Geochronology and Geochemistry of Two Types of Paleoproterozoic Granites and Their Geological Implications in the Xiuyan Area, Liaodong Peninsula
-
摘要: 辽东半岛岫岩一带出露大面积的辽河岩群变质地层与花岗岩类,是研究胶-辽-吉造山带早期演化的良好场所.通过系统采集岫岩地区大房身钾长花岗岩岩体与牧牛、松树沟二长花岗岩岩体和四门子花岗闪长岩岩体样品,进行了岩相学、地球化学与锆石U-Pb年代学研究.结果显示大房身与牧牛、松树沟岩体具有相近的高钾钙碱性A型花岗岩特征,SiO2含量介于70.56%~74.52%,Al2O3含量在11.85%~14.03%,K2O/Na2O高;岩石富集Ga、Zr、REE等元素,Sr、P、Ti等含量低;四门子岩体样品则具有较高的CaO含量(0.50%~3.76%),K2O/Na2O比值和A/CNK值均较低,相对更为亏损Nb、Ta、Hf等高场强元素,显示出I型花岗岩特征.锆石LA-ICP-MS测试显示钾长花岗岩样品U-Pb年龄为2 198±11 Ma,二长花岗岩U-Pb年龄在~2 171~2 167 Ma,花岗闪长岩U-Pb测试结果为2 166±11 Ma,几类花岗岩结晶年龄基本在误差范围内一致.I型花岗岩可能来自古元古代中期(~2.2~2.1 Ga)俯冲作用导致的弧岩浆活动,而A型花岗岩可能来自中下地壳物质的部分熔融的低压高温环境.结合辽吉地区报道的古元古代花岗岩类年龄资料,认为在岫岩地区及周边采集的两类古元古代花岗岩均产出在弧后拉张的构造背景下,胶辽吉造山带在古元古代中期演化接近“弧陆碰撞”模式,洋壳俯冲可能由西向东(现今方向)发生,并持续了较长时间.Abstract: The Xiuyan region in Liaodong Peninsula is an ideal place for studying early evolution process of the Jiao-Liao-Ji orogenic belt, due to quantities of outcropped meta-sidimentary rocks and granitoids. A study of petrography, geochemistry and chronology is carried out on one K-feldspar granite, two mozogranite and one granodiorite samples collected from the Dafangshen, Muniu, Songshugou and Simenzi intrusions respectively. Although the K-feldspar granite and mozogranite samples show different features by petrography observation, they display similar geochemical natures of A-type granite. The samples have high contents of SiO2, ranging from 70.56% to 74.52%, relatively low Al2O3 contents of 11.85% to 14.03%, and high ratio of K2O/Na2O, with enrichment of Ga, Zr and REE elements and depletion of Sr, P and Ti. The granodiorite sample from the Simenzi intrusion, on the other hand, shows characteristics of I-type granite. They have high content of CaO (0.50%-3.76%), but low ratio of K2O/Na2O and A/CNK, with relative depletion of some high field strength elements like Nb, Ta and Hf. Zircon LA-ICP-MS testing also reveals these granitoids intruded nearly simultaneously, with the K-feldspar granite sample yielding an U-Pb age of 2 198±11 Ma, mozogranite samples yielding U-Pb ages between 2 171-2 167 Ma and granodiorite sample giving an U-Pb age of 2 166±11 Ma. The I-type granite may have derived from an arc magmatism in middle Paleoproterozoic (about 2.2-2.1 Ga), while the A-type granitoids intrusions may have sourced from a low pressure and high temperature environment of middle to lower crust partial melting. Taking previous studies on Paleoproterozoic granitoids into consideration, the K-feldspar granite and mozogranite intrusions are believed to be formed under a back-arc geodynamic setting. An arc-continent collison model is confirmed in middle stage of the Paleoproterozoic Jiao-Liao-Ji belt evolution, and the subduction of early ocean crust may have started by then from west to east and have lasted a relatively long time.
-
图 1 辽东半岛岫岩一带地质图及花岗岩采样位置图
Fig. 1. Geological map of Xiuyan region in the Liaodong Peninsula and the location of the granites samples in this study
图 5 辽东岫岩地区古元古代花岗岩QAP图解(a)、SiO2-K2O图解(b)和A/NK-A/CNK图解(c)
1a.硅英岩;1b.富石英花岗岩;2.碱长花岗岩;3a.花岗岩(正长花岗岩);3b.花岗岩(二长花岗岩);4.花岗闪长岩;5.英云闪长岩;6*.石英碱长正长岩;6.碱长正长岩;7*.石英正长岩;7.正长岩;8*.石英二长岩;8.二长岩;9*.石英二长闪长岩、石英二长辉长岩;9.二长闪长岩、二长辉长岩;10*.石英闪长岩、石英辉长岩、石英斜长岩;10.闪长岩、辉长岩、斜长岩
Fig. 5. QAP diagram (a), SiO2 vs. K2O diagram (b) and plot of A/CNK vs. A/NK (c) of typical Paleoproterozoic granites from the Xiuyan area, Liaodong Peninsula
图 7 岫岩一带古元古代花岗岩成因类型判别图解(据Whalen et al., 1987)
Fig. 7. Genetic type discrimination diagrams from typical Paleoproterozoic granites from the Xiuyan area, Liaodong Peninsula (after Whalen et al., 1987)
图 9 岫岩一带花岗岩Rb-Y+Nb(a)和Rb-Yb+Ta(b)构造判别图解(据Pearce et al., 1984)
Fig. 9. Rb vs. (Y+Nb)(a)and Rb vs. (Yb+Ta)(b)diagrams of typical Paleoproterozoic granites from the Xiuyan area, Liaodong Peninsula (after Pearce et al., 1984)
表 1 辽南岫岩一带古元古代花岗岩锆石U-Pb年龄分析结果
Table 1. LA-ICP-MS zircon U-Pb analyses for representative samples of Paleoproterozoic granties from the Xiuyan region, Southern Liaoning Province
