Geochronology and Geodynamic Background Study of the Late Triassic Bimodal Pattern Intrusive Rock in Da Hinggan Mountains Duobaoshan Area
-
摘要: 多宝山矿区发现有侵位于晚奥陶世花岗闪长岩的角闪辉长岩和英云闪长岩,二者具有双峰式侵入岩的特征,在详细的野外地质调查基础上,对多宝山双峰式侵入岩进行了岩石学、年代学、地球化学方面的研究,并初步探讨其构造意义.角闪辉长岩的LA-ICP-MS锆石U-Pb年龄为224.3±1.7 Ma,英云闪长岩为226.3±2.3 Ma,两者形成于同一构造岩浆作用事件;侵入岩的SiO2含量呈双峰式,稀土、微量元素特征表明它们具有岛弧岩浆特征,二者具有相同的岩石圈地幔源区,其源区可能受到了俯冲流体交代作用的影响.结合区域构造背景,认为其形成与鄂霍茨克洋壳俯冲有关,产于活动大陆边缘环境,它们可能是受地壳混染的OIB型玄武质岩浆在地壳中部的一个“双扩散”岩浆房通过结晶分异形成的.Abstract: Hornblende gabbro and tonalite which emplaced in Late Ordovician granodiorite were found in Duobaoshan mining area, possessed the characteristics of bimodal pattern intrusive rock.On the basis of detailed field geological survey, we reaserched the petrology, geochronology and geochemistry characteristics of bimodal pattern intrusive rock, and discuss their tectonic significance. The LA-ICP-MS zircon U-Pb ages of hornblende gabbro is 224.3±1.7 Ma, the LA-ICP-MS zircon U-Pb ages of tonalite is 226.3±2.3 Ma, they were both formed by the same tectonic magmatism.The SiO2 content of intrusive rock is bimodal, their rare earth elements and microelements indicates the characteristics of island arc magma.They have the same mantle source, which influenced by the subduction metasomatic alteration of fluids. Based on analysis of the regional tectonic background, its formation is related to the Okhotsk subduction. The gabbro and tonalite which formed in the active continental margin environment, were interpreted to be formed through assimilation of OIB-type basaltic magma followed by fractional crystallization in a.double diffusive'magma chamber at the middle crust level.
-
Key words:
- bimodal invasion rock /
- Late Triassic /
- island arc /
- Da Hinggan /
- Duobaoshan /
- tectonics
-
图 1 多宝山地区地质简图
1. 第四系;2. 白垩系;3. 三叠系;4. 泥盆系;5. 志留系;6. 奥陶系;7. 早侏罗世花岗闪长岩;8. 早侏罗世花岗闪长斑岩;9. 晚三叠世花岗闪长岩/闪长岩;10. 中奥陶世花岗闪长斑岩;11. 早奥陶世花岗闪长岩;12. 闪长岩脉;13. 铜矿体;14. 韧性剪切带;15. 火山岩;16. 古生界/新生界;17. 花岗岩;18. 二长花岗岩;19. 断层;20. 地质界线;21. 铜/金/银矿床;22. 矿区;改绘引自文献石国明等(2018);角图 1据张兴洲等(2006);角据图 2杜琦等(1988)
Fig. 1. Geological map of Duobaoshan deposit
表 1 角闪辉长岩及英云闪长岩LA-ICP-MS锆石U-Pb测年结果
Table 1. LA-ICP-MS zircon U-Pb dating results of hornblende gabbro and tonalite
测点号 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/ 206Pb 误差(%) 207Pb/ 235U 误差(%) 206Pb/ 238U 误差(%) 206Pb/ 238U 1σ 207Pb/ 206Pb 1σ DBS01-01 67.7 98.5 0.7 0.06 0.35 0.26 1.57 0.03 0.05 217.1 2.9 431.5 140.7 DBS01-02 112.0 142 0.8 0.05 0.28 0.25 1.32 0.04 0.05 224.7 2.8 309.3 122.2 DBS01-03 55.4 78.5 0.7 0.05 0.34 0.27 1.61 0.04 0.06 235.0 3.6 309.3 148.1 DBS01-04 65.6 110 0.6 0.06 0.27 0.27 1.30 0.03 0.04 221.1 2.8 442.6 109.2 DBS01-05 118.0 145 0.8 0.06 0.28 0.27 1.30 0.04 0.04 223.4 2.4 450.0 111.1 