China Offshore Oil and Gas, 30(1): 9-109 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-offshore-oil-gas_thesis/0201218909301.html [21] Zhang, R. F., Li, X. P., Yu, X. H., et al., 2011. The Response of Petroleum Trap Types to the Structural: Depositional Pattern in Shenxian Depression, Jizhong Sub-Basin. Geoscience, 25(1): 62-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201101008.htm [22] Zhao, H. Q., Fu, Z. G., Lv, Xiao, G., 2004. Reservoir Type Analysis and Model Prediction Description Method. Petroleum Geology & Oilfield Development in Daqing, (5): 74-77+124 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK200405018.htm [23] Zhao, R. S., 2016. The Architectural Structure of Meandering Point Bar-Use North Second District SⅢ of Lamadian Oilfield as Example (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract). [24] Zhou, Y. B., Wu, S. H., Ji, B. Y., et al., 2011. Research Progress on the Characterization of Fluvial Reservoir Architecture. Advances in Earth Science, 26(07): 695-702 (in Chinese with English abstract). http://www.researchgate.net/publication/292017120_Research_program_on_the_characterization_of_fluvial_reservoir_architecture [25] 黄晖, 2011. 深县凹陷榆科油田东营组沉积微相研究(博士毕业论文). 青岛: 中国石油大学. [26] 李嘉光, 2018. 干旱湖盆曲流河末端细粒沉积体系及沉积模式. 地球科学, 43(增刊1): 268-280. doi: 10.3799/dqkx.2018.525 [27] 李胜利, 于兴河, 姜涛, 等, 2017. 河流辫——曲转换特点与废弃河道模式. 沉积学报, (1): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701001.htm [28] 梁富康, 刘丽萍, 于兴河, 等, 2013. 冀中坳陷深县凹陷主伸展期的构造调节带及其对沉积环境的控制作用. 地质科学, 48(1): 254-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201301017.htm [29] 刘西雷, 2014. 高孔高渗砂岩油藏复杂油水关系主控因素——以长堤油田桩11块馆下段油藏为例. 断块油气田, 21(2): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201402002.htm [30] 马世忠, 孙雨, 范广娟, 等, 2008. 地下曲流河道单砂体内部薄夹层建筑结构研究方法. 沉积学报, 26(4): 632-639. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200804014.htm [31] 孙天建, 李胜利, 许磊, 等, 2012. 长春岭油田C107区块扶余油层密井网曲流河储层构型分析. 地学前缘, 19(2): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202019.htm [32] 孙相灿, 杨传胜, 于兴河, 等, 2014. 冀中坳陷深县凹陷东营组砂岩储层特征及影响因素. 海洋地质与第四纪地质, (4): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201404019.htm [33] 孙雨, 董毅明, 王继平, 等, 2016. 松辽盆地红岗北地区扶余油层储层单砂体分布模式. 岩性油气藏, 28(4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201604002.htm [34] 王家豪, 周江羽, 杨香华, 等, 2018. 砾质曲流河的沉积特点及成因: 以秦皇岛大石河为例. 地球科学, 43(S1): 277-286. doi: 10.3799/dqkx.2018.197 [35] 许宏龙, 刘建, 龚刘凭, 等, 2015. 双河油田438块构造油藏油水界面差异分布的主导因素. 海洋地质前沿, (7): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201507006.htm [36] 岳大力, 胡光义, 李伟, 等, 2018. 井震结合的曲流河储层构型表征方法及其应用——以秦皇岛32-6油田为例. 中国海上油气, 30(1): 99-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801012.htm [37] 岳大力, 吴胜和, 刘建民, 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 28(4): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704019.htm [38] 张锐锋, 李先平, 于兴河, 等, 2011. 冀中坳陷深县凹陷构造沉积格局与圈闭类型响应关系. 现代地质, 25(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201101008.htm [39] 赵翰卿, 付志国, 吕晓光, 2004. 储层层次分析和模式预测描述法. 大庆石油地质与开发, (5): 74-77+124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200405018.htm [40] 赵容生, 2016. 曲流点坝砂体建筑结构研究及应用(博士毕业论文). 大庆: 东北石油大学. [41] 周银邦, 吴胜和, 计秉玉, 等, 2011. 曲流河储层构型表征研究进展. 地球科学进展, 26(7): 695-702. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201107004.htm