分析点号 Th (10-6) U (10-6) Th/ U Pb (10-6) 同位素比值及误差 年龄(Ma) 207Pb/206Pb σ(%) 207Pb/235U σ(%) 206Pb/238U σ(%) 207Pb/206Pb 1σ DF-1 123 257 0.48 116 0.134 5 0.27 6.479 0 1.61 0.347 3 0.52 2 157 35.2 DF-2 210 382 0.55 195 0.136 5 0.24 7.369 5 1.37 0.389 6 0.35 2 184 29.9 DF-3 122 239 0.51 124 0.135 4 0.23 7.431 2 1.33 0.396 5 0.33 2 169 29.9 DF-4 106 202 0.52 107 0.136 5 0.23 7.684 8 1.42 0.406 5 0.34 2 184 29.9 DF-5 271 428 0.63 234 0.138 5 0.24 7.770 8 1.43 0.406 0 0.44 2 209 24.8 DF-6 55.8 128 0.44 69 0.138 7 0.30 7.902 7 1.80 0.411 7 0.42 2 211 37.3 DF-7 229 416 0.55 206 0.136 7 0.26 7.114 8 1.42 0.376 0 0.33 2 187 32.3 DF-8 129 246 0.52 118 0.135 1 0.24 6.889 8 1.31 0.368 2 0.29 2 165 -2.0 DF-9 124 223 0.56 120 0.137 4 0.22 7.780 1 1.34 0.409 4 0.38 2 195 33.8 DF-10 118 223 0.53 119 0.137 8 0.23 7.787 1 1.40 0.408 2 0.35 2 199 29.0 DF-11 51.9 127 0.41 65 0.141 6 0.28 7.862 0 1.59 0.401 9 0.42 2 247 33.8 DF-12 158 270 0.59 123 0.137 6 0.27 6.591 0 1.33 0.346 1 0.32 2 198 34.6 DF-13 76 173 0.44 89 0.138 2 0.28 7.761 1 1.62 0.405 8 0.39 2 206 35.2 DF-14 159 257 0.62 133 0.137 8 0.24 7.465 1 1.35 0.391 5 0.36 2 200 30.2 DF-15 76.3 180 0.42 92 0.136 2 0.22 7.660 1 1.33 0.406 2 0.34 2 179 28.4 DF-16 853 976 0.87 380 0.132 2 0.21 5.562 4 0.99 0.304 1 0.32 2 128 28.1 DF-17 1 061 1 298 0.82 377 0.129 6 0.21 4.095 3 0.71 0.228 1 0.20 2 094 27.9 DF-18 119 373 0.32 186 0.139 0 0.26 7.995 7 1.54 0.415 6 0.37 2 217 31.6 DF-19 100 206 0.49 103 0.137 2 0.27 7.470 0 1.51 0.393 4 0.37 2 192 33.9 DF-20 99.5 182 0.55 95 0.140 8 0.25 7.836 2 1.44 0.402 1 0.33 2 239 30.9 DF-21 164 279 0.59 151 0.138 9 0.23 8.001 7 1.28 0.416 6 0.32 2 213 28.9 DF-22 119 217 0.55 113 0.138 8 0.23 7.814 3 1.34 0.406 7 0.34 2 213 29.5 DF-23 114 299 0.38 148 0.138 6 0.24 8.000 8 1.58 0.416 9 0.45 2 210 25.5 DF-24 127 223 0.57 117 0.138 5 0.27 7.931 1 1.60 0.414 1 0.40 2 209 33.2 DF-25 150 263 0.57 135 0.139 5 0.28 7.811 7 1.66 0.404 6 0.39 2 221 35.2 DF-26 86.8 196 0.44 100 0.137 5 0.27 7.850 1 1.60 0.412 3 0.36 2 196 34.0 DF-27 71.5 164 0.44 84 0.137 2 0.26 7.872 4 1.55 0.415 1 0.40 2 192 33.6 DF-28 75.6 169 0.45 84 0.137 8 0.24 7.748 5 1.43 0.406 2 0.37 2 200 30.2 DF-29 144 221 0.65 117 0.137 4 0.22 7.798 7 1.33 0.409 8 0.35 2 195 32.4 DF-30 112 189 0.59 101 0.138 1 0.23 7.829 3 1.33 0.409 7 0.35 2 203 29.0 MN-1 160 262 0.61 138 0.132 8 0.23 7.429 9 1.35 0.403 7 0.34 2 135 30.9 MN-2 152 254 0.60 130 0.134 1 0.23 7.234 0 1.23 0.389 6 0.30 2 154 29.6 MN-3 175 286 0.61 154 0.134 1 0.21 7.692 7 1.27 0.414 5 0.39 2 154 27.2 MN-4 140 260 0.54 136 0.134 1 0.21 7.696 8 1.28 0.414 3 0.35 2 154 26.9 MN-5 121 302 0.40 148 0.129 8 0.21 7.094 0 1.38 0.394 2 0.41 2 095 29.2 MN-6 76.6 171 0.45 88 0.136 5 0.26 7.854 1 1.59 0.415 7 0.40 2 184 33.3 MN-7 156 253 0.62 134 0.136 9 0.25 7.654 3 1.44 0.404 4 0.38 2 188 26.9 MN-8 123 217 0.57 115 0.139 2 0.22 7.919 1 1.41 0.411 1 0.42 2 217 33.5 MN-9 119 210 0.57 110 0.139 1 0.22 7.816 9 1.51 0.404 7 0.43 2 216 26.4 MN-10 194 285 0.68 153 0.136 4 0.21 7.521 2 1.20 0.397 9 0.30 2 183 27.5 MN-11 187 280 0.67 145 0.136 2 0.23 7.281 7 1.24 0.385 7 0.31 2 189 28.7 MN-12 242 351 0.69 191 0.138 2 0.25 7.791 2 1.51 0.406 6 0.45 2 206 31.2 MN-13 119 233 0.51 120 0.135 9 0.25 7.595 8 1.46 0.403 1 0.37 2 176 33.5 MN-14 167 265 0.63 137 0.135 7 0.23 7.390 7 1.33 0.392 8 0.37 2 173 29.6 MN-15 94.3 196 0.48 96 0.134 0 0.23 7.065 5 1.21 0.380 9 0.31 2 151 29.6 MN-17 190 355 0.54 177 0.132 5 0.21 7.282 6 1.31 0.396 7 0.40 2 132 26.7 MN-18 124 348 0.36 145 0.130 9 0.23 6.120 2 1.08 0.337 8 0.23 2 110 30.6 MN-19 74.4 179 0.42 94 0.133 0 0.24 7.901 5 1.54 0.429 4 0.40 2 139 32.1 MN-20 66.8 162 0.41 81 0.134 3 0.23 7.627 9 1.42 0.410 7 0.41 2 154 30.3 MN-21 141 235 0.60 120 0.134 5 0.20 7.399 5 1.18 0.397 3 0.31 2 157 26.1 MN-22 138 236 0.58 122 0.134 5 0.21 7.453 2 1.18 0.399 9 0.29 2 158 26.4 MN-23 131 227 0.58 118 0.135 0 0.23 7.612 1 1.34 0.407 0 0.36 2 165 27.8 MN-24 160 261 0.61 132 0.135 7 0.25 7.309 9 1.29 0.388 8 0.32 2 173 31.5 MN-25 185 277 0.67 146 0.135 6 0.26 7.541 6 1.49 0.400 9 0.37 2 172 34.4 MN-26 318 803 0.40 413 0.137 1 0.23 8.045 4 1.50 0.422 7 0.47 2 191 29.3 MN-27 179 281 0.64 149 0.136 6 0.23 7.617 7 1.31 0.402 1 0.35 2 184 29.6 MN-28 148 243 0.61 127 0.135 4 0.22 7.542 2 1.22 0.401 4 0.34 2 169 28.9 MN-29 150 247 0.61 125 0.135 4 0.22 7.300 2 1.16 0.388 5 0.29 2 169 29.2 MN-30 115 204 0.56 105 0.135 2 0.22 7.555 2 1.23 0.402 8 0.34 2 166 29.0 SM-1 476 655 0.73 354 0.140 1 0.27 7.803 8 1.54 0.400 9 0.35 2 229 34.0 SM-4 265 454 0.58 242 0.137 8 0.23 7.830 4 1.35 0.409 7 