DBS01-06 125.0 152 0.8 0.05 0.25 0.26 1.28 0.04 0.05 229.1 2.9 342.7 112.0 DBS01-07 109.0 156 0.7 0.05 0.26 0.25 1.20 0.04 0.05 229.4 3.0 213.0 120.4 DBS01-08 94.2 136 0.7 0.06 0.27 0.27 1.35 0.04 0.05 225.4 2.9 453.8 113.9 DBS01-09 75.0 122 0.6 0.05 0.25 0.26 1.18 0.04 0.04 227.1 2.7 322.3 102.8 DBS01-10 77.5 122 0.6 0.05 0.28 0.24 1.24 0.04 0.04 222.0 2.4 235.3 134.2 DBS01-11 239.0 248 1.0 0.05 0.19 0.26 0.98 0.04 0.04 232.2 2.5 250.1 83.3 DBS01-12 80.6 117 0.7 0.06 0.35 0.26 1.68 0.03 0.05 218.0 2.9 450.0 138.9 DBS01-13 107.0 139 0.8 0.05 0.25 0.25 1.21 0.04 0.04 225.6 2.7 209.3 110.2 DBS01-14 93.2 121 0.8 0.05 0.26 0.25 1.34 0.03 0.04 221.1 2.5 264.9 116.7 DBS01-15 100.0 147 0.7 0.05 0.24 0.26 1.19 0.04 0.04 228.4 2.8 301.9 137.9 DBS01-16 64.5 106 0.6 0.05 0.26 0.27 1.28 0.04 0.05 235.0 3.1 350.1 109.2 DBS01-17 80.0 119 0.7 0.05 0.28 0.26 1.25 0.04 0.05 230.0 2.9 344.5 118.5 DBS01-18 96.6 135 0.7 0.05 0.26 0.27 1.21 0.04 0.04 228.7 2.7 394.5 105.5 DBS01-19 89.6 116 0.8 0.05 0.34 0.24 1.62 0.04 0.04 223.7 2.8 209.3 155.5 DBS01-20 88.3 145 0.6 0.05 0.26 0.26 1.31 0.04 0.04 235.8 2.5 235.3 113.9 DBS01-21 107.0 153 0.7 0.06 0.23 0.28 1.13 0.04 0.04 236.2 2.7 427.8 94.4 DBS01-22 266.0 242 1.1 0.05 0.22 0.25 1.00 0.03 0.03 220.9 2.1 287.1 99.1 DBS01-23 128.0 149 0.9 0.06 0.24 0.26 1.18 0.03 0.04 221.2 2.6 409.3 98.1 DBS01-24 50.1 89.3 0.6 0.05 0.33 0.25 1.55 0.04 0.05 226.1 3.0 253.8 151.8 DBS01-25 74.5 139 0.5 0.05 0.26 0.25 1.25 0.04 0.05 230.5 3.1 209.3 122.2 DBS04-01 311.0 259 1.2 0.05 0.20 0.25 0.92 0.03 0.03 218.4 2.1 324.1 85.2 DBS04-02 143.0 185 0.8 0.05 0.22 0.26 1.07 0.04 0.04 224.4 2.8 361.2 94.4 DBS04-03 355.0 357 1.0 0.06 0.20 0.27 0.88 0.04 0.04 225.5 2.4 433.4 79.6 DBS04-04 407.0 336 1.2 0.05 0.19 0.26 0.91 0.03 0.03 220.4 1.9 346.4 84.3 DBS04-05 600.0 372 1.6 0.05 0.18 0.25 0.83 0.04 0.04 222.7 2.4 287.1 79.6 DBS04-06 227.0 235 1.0 0.05 0.21 0.25 1.07 0.04 0.04 224.7 2.4 227.8 96.3 DBS04-07 558.0 484 1.2 0.05 0.14 0.25 0.67 0.04 0.03 228.6 1.9 172.3 68.5 DBS04-08 341.0 293 1.2 0.05 0.17 0.25 0.81 0.04 0.04 223.5 2.2 239.0 77.8 DBS04-09 213.0 230 0.9 0.05 0.20 0.25 0.92 0.03 0.04 218.7 2.4 331.5 87.0 DBS04-10 401.0 265 1.5 0.05 0.18 0.25 0.81 0.04 0.04 226.5 2.3 194.5 81.5 DBS04-11 469.0 431 1.1 0.05 0.15 0.25 0.71 0.04 0.03 227.6 1.9 205.6 36.1 DBS04-12 314.0 252 1.2 0.05 0.18 0.26 0.85 0.04 0.03 223.8 2.0 305.6 75.0 DBS04-13 468.0 302 1.6 0.05 0.18 0.24 0.85 0.04 0.03 221.8 1.8 198.2 78.7 DBS04-14 829.0 650 1.3 0.05 0.14 0.24 0.69 0.04 0.03 225.0 1.8 172.3 64.8 DBS04-15 1 014.0 647 1.6 0.05 0.13 0.24 0.60 0.03 0.03 220.0 1.7 211.2 61.1 DBS04-16 499.0 455 1.1 0.05 0.17 0.25 0.76 0.03 0.03 217.9 1.9 366.7 73.1 DBS04-17 312.0 305 1.0 0.05 0.17 0.24 0.78 0.03 0.04 218.1 2.3 