0.35 2 211 28.2 SM-5 92.6 186 0.50 96 0.138 5 0.26 7.717 4 1.51 0.402 3 0.37 2 209 33.3 SM-6 146 246 0.59 131 0.135 9 0.28 7.704 8 1.65 0.409 3 0.37 2 176 37.2 SM-7 108 185 0.58 97 0.134 4 0.28 7.528 2 1.63 0.404 2 0.39 2 167 35.8 SM-13 331 814 0.41 397 0.133 0 0.28 7.378 5 1.73 0.399 1 0.48 2 139 37.0 SM-15 98.5 172 0.57 89 0.135 1 0.25 7.553 4 1.39 0.403 3 0.32 2 165 33.2 SM-27 78.4 180 0.43 91 0.134 9 0.23 7.532 0 1.31 0.403 7 0.34 2 165 29.6 SM-28 132 225 0.59 117 0.133 6 0.22 7.479 6 1.30 0.404 4 0.36 2 147 29.2 SM-8 120 269 0.45 133 0.137 2 0.25 7.494 3 1.38 0.394 3 0.30 2 194 31.6 SM-9 42 118 0.36 60 0.135 1 0.26 7.772 0 1.58 0.415 2 0.39 2 165 33.6 SM-10 68.3 185 0.37 95 0.137 7 0.27 8.011 1 1.64 0.419 5 0.34 2 198 33.8 SM-11 292 517 0.57 277 0.136 0 0.25 7.889 6 1.57 0.418 3 0.41 2 176 32.9 SM-12 85.9 186 0.46 90 0.135 4 0.29 7.290 8 1.59 0.388 3 0.34 2 169 37.8 SM-14 218 438 0.50 220 0.132 7 0.25 7.460 2 1.48 0.405 1 0.41 2 200 31.9 SM-17 151 250 0.60 123 0.132 9 0.22 6.982 0 1.18 0.378 5 0.29 2 137 29.6 SM-20 235 566 0.42 283 0.133 3 0.21 7.557 2 1.32 0.408 6 0.40 2 142 27.8 SM-21 301 523 0.57 276 0.134 0 0.20 7.591 3 1.20 0.408 8 0.36 2 152 26.2 SM-22 205 366 0.56 193 0.133 7 0.20 7.677 9 1.34 0.414 3 0.39 2 147 26.5 SM-23 173 362 0.48 185 0.133 3 0.23 7.450 0 1.30 0.407 3 0.67 2 143 30.9 SM-24 146 248 0.59 130 0.133 8 0.24 7.521 8 1.42 0.406 4 0.39 2 150 30.9 SM-25 308 525 0.59 278 0.134 4 0.25 7.641 1 1.46 0.411 3 0.36 2 167 31.6 SM-26 78.4 152 0.52 82 0.136 4 0.25 7.930 6 1.60 0.420 3 0.43 2 183 31.9 SM-29 69.3 152 0.46 77 0.131 6 0.22 7.357 5 1.28 0.404 0 0.37 2 120 28.7 SM-30 160 261 0.61 138 0.132 3 0.21 7.432 1 1.21 0.405 7 0.32 2 129 32.4 SM-18 55.8 126 0.44 67 0.132 4 0.28 7.899 6 1.68 0.430 5 0.47 2 131 36.0 SM-19 150 306 0.49 164 0.133 3 0.25 8.019 9 1.59 0.433 6 0.48 2 142 32.9 SM-2 74.5 167 0.45 78 0.139 8 0.27 7.071 8 1.34 0.364 4 0.27 2 226 33.3 SM-3 163 547 0.30 230 0.134 7 0.22 6.630 6 1.31 0.354 7 0.45 2 161 28.7 SM-16 920 2340 0.39 683 0.120 2 0.19 4.164 1 1.11 0.248 5 0.51 1 959 27.8 SS-1 130 285 0.46 143 0.139 8 0.29 7.713 9 1.69 0.398 4 0.43 2 224 36.6 SS-2 79.8 172 0.46 87 0.139 1 0.27 7.694 3 1.60 0.399 3 0.42 2 216 33.5 SS-3 83.2 193 0.43 98 0.138 0 0.26 7.712 7 1.45 0.403 7 0.34 2 202 32.9 SS-4 370 540 0.69 286 0.139 9 0.23 7.682 5 1.38 0.396 6 0.37 2 226 29.0 SS-5 87.9 215 0.41 107 0.138 7 0.25 7.708 5 1.40 0.401 9 0.35 2 211 31.6 SS-6 99.5 201 0.49 104 0.140 4 0.26 7.888 6 1.51 0.406 1 0.34 2 232 32.9 SS-7 86.6 174 0.50 89 0.136 7 0.28 7.672 4 1.63 0.405 6 0.38 2 187 35.2 SS-8 235 487 0.48 247 0.137 5 0.29 7.718 6 1.71 0.405 5 0.36 2 195 36.7 SS-9 115 216 0.53 111 0.137 3 0.28 7.686 3 1.64 0.404 1 0.36 2 194 35.2 SS-10 83 182 0.46 91 0.137 6 0.26 7.702 7 1.53 0.404 3 0.40 2 198 33.2 SS-11 80.4 181 0.44 91 0.136 4 0.27 7.659 0 1.63 0.405 4 0.45 2 183 34.7 SS-12 90.2 194 0.47 99 0.135 6 0.28 7.611 4 1.57 0.405 7 0.36 2 172 35.8 SS-13 244 402 0.61 210 0.136 9 0.28 7.691 6 1.66 0.405 2 0.38 2 188 36.1 SS-14 64.6 141 0.46 71 0.138 8 0.30 7.775 9 2.37 0.401 9 0.70 2 213 37.2 SS-15 76.6 168 0.46 84 0.135 0 0.25 7.536 0 1.48 0.402 7 0.43 2 165 32.1 SS-16 78.9 164 0.48 82 0.135 3 0.24 7.558 9 1.39 0.402 5 0.37 2 168 30.9 SS-17 137 267 0.51 139 0.136 6 0.25 7.767 3 1.47 0.409 6 0.42 2 185 31.3 SS-18 132 224 0.59 117 0.134 5 0.27 7.534 5 1.54 0.403 4 0.40 2 157 34.9 SS-19 214 405 0.53 207 0.135 6 0.27 7.484 8 1.47 0.396 9 0.33 2 172 34.9 SS-20 117 203 0.57 106 0.136 2 0.28 7.685 4 1.52 0.406 0 0.37 2 180 36.6 SS-20 80.2 173 0.46 88 0.133 7 0.24 7.467 3 1.38 0.401 8 0.40 2 147 37.2 SS-21 109 208 0.52 106 0.135 6 0.25 7.515 8 1.38 0.397 7 0.34 2 173 31.5 SS-22 123 207 0.59 109 0.136 9 0.27 7.613 9 1.43 0.399 2 0.31 2 189 39.7 SS-23 72.4 174 0.42 88 0.137 2 0.30 7.659 2 1.64 0.400 4 0.38 2 192 38.0 SS-24 98.6 259 0.38 128 0.133 9 0.30 7.541 0 1.74 0.403 1 0.40 2 150 40.3 SS-25 56.1 125 0.45 63 0.134 6 0.30 7.545 0 1.63 0.402 9 0.41 2 159 38.9 SS-26 112 211 0.53 109 0.135 2 0.27 7.511 2 1.42 0.399 2 0.30 2 166 40.0 SS-27 72.2 168 0.43 84 0.136 9 0.25 7.515 4 1.40 0.394 4 0.30 2 188 32.6 SS-28 215 381 0.57 197 0.135 9 0.23 7.531 7 1.29 0.398 6 0.34 2 176 29.3 SS-29 192 341 0.56 175 0.135 6 0.22 7.563 5 1.31 0.401 5 0.36 2 172 28.7 SS-30 130 285 0.46 143 0.139 8 0.29 7.713 9 1.69 0.398 4 0.43 2 224 36.6 表 2 辽东岫岩一带古元古代花岗岩主量(%)、微量(10-6)元素分析数据
Table 2. Major (%) and trace (10-6) element data for representative samples of the Paleoproterozoic granites from the Xiuyan area, Liaodong Peninsula
编号 SM-1 SM-2 SM-3 SM-4 SM-5 SS-1 SS-2 SS-3 SS-4 SS-5 DF-1 DF-2 DF-3 DF-4 DF-5 MN-1 MN-2 MN-3 MN-4 MN-5 SiO2 75.85 75.69 75.77 74.00 76.66 74.52 73.51 73.34 73.25 73.82 73.29 73.35 73.48 73.12 73.60 73.71 72.45 74.02 72.70 70.56 TiO2 0.28 0.25 0.29 0.31 0.30 0.27 0.28 0.29 0.29 0.27 0.28 0.30 0.30 0.28 0.28 0.27 0.31 0.28 0.16 0.26 Al2O3 12.15 12.53 12.43 11.86 11.73 12.39 12.41 12.38 12.74 12.37 12.25 12.66 12.24 12.56 12.54 11.85 12.39 12.06 14.03 13.98 Fe2O3 1.71 0.70 1.39 1.91 1.64 1.62 1.65 1.93 1.31 2.37 3.67 3.75 4.23 3.92 3.30 3.12 3.10 2.70 1.19 2.39 FeO 0.54 0.36 0.45 2.43 0.52 1.21 1.84 1.89 1.17 1.33 0.58 0.67 0.72 0.45 0.56 1.21 1.26 1.71 1.03 1.33 TFeO 2.08 0.99 1.70 4.15 1.99 2.67 3.32 3.62 2.35 3.45 3.87 4.04 4.52 3.97 3.53 4.01 4.04 4.13 2.10 3.47 MnO 0.028 0.024 0.031 0.048 0.039 0.041 0.047 0.042 0.048 0.036 0.031 0.021 0.024 0.032 0.024 0.030 0.035 0.032 0.033 0.042 MgO 0.007 0.059 0.051 0.042 0.160 0.007 0.050 0.053 0.270 0.009 5 0.010 0.044 0.020 0.033 0.044 0.066 0.053 0.001 0.120 0.097 CaO 3.190 1.520 2.900 0.500 3.760 0.310 0.880 0.410 0.600 0.670 0.087 0.150 0.110 0.200 0.120 0.950 1.040 0.560 1.030 1.450 Na2O 4.12 3.74 4.31 3.28 4.04 3.43 3.66 3.54 2.81 4.02 3.75 3.86 3.61 3.80 3.94 3.55 4.06 4.57 4.64 4.22 K2O 1.60 4.41 1.96 4.55 0.86 5.63 5.18 5.26 6.86 4.68 5.02 4.40 4.28 4.77 5.00 4.70 5.00 3.75 4.74 5.10 P2O5 0.017 0.018 0.024 0.025 0.019 0.024 0.020 0.024 0.022 0.021 0.022 0.018 0.021 0.019 0.021 0.030 0.048 0.021 0.059 0.034 LOI 0.43 0.29 0.37 0.82 0.49 0.41 0.21 0.68 0.70 0.32 0.57 0.94 0.81 0.79 0.48 0.14 0.20 0.21 0.24 0.31 SUM 99.91 99.59 99.98 99.78 100.20 99.87 99.74 99.84 100.06 99.90 99.56 100.16 99.84 99.96 99.91 99.64 99.95 99.9 99.97 99.76 A/NK 1.39 1.09 1.31 1.09 1.53 0.99 1.01 1.01 0.98 1.01 1.00 1.08 1.10 1.04 1.00 1.03 0.97 1.00 1.05 1.07 A/CNK 0.84 0.88 0.84 1.00 0.81 0.95 0.89 0.96 0.91 0.92 0.99 1.06 1.08 1.01 0.98 0.89 0.85 0.92 0.92 0.89 Hf 3.76 0.75 0.80 1.18 0.49 0.73 0.67 0.68 1.01 0.58 1.04 1.29 1.23 1.32 1.25 0.48 0.52 0.45 0.43 0.39 Ta 0.62 0.56 0.96 0.53 1.09 0.95 1.37 1.09 0.78 0.91 0.64 0.75 0.60 0.56 0.94 1.29 0.54 0.93 0.54 0.69 Li 0.92 0.71 0.77 5.32 0.71 2.44 1.10 4.42 2.24 0.99 2.36 6.16 4.05 2.14 1.63 1.83 1.57 3.65 10.5 5.26 Be 2.34 1.76 2.41 2.94 2.39 2.43 2.88 2.86 1.93 2.54 1.90 2.34 2.29 2.56 2.10 1.57 2.04 2.02 3.68 2.51 Sc 3.64 2.43 3.16 3.64 2.00 4.69 3.89 4.29 3.62 3.38 3.15 2.50 2.67 3.64 3.98 5.50 3.98 3.58 2.08 4.62 Ni 6.18 5.70 5.65 5.79 6.64 5.64 5.90 6.63 5.99 5.82 4.77 4.89 4.82 5.4 5.74 6.03 6.40 5.19 5.33 4.72 Cs 0.83 0.66 0.66 0.65 0.56 0.70 0.69 1.95 0.86 0.51 1.26 1.32 1.04 1.27 1.23 0.68 0.51 0.35 0.62 0.54 Th 8.62 7.85 10.2 9.00 6.51 12.7 9.38 13.7 7.79 12.7 5.54 15.1 21.3 7.09 15.6 9.71 10.8 9.28 2.61 7.21 U 4.78 2.40 4.20 1.47 2.46 1.72 1.51 1.80 2.22 1.61 1.64 1.69 3.97 2.02 3.03 2.56 2.60 1.72 1.16 1.50 Ba 645 914 659 968 416 820 986 1 126 794 868 915 839 736 890 920 1 183 1 331 980 1 093 1 329 Pb 7.91 6.04 8.57 13.4 6.97 8.75 11.6 9.68 10.5 9.61 15.2 5.78 4.77 11.6 10.3 10.9 7.54 11.1 16.5 15.3 Nb 22.5 21.0 18.0 21.8 21.6 17.7 20.0 20.0 10.1 15.2 18.0 20.8 23.3 20.3 26.3 20.7 22.7 21.5 28.8 20.2 Rb 149 125 127 139 148 133 139 87.7 135 133 56.7 143 68.6 147 34.4 138 146 144 180 132 Sr 71.4 79.1 69.5 79.9 62.1 127 102 77.7 231 181 300 192 298 74.2 394 45.3 60.9 59.4 33.7 54.7 Zr 294 322 315 291 307 326 360 340 153 283 385 256 314 311 294 272 286 362 325 262 Ga 20.43 20.15 20.51 21.23 21.17 18.38 18.88 16.33 20.08 20.65 21.28 16.78 19.17 20.5 21.06 20.57 19.42 19.85 20.36 20.38 La 45.7 55.7 80.9 22.2 47.0 27.1 54.2 66.3 19.0 47.3 19.2 30.0 18.4 39.3 24.1 53.9 19.9 50.2 26.9 27.8 Ce 99.9 132 152 57 120 70.0 126 132 38.0 102 49.4 77.5 42.6 103.0 57.1 169 61.8 135 85.2 89.6 Pr 9.72 9.69 13.7 6.76 14.3 8.42 14.3 15.0 4.69 10.4 5.39 7.62 5.54 10.00 6.81 11.6 5.61 9.99 8.43 7.89 Nd 36.7 34.6 50.5 30.4 54.9 38.3 59.2 59.6 19.2 42.0 23.0 31.0 24.8 40.6 30.2 43.3 25.9 39.3 38.6 37.7 Sm 6.32 5.50 8.05 6.99 11.5 8.69 11.5 9.98 3.92 7.75 5.02 6.71 6.00 7.80 7.46 7.24 6.85 7.57 9.55 