213.0 43.5 DBS04-18 184.0 243 0.8 0.05 0.21 0.26 0.97 0.04 0.04 227.6 2.3 327.8 88.9 DBS04-19 425.0 358 1.2 0.05 0.16 0.25 0.79 0.04 0.03 227.0 2.0 239.0 72.2 DBS04-20 159.0 192 0.8 0.05 0.21 0.25 1.06 0.04 0.04 231.7 2.5 209.3 98.1 DBS04-21 336.0 289 1.2 0.05 0.17 0.23 0.81 0.04 0.04 223.1 2.5 79.7 85.2 DBS04-22 222.0 268 0.8 0.05 0.15 0.23 0.73 0.04 0.03 226.6 2.1 400.1 -320 DBS04-23 425.0 342 1.2 0.05 0.15 0.25 0.77 0.04 0.03 231.0 2.1 189.0 70.4 DBS04-24 178.0 194 0.9 0.05 0.20 0.24 1.01 0.04 0.04 224.9 2.7 105.6 -94.4 DBS04-25 307.0 263 1.2 0.05 0.19 0.25 0.88 0.04 0.03 231.6 2.2 168.6 87.0 表 2 角闪辉长岩和英云闪长岩锆石的LA-ICP-MS Hf同位素分析结果
Table 2. LA-ICP-MS zircon Hf isotopic compositions of hornblende gabbro and tonalite
样品编号 年龄(Ma) 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ εHf(t) tDM1 (Ma) tDM2 (Ma) DBS01-10 222.0 0.282 945 0.000 010 0.001 987 0.000 020 0.060 258 0.000 744 10.7 447 571 DBS01-19 223.7 0.282 973 0.000 011 0.002 174 0.000 024 0.062 486 0.000 770 11.7 408 508 DBS01-08 225.4 0.282 935 0.000 011 0.002 363 0.000 019 0.070 283 0.000 668 10.4 467 597 DBS01-02 224.7 0.282 919 0.000 010 0.002 335 0.000 012 0.071 291 0.000 421 9.8 489 631 DBS01-13 225.6 0.282 936 0.000 011 0.002 469 0.000 017 0.072 792 0.000 464 10.4 467 595 DBS01-15 228.4 0.282 942 0.000 010 0.002 515 0.000 013 0.074 225 0.000 358 10.6 458 581 DBS01-09 227.1 0.282 926 0.000 010 0.002 579 0.000 026 0.078 397 0.000 860 10.0 483 618 DBS01-06 229.1 0.282 903 0.000 010 0.002 957 0.000 055 0.092 137 0.001 832 9.2 521 671 DBS04-02 224.4 0.282 946 0.000 010 0.003 919 0.000 045 0.115 580 0.001 173 10.5 470 586 DBS04-03 225.5 0.282 969 0.000 010 0.004 008 0.000 057 0.112 198 0.001 705 11.3 436 535 DBS04-06 224.7 0.282 947 0.000 009 0.003 387 0.000 032 0.099 689 0.001 004 10.6 461 578 DBS04-10 226.5 0.282 922 0.000 010 0.003 982 0.000 064 0.117 898 0.002 292 9.7 508 640 DBS04-19 227.0 0.282 979 0.000 010 0.004 216 0.000 083 0.126 598 0.002 490 11.7 423 513 表 3 角闪辉长岩和英云闪长岩主量元素(%)和微量元素(10-6)分析结果
Table 3. Maior elements (%) and rare earth elements (10-6) of hornblende gabbro and tonalite
样号 DBS04-1 DBS04-2 DBS04-3 DBS04-4 DBS01-1 DBS01-2 DBS01-3 DBS01-4 岩性 角闪辉长岩 角闪辉长岩 角闪辉长岩 角闪辉长岩 英云闪长岩 英云闪长岩 英云闪长岩 英云闪长岩 SiO2 44.16 43.81 43.73 43.89 64.29 64.51 66.44 64.25 Al2O3 16.47 18.70 17.11 19.30 17.03 17.21 16.54 16.74 Fe2O3 2.31 4.78 2.69 4.23 1.54 1.86 1.29 1.56 FeO 4.95 6.14 6.30 5.89 1.39 1.00 1.16 1.32 MgO 14.77 6.48 12.40 6.07 0.99 1.14 1.03 1.16 CaO 8.10 9.31 8.43 9.61 2.95 2.75 2.27 2.73 Na2O 3.65 2.91 3.15 3.15 5.61 5.53 5.54 5.42 K2O 0.66 1.44 0.70 1.13 2.88 2.96 2.62 2.84 MnO 0.096 0.13 0.11 0.12 0.10 0.099 0.085 0.097 P2O5 0.20 0.44 0.28 0.65 0.17 0.17 0.16 0.17 TiO2 1.07 1.51 1.37 1.38 0.36 0.33 0.31 0.33 LOI 3.66 