8.40 Eu 1.06 0.95 1.21 1.27 1.68 1.37 1.61 1.45 0.95 1.28 0.80 0.88 0.89 1.18 1.13 0.95 1.13 1.21 1.30 1.24 Gd 6.44 6.07 7.56 6.49 10.6 7.96 10.4 8.88 3.59 7.41 4.73 6.44 5.65 7.44 7.09 7.51 7.05 7.73 9.08 8.45 Tb 1.16 1.00 1.09 1.19 1.85 1.41 1.72 1.34 0.60 1.15 0.82 1.14 1.05 1.26 1.26 1.17 1.34 1.27 1.64 1.56 Dy 7.69 6.50 6.36 7.53 11.0 8.65 10.3 7.75 3.74 6.69 5.23 7.15 6.83 7.83 8.72 7.23 8.65 8.07 10.3 10.0 Ho 1.64 1.39 1.32 1.55 2.17 1.78 2.07 1.57 0.77 1.38 1.10 1.47 1.42 1.62 1.74 1.50 1.79 1.69 2.11 2.00 Er 4.87 4.13 3.92 4.41 6.39 4.97 5.78 4.48 2.24 4.02 3.37 4.27 4.24 4.65 5.04 4.38 5.11 4.97 6.06 5.97 Tm 0.82 0.69 0.65 0.74 0.99 0.80 0.90 0.71 0.37 0.60 0.60 0.73 0.73 0.74 0.86 0.73 0.85 0.85 1.01 0.98 Yb 5.76 4.80 4.55 5.29 7.56 5.40 6.08 4.79 2.58 4.22 4.66 5.14 5.42 5.11 6.07 5.13 5.98 6.13 7.21 6.71 Lu 0.81 0.68 0.65 0.77 1.06 0.71 0.77 0.61 0.36 0.54 0.73 0.69 0.77 0.70 0.81 0.70 0.83 0.83 0.96 0.94 Y 44.4 37.7 35.2 47.0 62.2 46.1 53.9 41.0 21.8 35.0 30.0 38.4 38.9 38.7 49.8 39.4 48.0 44.6 65.8 56.8 ∑REE 228.6 263.5 332.3 152.6 290.7 185.5 304.5 314.7 100.0 237.2 124.1 180.7 124.3 231.7 158.4 314.8 152.7 275.0 208.3 209.2 LREE 199.4 238.2 306.2 124.7 249.2 153.9 266.6 284.5 85.8 211.2 102.8 153.7 98.2 202.3 126.8 286.5 121.1 243.5 170.0 172.6 HREE 29.19 25.26 26.11 27.97 41.55 31.67 37.96 30.14 14.25 26.00 21.25 27.02 26.12 29.36 31.59 28.34 31.60 31.53 38.37 36.62 (La/Yb)N 5.70 8.33 12.75 3.01 4.46 3.61 6.40 9.92 5.28 8.04 2.95 4.19 2.43 5.51 2.85 7.53 2.38 5.87 2.68 2.97 δEu 0.50 0.50 0.47 0.57 0.46 0.49 0.44 0.46 0.76 0.51 0.49 0.40 0.46 0.47 0.47 0.39 0.49 0.48 0.42 0.45 δCe 1.11 1.28 1.02 1.13 1.12 1.13 1.08 0.99 0.96 1.08 1.17 1.22 1.03 1.25 1.08 1.58 1.41 1.39 1.38 1.46 TZr 848 819 829 853 818 834 828 861 844 823 844 860 861 845 847 842 841 848 772 820 表 3 辽吉地区古元古代花岗岩侵位时代统计表
Table 3. Geological characterisitics and chronological results of Paleoproterozoic granites in the Liao-Ji region
岩体 岩性 方法 测点 年龄 采样地点 出处 虎皮峪 二长花岗岩 LA-ICP-MS 24 2 119±16 Ma 辽宁省大石桥市虎皮峪水库附近 任云伟等,2017 永甸 黑云二长片麻岩 LA-ICP-MS 8 1 896±14 Ma 辽宁省丹东市永甸镇附近 Zhao et al., 2020 20 2 174±16 Ma 磙子沟 黑云二长片麻岩 LA-ICP-MS 28 2 153±16 Ma 辽宁省丹东市磙子沟村附近 Zhao et al., 2020 马风 角闪二长花岗岩 SIMS 20 2 181±6 Ma 辽宁省海城市马风镇 Wang et al., 2017 黄花甸 黑云二长花岗岩 LA-ICP-MS 19 2 185±15 Ma 辽宁省鞍山市黄花甸西 王鹏森等,2017 黄花甸 黑云二长花岗岩 LA-ICP-MS 25 2 183±13 Ma 辽宁省鞍山市黄花甸西 王鹏森等,2017 黄花甸 黑云二长花岗岩 LA-ICP-MS 25 2 166±10 Ma 辽宁省鞍山市黄花甸西 王鹏森等,2017 黄花甸 花岗闪长岩 LA-ICP-MS 18 1 995±18 Ma 辽宁省鞍山市黄花甸西 王鹏森等,2017 黄花甸 花岗闪长岩 LA-ICP-MS 25 1 995±13 Ma 辽宁省鞍山市黄花甸西 王鹏森等,2017 老黑山 条带状磁铁二长花岗岩 LA-ICP-MS 2 075 Ma 辽宁省太平哨镇小西岔村附近 Li et al., 2006 老黑山 含磁铁二长花岗糜棱岩 LA-ICP-MS 2 054 Ma 辽宁省太平哨镇上蒿子村 Li et al., 2006 刘家堡子 磁铁角闪二长花岗岩 LA-ICP-MS 2 046 Ma 辽宁省丹东市永甸镇南1.5 km处 Li et al., 2006 刘家堡子 黑云母二长花岗岩 LA-ICP-MS 2 046 Ma 辽宁省毛甸镇杨木沟村附近 Li et al., 2006 虎皮峪 条带状磁铁二长花岗岩 SHRIMP 2 090 Ma 辽宁省虎皮峪水库西南角 Li et al., 2006 华峪 条带状二长花岗岩 SHRIMP 2 164 Ma 辽宁省虎皮峪水库西南角 Li et al., 2006 马风 条带状磁铁二长花岗岩 SHRIMP 2 170 Ma 辽宁省海城市马风镇西南 Li et al., 2006 四门子 二长花岗岩 SHRIMP 15 2 157±14 Ma 辽宁省丹东市四门子‒刘家河一带 宋运红等,2016 顾家堡 正长花岗岩 SHRIMP 13 2 169±11 Ma 辽宁省丹东市大兴镇顾家堡子村 宋运红等,2016 牌楼 黑云母花岗岩 SHRIMP 10 2 173±4 Ma 辽宁省海城市牌楼镇 Wan et al., 2006 老黑山 磁铁二长片麻岩 SHRIMP 14 2 166±14 Ma 辽宁省太平哨镇小西岔村附近 Li and Zhao, 2007 鸡冠山 磁铁二长片麻岩 SHRIMP 14 2 175±13 Ma 辽宁省丹东市鸡冠山镇 Li and Zhao, 2007 马风 磁铁二长片麻岩 SHRIMP 7 2 176±11 Ma 辽宁省海城市马风镇 Li and Zhao, 2007 7 1 914±13 Ma 大房身 角闪二长片麻岩 SHRIMP 12 2 143±17 Ma 辽宁省海城市大房身村 Li and Zhao, 2007 虎皮峪 黑云二长片麻岩 SHRIMP 13 2 150±17 Ma 辽宁省海城市哈达碑镇 Li and Zhao, 2007 桓仁 含黑云母斑状花岗岩 SHRIMP 11 1 856±31 Ma 辽宁省抚顺市四平乡一带 Li and Zhao, 2007 八河川 含黑云母斑状花岗岩 SHRIMP 2 2 173±30 Ma 辽宁省丹东市八河川村附近 Li and Zhao, 2007 18 1 875±10 Ma 四门子 二长花岗岩 LA-ICP-MS 29 2 168±14 Ma 辽宁省丹东市四门子镇西南 本文 松树沟 二长花岗岩 LA-ICP-MS 30 2 181±2.9 Ma 辽宁省海城市建一镇前松树沟村附近 本文 牧牛 二长花岗岩 LA-ICP-MS 30 2 175±11 Ma 辽宁省鞍山市牧牛镇西胡家沟村 本文 大房身 钾长花岗岩 LA-ICP-MS 30 2 208±12 Ma 辽宁省岫岩县大房身镇北1 km房木沟附近 本文 黄花甸子 片麻状二长花岗岩 LA-ICP-MS 24 2 171±4 Ma 辽宁省岫岩县钟家堡子村一带 Liu et al., 2018 黄花甸子 片麻状二长花岗岩 LA-ICP-MS 26 2 185±6 Ma 辽宁省岫岩县黄花甸子镇西 Liu et al., 2018 磙子沟 二长片麻岩 LA-ICP-MS 27 2 177±15 Ma 辽宁省丹东市磙子沟村附近 王祥俭等, 2017 明安 二长片麻岩 LA-ICP-MS 22 2 177±9 Ma 辽宁省丹东市明安村 王祥俭等, 2017 红石 正长片麻岩 LA-ICP-MS - 2 332±100 Ma 辽宁省丹东市哈沟村一带 王祥俭等, 2017 6 1 890±27 Ma 虎皮峪 二长花岗岩 LA-ICP-MS 20 2 180±14 Ma 辽宁省大石桥市虎皮峪村附近 Zhu et al., 2019 方家隈子 花岗闪长岩 LA-ICP-MS 12 2 130±24 Ma 辽宁省丹东市方家隈子村 Zhu et al., 2019 大顶子 花岗闪长岩 LA-ICP-MS 38 2 173±11 Ma 辽宁省丹东市青城子镇南 Zhu et al., 2019 钱桌沟 正长岩 SHRIMP 15 2 165±15 Ma 吉林省通化市大泉源镇附近 路孝平等,2004 钱桌沟 正长岩 SHRIMP 11 2 158±13 Ma 吉林省集安市石头河子村附近 路孝平等,2004 兰花岭 奥长花岗岩 LA-ICP-MS 2 176±14 Ma 辽宁省丹东市青城子镇北兰花岭一带 宋剑飞,2018 王家堡子 条痕状黑云二长花岗岩 LA-ICP-MS 22 2 194±14 Ma 辽宁省岫岩县王家堡子镇大满家村 杨仲杰等,2019 王家堡子 片麻状黑云二长花岗岩 LA-ICP-MS 30 2 214±16 Ma 辽宁省岫岩县王家堡子镇老黑沟一带 杨仲杰等,2019 1 905±13 Ma -
[1] Bai, J., 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform. Geological Publishing House, Beijing, 47-89 (in Chinese). [2] Barboni, M., Bussy, F., 2013. Petrogenesis of Magmatic Albite Granites Associated to Cogenetic A-Type Granites:Na-Rich Residual Melt Extraction from a Partially Crystallized A-Type Granite Mush. Lithos, 177(3):328-351. https://www.sciencedirect.com/science/article/pii/S0024493713002181 [3] Bi, J.H., Xing, D.H., Ge, W.C., et al., 2018.Age and Tectonic Setting of Meta-Acid Volcanic Rocks from the North Liaohe Group in the Liaodong Area:Paleoproterozoic Intracontinential Rift or Active Continental Margin?. Earth Science Frontiers, 25(3):295-308 (in Chinese with English abstract). [4] Boehnke, P., Watson, E.B., Trial, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351:324-334. doi: 10.1016/j.chemgeo.2013.05.028 [5] Bureau of Geology and Mineral Resources of Liaoning Province (BGMRL), 2015. Regional Geology of Liaoning Province. Geological Publishing House, Beijing, 1-35(in Chinese) [6] Chen, B., Li, Z., Wang, J.L., et al., 2016. Liaodong Peninsula~2.2 Ga Magmatic Event and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 46(2):303-320 (in Chinese with English abstract). https://core.ac.uk/display/155725729 [7] Chen, J.S., Tian, D.X., Xing, D.H., et al., 2020. Zircon U-Pb Geochronology and Its Geological Significance of the Basic Volcanic Rocks from the Li'eryu Formation, Liaohe Group in Kuandian Area, Liaoning Province.Earth Science, 45(9):3282-3294 (in Chinese with English abstract). [8] Chen, J.S., Xing, D.H., Liu, M., et al., 2017. Zircon U-Pb Chronology and Geological Significance of Felsic Volcanic Rocks in the Liaohe Group from the Liaoyang Area, Liaoning Province. Acta Petrologica Sinica, 33(9):2792-2810 (in Chinese with English abstract). [9] Eby, G.N., 1992. Chemical Subduction of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [10] Hao, D.F., Li, S.Z., Zhao, G.C., et al., 2004. Origin and Its Constraints to Tectonic Evolution of Paleoproterozoic Granitoids in the Eastern Liaoning and Jilin Province, North China. Acta Petrologica Sinica, 20(6):1409-1416 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406009.htm [11] Harris, N.B.W., Marzouki, F.M.H., Ali, S., 1986. The Jabel Sayd Complex, Arabian Shield:Geochemical Constraints on the Origin of Prealkaline and Related Granites. Journal of the Geological Society-London, 143:287-295 doi: 10.1144/gsjgs.143.2.0287 [12] He, G.P., Ye, H.W., 1998. Two Types of Early Proterozoic Metamorphism and Its Tectonic Significance in Eastern Liaoning and Southern Jilin Areas. Acta Petrologica Sinica, 14(2):152-162 (in Chinese with English abstract). [13] Li, S. Z., Zhao, G.C., 2007. SHRIMP U-Pb Zircon Geochronology of the Liaoji Granitoids:Constraints on the Evolution of the Paleoproterozoic Jiao-Liao-Ji Belt in the Eastern Block of the North China Craton. Precambrian Research, 158:1-16. https://doi.org/10.1016/j.precamres.2007.04.001 [14] Li, S.Z., Zhao, G.C., Sun, M., et al., 2006. Are the South and North Liaohe Groups of North China Craton Different Exotic Terranes Nd Isotope Constrains. Gondwana Research, 9:198-208. https://doi.org/10.1016/j.gr.2005.06.011 [15] Li, Z., Chen, B., 2014. Geochronology and Geochemistry of the Paleoproterozoic Mata-Basalts from the Jiao-Liao-Ji Belt, North China Craton:Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 255:653-667 doi: 10.1016/j.precamres.2014.07.003 [16] Li, Z., Chen, B., Wei, C.J., 2017. Is the Paleoproterozoic Jiao-Liao-Ji Belt (North China Craton) a Rift?. International Journal of Earth Sciences, 106:355-375. https://doi.org/10.1007/s00531-016-1323-2 [17] Li, Z., Chen, B., Yan, X.L., 2019. The Liaohe Group:An Insight into the Paleoproterozoic Tectonic Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 326:174-195. https://doi.org/10.1016/j.precamres.2018.01.009 [18] Liu, J., Zhang, J., Liu, Z.H., et al., 2018. Geochemical and Geochronological Study on the Paleoproterozoic Rock Assemblage of the Xiuyan Region:New Constraints on an Integrated Rift-and Collision Tectonic Process Involving the Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 310:179-197. https://doi.org/10.1016/j.precamres.2018.03.005 [19] Liu, P.H., Tian, Z.H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton:New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9):3196-3216 (in Chinese with English abstract). [20] Lu, X.P., Wu, F.Y., Zhang, Y.B., et al., 2004. Emplacement Age and Tectonic Setting of the Paleoproterozoic Liaoji Granites in Tonghua Area, Southern Jilin Province. Acta Petrologica Sinica, 20(3):381-392 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200403002.htm [21] Ludwig, K.R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 39. [22] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [23] Ren, Y.W., Wang, H.C., Kang, J.L., et al., 2017. Paleoproterozoic Magmatic Events in the Hupiyu Area in Yingkou, Liaoning Province and Their Geological Significance. Acta Geologica Sinica, 91(11):2456-2472 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201711006.htm [24] Song, J.F., 2018. A New Understanding of Palaeoproterozoic Trondhjemite in Qingchengzi Area of Liaodong. Jilin Geology, 37(3):16-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JLDZ201803004.htm [25] Song, Y.H., Yang, F.C., Yan, G.L., et al., 2016. SHRIMP U-Pb Ages and Hf Isotopic Compositions of Paleoproterozoic Granites from the Eastern Part of Liaoning Province and Their Tectonic Significance. Acta Geologica Sinica, 90(10):2620-2636 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201610007.htm [26] Turner, S., Sandiford, M., Foden, J., 1992. Some Geodynamic and Compositional Constrains on "Postorogenic" Magmatism. Geology, 20(10):931-934. doi: 10.1130/0091-7613(1992)020<0931:SGACCO>2.3.CO;2 [27] Wan, Y.S., Song, B., Liu, D.Y., et al., 2006. SHRIMP U-Pb Zircon Geochronology of Paleoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Paleoproterozoic Tectonothermal Event. Precambrian Research, 149:249-271. doi: 10.1016/j.precamres.2006.06.006 [28] Wang, P.S., Dong, Y.S., Li, F.Q., et al., 2017. Paleoproterozoic Granitic Magmatism and Geological Significance in Huanghuadian Area, Eastern Liaoning Province. Acta Petrologica Sinica, 33(9):2708-2724 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201709004.htm [29] Wang, X.J., Liu, J.H., Ji, L., 2017. Zircon U-Pb Chronology, Geochemistry and Their Petrogenesis of Paleoproterozoic Monzogranitic Gneisses in Kuandian Area, Eastern Liaoning Province, Jiao-Liao-Ji Belt, North China Craton. Acta Petrologica Sinica, 33(9):2689-2707 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201709003.htm [30] Wang, X.P., Peng, P., Wang, C., et al., 2017. Nature of Three Episodes of Paleoproterozoic Magmatism (2 180 Ma, 2 115 Ma and 1 890 Ma) in the Liaoji Belt, North China with Implications for Tectonic Evolution. Precambrian Research, 298:252-267. https://doi.org/10.1016/j.precamres.2017.06.003 [31] Watson, E.B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64:295-304. doi: 10.1016/0012-821X(83)90211-X [32] Wei, C.J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1):24-43 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S030192681100194X [33] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. doi: 10.1007/BF00402202 [34] Xu, W., Liu, F.L., Tian, Z.H., et al., 2018. Source and Petrogenesis of Paleoproterozoic Meta-Mafic Rocks Intruding into the North Liaohe Group:Implications for Back-Arc Extension Prior to the Formation of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 307:66-81. doi: 10.1016/j.precamres.2018.01.011 [35] Yang, Z.J., Wang, W., Zhao, Y., et al., 2019. Geochemistry and Zircon U-Pb-Hf Isotopes of Paleoproterozoic Granitic Rocks in Wangjiapuzi Area, Eastern Liaoning Province, and Their Geological Significance. Geological Bulletin of China, 38(4):603-618 (in Chinese with English abstract). [36] Zhang, Q., Wang, Y., Li, C.D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200609000.htm [37] Zhang, Q.S., Yang, Z.S., Liu, L.D., 1988. Early Crust and Mineral Deposits of Liaodong Peninsula. Geological Publishing