4.19 3.73 4.57 2.18 2.38 2.44 2.76 Total 100.09 99.84 100.00 100.00 99.48 99.95 99.86 99.37 Li 13.0 12.2 14.7 15.1 8.13 3.99 8.26 3.71 Sc 19.2 21.4 24.8 20.8 2.99 2.35 2.22 2.26 V 152 198 192 184 23.7 23.8 20.7 20.8 Cr 8.73 11.2 8.64 6.55 19.8 13.7 11.7 4.81 Co 35.0 43.5 43.3 38.7 5.12 4.87 3.42 4.13 Cu 107 87.5 75.3 87.1 19.8 53.3 14.7 34.1 Zn 74.4 80.1 78.7 78.8 99.9 72.9 73.5 71.2 Ga 22.2 23.2 21.4 22.4 21.1 19.6 20.1 19.3 Rb 9.96 20.2 9.70 15.0 34.9 37.0 32.3 37.7 Sr 1 200 1 200 1 200 1 400 964 726 798 744 Y 19.1 24.4 23.5 22.3 11.5 10.2 9.91 10.7 Zr 108 69.3 100 75.0 216 210 205 223 Nb 4.02 4.51 4.56 2.80 7.52 6.94 6.36 6.71 Ni 0.45 1.05 1.33 0.92 6.29 4.76 3.26 2.44 Be 1.21 0.97 1.13 1.03 2.20 2.12 1.93 2.17 Cd 0.095 0.17 0.086 0.14 0.28 0.29 0.25 0.27 Sn 1.70 1.37 2.29 1.41 1.58 1.70 1.65 2.29 Cs 0.73 1.27 0.71 1.06 1.09 1.39 1.19 1.32 Ba 248 430 233 335 934 1000 767 905 La 19.0 18.3 20.2 18.8 35.7 31.8 28.5 33.2 Ce 43.9 44.9 48.3 46.8 73.0 65.3 62.6 67.3 Pr 6.49 6.88 7.36 7.22 8.97 8.00 7.57 8.16 Nd 29.6 34.9 34.3 34.1 33.0 29.2 26.5 29.8 Sm 6.00 7.06 7.36 7.13 4.72 4.23 4.12 4.37 Eu 1.77 2.32 2.10 2.16 1.90 2.02 1.49 1.87 Gd 4.61 5.37 5.56 5.38 3.90 3.44 3.19 3.61 Tb 0.70 0.84 0.86 0.83 0.47 0.41 0.38 0.44 Dy 3.78 4.54 4.63 4.40 2.17 1.95 1.90 1.99 Ho 0.69 0.91 0.85 0.81 0.39 0.34 0.32 0.35 Er 1.72 2.12 2.16 2.06 1.05 0.95 0.91 0.97 Tm 0.29 0.38 0.36 0.33 0.18 0.17 0.15 0.17 Yb 1.66 2.04 2.07 1.89 1.13 1.00 0.94 1.00 Lu 0.21 0.28 0.26 0.26 0.15 0.13 0.12 0.13 Hf 3.41 3.79 4.41 3.44 3.14 3.02 2.77 3.06 Ta 0.40 0.46 0.66 0.51 0.58 0.55 0.60 0.95 Pb 10.8 10.8 13.1 9.93 60.3 35.0 40.3 29.1 Th 2.14 1.76 1.85 1.47 4.68 4.77 4.68 5.38 U 0.44 0.43 0.52 0.39 1.44 1.33 1.06 1.31 ∑REE 120.38 130.83 136.27 132.13 166.80 148.86 138.66 153.33 LREE 106.71 114.35 119.53 116.17 157.36 140.46 130.76 144.69 HREE 13.67 16.48 16.74 15.96 9.44 8.40 7.90 8.65 L/H 7.81 6.94 7.14 7.28 16.67 16.73 16.55 16.73 δCe 0.60 0.47 0.72 0.50 0.13 0.10 0.13 0.13 δEu 0.99 1.11 0.96 1.03 1.31 1.57 1.21 1.40 -
[1] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [2] Brophy, J. G., 1991. Composition Gaps, Critical Crystallinity, and Fractional Crystallization in Orogenic (Calc-Alkaline) Magmatic Systems. Contributions to Mineralogy and Petrology, 109(2): 173-182. https://doi.org/10.1007/bf00306477 [3] Chu, S.X., Liu, J.M., Xu, J.H., et al., 2012. Zircon U-Pb Dating, Petrogenesis and Tectonic Significance of the Granodiorite in the Sankuanggou Skarn Fe-Cu Deposit, Heilongjiang Province. Acta Petrologica Sinica, 28 (2): 433-450(in Chinese with English abstract). http://www.researchgate.net/publication/283173476_Zircon_U-Pb_dating_petrogenesis_and_tectonic_significance_of_the_granodiorite_in_the_Sankuanggou_skarn_Fe-Cu_deposit_Heilongjiang_Province [4] Chung, S. L., Cheng, H., Jahn, B. M., et al., 1997. Major and Trace Element, and Sr-Nd Isotope Constraints on the Origin of Paleogene Volcanism in South China Prior to the South China Sea Opening. Lithos, 40(2/3/4): 203-220. https://doi.org/10.1016/s0024-4937(97)00028-5 [5] Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites Across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1/2): 1-18. https://doi.org/10.1016/0024-4937(89)90020-0 [6] Davies, G. R., MacDonald, R., 1987. Crustal Influences in the Petrogenesis of the Naivasha Basalt: Comendite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints. Journal of Petrology, 28(6): 1009-1031. https://doi.org/10.1093/petrology/28.6.1009 [7] Du, Q., Zhao, Y.M., Lu, B.G., et al., 1988. Porphyry Copper Deposit Duobaoshan. Geological Publishing House, Beijing, 1-344(in Chinese). [8] Gao, Z.X., Wang, J.C., Zhou, L.L., et al., 2019. Discovery of Early Permian Island-Arc Type Granodiorite in Wenduermiao Area, Inner Mongolia: Constraints on Timing of Closure of Paleo-Asian Ocean. Earth Science, 44(10): 3178-3192(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910002.htm [9] Gill, J.B., 1981. Orogenic Andesites and Plate Tectonic. Springer Verlag, New York, 1-385. [10] Hao, Y.J., 2015. Mineralization and Metallogenic Regularity of Duobaoshan Ore Concentration Area in Heilongjiang Province, Northeast China (Dissertation). Jilin University, Changchun, 1-199(in Chinese with English abstract). [11] Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489. https://doi.org/10.1007/bf00372365 [12] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [13] Li, C.L., Xu, W.X., Yu, Y.B., et al., 2018. Gold Mineralization and Prospecting Prediction in Nenjiang-Heihe Structural Melange Belt, Heilongjian Province. Geological Publishing House, Beijing, 1-195 (in Chinese). [14] Li, M., Ren, B.F., Teng, X.J., et al., 2018. Geochemical Characteristics, Zircon U-Pb Age and Hf Isotope and Geological Significance of Granitoid in Beishan Orogenic Belt. Earth Science, 43(12): 4586-4605(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812024.htm [15] Li, X.H., Zhou, H.W., Li, Z.X., et al., 2002. Petrogenesis of Neoproterozoic Bimodal Volcanics in Western Sichuan and Its Tectonic Implicaions: Geochemical and Sm-Nd Isotopic Constraints. Chinese Journal of Geology, 37(3): 264-276(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200203001.htm [16] Liu, J.F., Chi, X.G., Zhao, Z., et al., 2013. Zircon U-Pb Age and Petrogenetic Discussion on Jianshetun Adakite in Balinyouqi, Inner Mongolia. Acta Petrologica Sinica, 29(3): 827-839(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201303008.htm [17] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Mel-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [18] Ludwig, K.R., 2008. ISOPLOT 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 4: 1-77. [19] Meng, E., Xu, W.L., Yang, D.B., et al., 2011. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 27(4): 1209-1226(in Chinese with English abstract). http://www.oalib.com/paper/1475699 [20] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956. [21] Seghedi, I., Downes, H., Vaselli, O., et al., 2004. Post-Collisional Tertiary-Quaternary Mafic Alkalic Magmatism in the Carpathian-Pannonian Region: A Review. Tectonophysics, 393(1/2/3/4): 43-62. https://doi.org/10.1016/j.tecto.2004.07.051 [22] She, H.Q., Li, J.W., Xiang, A.P., et al., 2012. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and Its implications to Geotectonic Evolution. Acta Petrologica Sinica. 28(2): 571-594(in Chinese with English abstract). http://www.oalib.com/paper/1475427 [23] Shi, G.M., Fu, A.Z., Wan, T.P., 2018. Consequence of the Regional Geological Survey of the Yiliujiu, Duobaoshan, Xinghuogongshe, and Yiwusan Sheets. Shenyang Institute of Geology and Mineral Resources, Shenyang, 1-508(in Chinese with English abstract). [24] Shinjo, R., Kato, Y., 2000. Geochemical Constraints on the Origin of Bimodal Magmatism at the Okinawa Trough, an Incipient Back-Arc Basin. Lithos, 54(3/4): 117-137. https://doi.org/10.1016/s0024-4937(00)00034-7 [25] Sisson, T. W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1/2/3/4): 331-344. https://doi.org/10.1016/0009-2541(94)90135-x [26] Sun, L., Hai, C., Borming, J., et al., 1997. Major and Trace Element and Sr-Nd Isotope Constraints on the Origin of Paleogene Volcanism in South China Prior to the South China Sea Opening. Lithos, 40 : 203-220. doi: 10.1016/S0024-4937(97)00028-5 [27] Tang, J., Xu, W.L., Wang, F., 2016. Rock Associations and Their Spatial-Temporal Variations of the Early Mesozoic Igneous Rocks in the NE Asia: Constraints on the Initial Subduction Timing of the Paleo-Pacific Plate. Bulletin of Mineralogy, Petrology and Geochemistry, 35: 1181-1194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201606014.htm [28] Tang, L. M., Chen, H. L., Dong, C. W., et al., 2013. Middle Triassic Post-Orogenic Extension on Hainan Island: Chronology and Geochemistry Constraints of Bimodal Intrusive Rocks. Science China Earth Sciences, 56(5): 783-793. https://doi.org/10.1007/s11430-012-4562-5 [29] Tian, L. Y., Castillo, P. R., Hilton, D. R., et al., 2011. Major and Trace Element and Sr-Nd Isotope Signatures of the Northern Lau Basin Lavas: Implications for the Composition and Dynamics of the Back-Arc Basin Mantle. Journal of Geophysical Research: Solid Earth, 116(B11): 