House, Beijing, 218-450 (in Chinese with English abstract). [38] Zhao, G.C., Cawood, P.A., Li, S.Z., et al., 2012. Amalgamation of the North China Craton:Key Issues and Discussion. Precambrian Research, 222-223:55-76. https://doi.org/10.1016/j.precamres.2012.09.016 [39] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002 [40] Zhao, Y., Kou, L.L., Zhang, P., et al., 2019. Characteristics of Geochemistry and Hf Isotope from Meta-Gabbro in the Longchang Area, Eastern of North China Craton:Implications on the Evolution of the Jiaoliaoji Paleoproterozoic Orogeny Belt. Earth Science, 44(10):3333-3345 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.185 [41] Zhao, Y., Zhang, P., Li, Y., et al., 2020. Geochemistry of Two Types of Paleoproterozoic Granites, and Zircon U-Pb Dating, and Lu-Hf Isotopic Characteristics in the Kuandian Area within the Jiao-Liao-Ji Belt:Implications for Regional Tectonic Setting. Geological Journal, 55(11):7564-7580. https://doi.org/10.1002/gj.3869 [42] Zhou, X.W., Geng, Y.S., Zheng, C.Q., 2018. Zircon U-Pb Dating of Metamorphic Rock from Guanghua Group in Tonghua Area and Its Geological Significance. Earth Science, 43(1):109-126. http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201801009.htm [43] Zhou, X.W., Zhao, G.C., Wei, C.J., et al., 2008. Metamorphic Evolution and Th-U-Pb Zircon and Monazite Geochronology of High-Pressure Pelitic Granulites in the Jiaobei Massif of the North China Craton. American Journal of Science, 308:328-350. doi: 10.2475/03.2008.06 [44] Zhu, K., Liu, Z.H., Xu, Z.Y., et al., 2019. Petrogenesis and Tectonic Implications of Two Types of Liaoji Granitoid in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 331:1-19. https://doi.org/10.1016/j.precamres.2019.105369 [45] Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. doi: 10.1016/j.precamres.2016.12.010 [46] 白瑾, 1993.华北陆台北缘前寒武纪地质及铅锌成矿作用.北京:地质出版社, 47-89. [47] 毕君辉, 邢德和, 葛文春, 等, 2018.辽东地区北辽河群变酸性火山岩形成的时代及构造背景:古元古代陆内裂谷, 还是活动大陆边缘?.地学前缘, 25(3):295-308. http://www.cqvip.com/QK/98600X/201803/675410467.html [48] 辽宁地质矿产局, 2015.辽宁省地质志.北京:地质出版社, 1-35. [49] 陈斌, 李壮, 王家林, 等, 2016.辽东半岛~2.2 Ga岩浆事件及其地质意义.吉林大学学报(地球科学版), 46(2):303-320. http://d.wanfangdata.com.cn/Periodical/cckjdxxb201602001 [50] 陈井胜, 田德欣, 邢德和, 等, 2020.辽宁宽甸地区辽河群里尔峪组基性火山岩锆石U-Pb年代学及其地质意义.地球科学, 45(9):3282-3294. doi: 10.3799/dqkx.2020.150 [51] 陈井胜, 邢德和, 刘淼, 等, 2017.辽宁辽阳地区辽河群酸性火山岩锆石U-Pb年代学及其地质意义.岩石学报, 33(9):2792-2810. http://d.wanfangdata.com.cn/Periodical/ysxb98201709010 [52] 郝德峰, 李三忠, 赵国春, 等, 2004.辽吉地区古元古代花岗岩成因及对构造演化的制约.岩石学报, 20(6):1409-1416. http://www.cqvip.com/Main/Detail.aspx?id=11547036 [53] 贺高品, 叶慧文, 1998.辽东-吉南地区早元古代两种类型变质作用及其构造意义.岩石学报, 14(2):152-162. http://www.cnki.com.cn/Article/CJFDTotal-YSXB802.002.htm [54] 刘平华, 田忠华, 文飞, 等, 2020.华北克拉通胶北地体多期高级变质事件:来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据.地球科学, 45(9):2196-3216. doi: 10.3799/dqkx.2020.228 [55] 路孝平, 吴福元, 张艳斌, 等, 2004.吉林南部通化地区古元古代辽吉花岗岩的侵位年代与构造背景.岩石学报, 20(3):381-392. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200403002.htm [56] 任云伟, 王惠初, 康健丽, 等, 2017.辽宁营口虎皮峪地区古元古代岩浆事件及地质意义.地质学报, 91(11):2456-2472. http://www.cqvip.com/QK/95080X/201711/673799182.html [57] 宋剑飞, 2018.关于辽东青城子地区古元古代奥长花岗岩的新认识.吉林地质, 37(3):16-25. http://www.cqvip.com/QK/96381X/201803/676299702.html [58] 宋运红, 杨凤超, 闫国磊, 等, 2016.辽东地区古元古代花岗岩SHRIMP U-Pb年龄、Hf同位素组成及构造意义.地质学报, 90(10):2620-2636. [59] 王鹏森, 董永胜, 李富强, 等, 2017.辽东黄花甸地区古元古代花岗质岩浆作用及其地质意义.岩石学报, 33(9):2708-2724. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201709004.htm [60] 王祥俭, 刘建辉, 冀磊, 2017.胶-辽-吉带胶东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因.岩石学报, 33(9):2689-2707. [61] 魏春景, 2018.华北中部造山带五台-恒山地区古元古代变质作用与构造演化.地球科学, 43(1):24-43. doi: 10.3799/dqkx.2018.002 [62] 杨仲杰, 王伟, 赵岩, 等, 2019.辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义.地质通报, 38(4):603-618. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201904012.htm [63] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 33(9):2249-2269. http://www.cqvip.com/qk/94579X/200609/23324594.html [64] 张秋生, 杨振升, 刘连登, 1988.辽东半岛早期地壳演化与矿产.北京:地质出版社, 218-450. [65] 赵岩, 寇林林, 张朋, 等, 2019.华北克拉通东部隆昌地区~2 113 Ma变辉长岩地球化学与Hf同位素:对胶辽吉造山带演化的意义.地球科学, 44(10):3333-3345. doi: 10.3799/dqkx.2019.185 [66] 周喜文, 耿元生, 郑常青, 2018.通化地区光华岩群变质岩锆石U-Pb定年及其地质意义.地球科学, 43(1):109-126. doi: 10.3799/dqkx.2018.007