1-25. https://doi.org/10.1029/2011jb008791 [30] Wang, F., Xu, W. L., Xu, Y. G., et al., 2015. Late Triassic Bimodal Igneous Rocks in Eastern Heilongjiang Province, NE China: Implications for the Initiation of Subduction of the Paleo-Pacific Plate beneath Eurasia. Journal of Asian Earth Sciences, 97(6): 406-423. https://doi.org/10.1016/j.jseaes.2014.05.025 [31] Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2/3/4): 381-397. https://doi.org/10.1016/0012-821x(91)90217-6 [32] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x [33] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 [34] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Diseussions on the Petrogenesis of Graniets. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). [35] Wu, R.X., 2008. Study on Zircon CL and U-Pb Age of Neoproterozoic Granodiorites in South Anhui. Journal of Anhui University of Science and Technology (Natural Science Edition), 28(4): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HLGB200804003.htm [36] Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353(in Chinese with English abstract). http://www.researchgate.net/publication/303919904_Mesozoic_tectonic_regimes_and_regional_ore-forming_background_in_NE_China_constraints_from_spatial_and_temporal_variations_of_Mesozoic_volcanic_rock_associations [37] Zhang, Q., Wang, Y., Liu, W., et al., 2002. Adakite: Its Characteristics and Implications. Geological Bulletin China, 21(7): 431-435(in Chinese with English abstract). [38] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008. Criteria for the Recognition of Pre- Syn- and Post- Orogenic Granitic Rocks. Geological Bulletin of China, 27(1): 1-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm [39] Zhang, X.Z., Yang, B.J., Wu, F.Y., et al., 2006. The Lithosphere Structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) Region, Northeastern China. Geology in China. 33(4): 816-823(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=22794816 [40] Zhang, Y.T., Zhang, L.C., Ying, J.F., et al., 2007. Geochemistry and Source Characteristics of Early Cretaceous Volcanic Rocks in Tahe, North Da Hinggan Mountain. Acta Petrologica Sinica, 23(11): 2811-2822(in Chinese with English abstract). [41] Zhang, L.C., Ying, J.F., Chen, Z.G., et al., 2008. Age and Tectonic Setting of Triassic Basic Volcanic Rocks in Southern Da Hinggan Range. Acta Petrologica Sinica, 24(4): 911-920(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804030.htm [42] Zhao, C., Qin, K. Z., Song, G. X., et al., 2019. Switch of Geodynamic Setting from the Paleo-Asian Ocean to the Mongol-Okhotsk Ocean: Evidence from Granitoids in the Duobaoshan Ore Field, Heilongjiang Province, Northeast China. Lithos, 336-337(6): 202-220. https://doi.org/10.1016/j.lithos.2019.04.006 [43] Zhou, K., Chen, Y. X., Zhang, S. B., et al., 2020. Zircon Evidence for the Eoarchean (~3.7 Ga) Crustal Remnant in the Sulu Orogen, Eastern China. Precambrian Research, 337(2): 105529. https://doi.org/10.1016/j.precamres.2019.105529 [44] 褚少雄, 刘建明, 徐九华, 等, 2012. 黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义. 岩石学报, 28(2): 433-450. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202009.htm [45] 杜琦, 赵玉明, 卢秉刚, 等, 1988. 多宝山斑岩铜矿床. 北京: 地质出版社, 1-335. [46] 高征西, 王继春, 周路路, 等, 2019. 内蒙古温都尔庙地区早二叠世岛弧型花岗闪长岩的发现: 对古亚洲洋闭合的时限约束. 地球科学, 44(10): 3178-3192. doi: 10.3799/dqkx.2019.239 [47] 郝宇杰, 2015. 黑龙江省多宝山矿集区成矿作用与成矿规律研究(博士毕业论文). 长春: 吉林大学. 1-199. [48] 李成禄, 徐文喜, 于授帮, 等, 2018. 黑龙江省嫩江-黑河构造混杂岩带金矿成矿作用及找矿预测. 北京: 地质出版社, 1-195. [49] 李敏, 任邦方, 滕学建, 等, 2018. 内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义. 地球科学, 43(12): 4586-4605. doi: 10.3799/dqkx.2017.598 [50] 李献华, 周汉文, 李正祥, 等, 2002. 川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义. 地质科学, 37(3): 264-276. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200203001.htm [51] 刘建峰, 迟效国, 赵芝, 等, 2013. 内蒙古巴林右旗建设屯埃达克岩锆石U-Pb年龄及成因讨论. 岩石学报, 29(3): 827-839. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303008.htm [52] 孟恩, 许文良, 杨德彬, 等, 2011. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 27(4): 1209-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm [53] 佘宏全, 李进文, 向安平, 等, 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系. 岩石学报, 28(2): 571-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202019.htm [54] 石国明, 符安宗, 万太平, 2018. 一六九幅、多宝山铜矿幅, 星火公社幅、一五三幅区域地质矿产调查报告. 沈阳: 沈阳地质调查研究中心, 1-508. [55] 唐杰, 许文良, 王枫, 2016. 东北亚早中生代火成岩组合的时空变异: 对古太平洋板块俯冲开始时间的制约. 矿物岩石地球化学通报, 35: 1181-1194. doi: 10.3969/j.issn.1007-2802.2016.06.009 [56] 唐立梅, 陈汉林, 董传万, 等, 2013. 海南岛中三叠世造山后伸展作用: 双峰式侵入岩的年代学及地球化学制约. 中国科学: 地球科学, 43(3): 433-445. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201303013.htm [57] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [58] 吴荣新, 2008. 锆石阴极发光和U-Pb年龄特征. 安徽理工大学学报(自然科学版), 28(4): 1-7. doi: 10.3969/j.issn.1672-1098.2008.04.001 [59] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [60] 张连昌, 英基丰, 陈志广, 等, 2008. 大兴安岭南段三叠纪基性火山岩时代与构造环境. 岩石学报, 24(4): 911-920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804030.htm [61] 张旗, 王焰, 刘伟, 等, 2002. 埃达克岩的特征及其意义. 地质通报, 21(7): 431-435. doi: 10.3969/j.issn.1671-2552.2002.07.012 [62] 张旗, 王元龙, 金惟俊, 等, 2008. 造山前、造山和造山后花岗岩的识别. 地质通报, 27: 1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001 [63] 张兴洲, 杨宝俊, 吴福元, 等, 2006. 中国兴蒙吉黑地区岩石圈结构基本特征. 中国地质, 33(4): 816-823. doi: 10.3969/j.issn.1000-3657.2006.04.011 [64] 张玉涛, 张连昌, 英基丰, 等, 2007. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征. 岩石学报, 23(11): 2811-2822. doi: 10.3969/j.issn.1000-0569.2007.11.012