Chronology and Geochemistry of Gonjo Triassic Volcanic Rocks in Northern Part of Nujiang-Lancangjiang-Jinshajiang and Its Geological Significance
-
摘要: 三江北段贡觉三叠纪火山岩是金沙江古特提斯洋向西俯冲消减及随后的弧陆碰撞造山作用的产物,主要由玄武岩、安山质熔结凝灰岩和安山岩等组成,对探讨金沙江古特提斯构造-岩浆演化过程具有重要意义.对贡觉火山岩进行了LA-ICP-MS锆石U-Pb定年和全岩主、微量元素研究.其中代表性样品安山质熔结凝灰岩的LA-ICP-MS锆石U-Pb定年结果显示,锆石23个分析点的206Pb/238U年龄为243~233 Ma,206Pb/238U加权平均年龄为238.3±1.3 Ma(MSWD=1.7,n=23),代表了岩浆的结晶年龄为中-晚三叠世.地球化学分析表明,火山岩以低钛(0.52%~0.91%)、中镁(3.38%~7.22%)、富钠(3.63%~4.66%)、贫钾(0.09%~4.05%)、富集轻稀土元素(LREE/HREE=4.09~13.27)和大离子亲石元素(Th、U、La、Sm)、亏损高场强元素Nb和Ta(Nb=2.51×10-6~24.5×10-6、Ta=0.22×10-6~1.89×10-6)为特征,La/Nb值(2.13~2.89)较高、Nb/Th值(1.12~1.62)相对较低,具有与岛弧型或晚碰撞造山型火山岩相似的主-微量元素组成特征.贡觉中-晚三叠世火山岩代表了金沙江古特提斯演化过程中晚碰撞造山阶段的岩浆响应,推测是晚碰撞过程中残留的金沙江洋壳物质与岩石圈地幔物质相互作用的结果.Abstract: The Gonjo Triassic volcanic rocks in the northern area of the Nujiang-Lancangjiang-Jinshajiang are the products of subduction of the Jinshajiang Paleo-Tethyan Ocean to the west and subsequent arc-continent collision-orogeny effect. It is mainly composed of basalt, andesite fused tuff and andesite, etc.The study of Gonjo volcanic rocks is of great significance for the exploration of the Jinshajiang Paleo-Tethyan tectonic-magmatic evolution process. In this paper, it presents experiments on Gonjo volcanic rocks of LA-ICP-MS zircon U-Pb dating and master-trace element research. The LA-ICP-MS zircon U-Pb dating of representative samples of andesite fused tuff shows that the age of 206Pb/238U of 23 analysis points of zircon is 243-233 Ma. The LA-ICP-MS zircon U-Pb age of the representative sample of andesite fused tuff is 238.3±1.3 Ma, which indicates that the magmatic crystallization age is Middle-Late Triassic. Geochemical analysis shows that volcanic rocks contains low titanium (0.52%-0.91%), medium magnesium (3.38%-7.22%), rich sodium (3.63%-4.66%), depleted potassium (0.09%-4.05%), enriched light rare earth elements (LREE/HREE=4.09-13.27) and large ionic lithophilic elements (Th, U, La, Sm), deficient high field strength elements Nb and Ta (Nb=2.51×10-6-24.5×10-6, Ta=0.22×10-6-1.89×10-6), relatively high La/Nb (2.13-2.89) ratio and relatively low Nb/Th (1.12-1.62), which possesses the composition characteristics of main-trace elements similar to island arc or late collision orogenic volcanic rocks. It is concluded that the Middle-Late Triassic Gonjo volcanic rocks represent the magmatic response of the Jinshajiang during the evolution of Paleo-Tethys, which is probably the result of the interaction between the Jinshajiang oceanic crust material and the lithospheric mantle material remaining during the late collision.
-
Key words:
- zircon U-Pb dating /
- geochemistry /
- island arc volcanic rock /
- Jinshajiang suture zone /
- geochronology
-
图 1 三江北段大地构造单元划分
Ⅰ.扬子地块;Ⅱ.三江造山系;Ⅱ1.甘孜-理塘结合带;Ⅱ2.德庆-乡城岩浆弧;Ⅱ3.中咱-中甸地块;Ⅱ4.金沙江-哀牢山结合带;Ⅱ5.江达-德钦-维西陆缘弧;Ⅱ6.昌都-思茅地块;Ⅲ.班公-怒江-昌宁-孟连对接带;Ⅲ1.左贡临沧-勐海岩浆弧;Ⅲ2.昌宁-孟连结合带;Ⅳ.冈底斯-腾冲陆缘造山系;Ⅳ1.冈底斯-腾冲岩浆弧;Ⅳ2.嘉黎-波密结合带;Ⅳ3.察隅-盈江岩浆弧;Ⅴ.印度陆块区.据王保弟等(2018)
Fig. 1. Division of tectonic units in the northern part of Nujiang-Lancang-Jinshajiang
图 7 贡觉火山岩REE配分图(a)和微量元素蛛网图(b)
球粒陨石和原始地幔标准化值、N-MORB、E-MORB及OIB数据据Sun and McDonough (1989)
Fig. 7. REE pattern (a) and trace element spider diagram (b) of Gonjo volcanic rocks
图 8 贡觉火山岩的岩石分类图解(a)和10TiO2-10K2O-Al2O3图解(b)
Ⅰ.大洋玄武岩;Ⅱ.大陆玄武岩、安山岩;Ⅲ.岛弧、造山带玄武岩、安山岩.a.据王保弟等(2013);b.据赵崇贺(1989)
Fig. 8. Rock classification diagram(a)and 10TiO2-10K2O-Al2O3 diagram(b)of Gonjo volcanic rocks
图 9 贡觉火山岩2Nb-Zr/4-Y(a)和Hf/3-Th-Nb/16(b)构造环境图解
a.据Meschede(1986);AⅠ.板内碱性玄武岩,AⅡ.板内碱性玄武岩+板内拉斑玄武岩,B.E-MORB,C.板内拉斑玄武岩+火山弧玄武岩,D.火山弧玄武岩+N-MORB. b.据Wood(1980);A.N-MORB,B.E-MORB,C.板内碱性玄武岩,D.岛弧钙碱性玄武岩
Fig. 9. 2Nb-Zr/4-Y(a)and Hf/3-Th-Nb/16(b)diagrams of Gonjo volcanic rock
图 10 贡觉火山岩源区的特征微量元素判别图解
据李曙光等(1993);IAB.岛弧玄武岩,MORB.洋中脊玄武岩,OIB.洋岛玄武岩
Fig. 10. Discriminant diagrams of typical trace elements in the source area of Gonjo volcanic rocks
-
[1] Condie, K.C., Lee, D., Farmer, G.L., 2001. Tectonic Setting and Provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood Groups, Northern Utah:Constraints from Geochemistry, Nd Isotopes, and Detrital Modes. Sedimentary Geology, (141-142):443-464. https://doi.org/10.1016/s0037-0738(01)00086-0 [2] Gu, P.Y., He, S.P., Ji, W.H., et al., 2013. Geochemical Characteristics of Trachyandesite from Dongka Formation, Yushu(Qinghai):Petrogenesis and Its Tectonic Significance. Chinese Journal of Geology (Scientia Geologica Sinica), 48(4):1069-1082 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX201304008.htm [3] Han, J.W., Xiong, X.L., Wu, J.H., 2006. Na Depletion in Modern Adakites and Implication for Melt-Mantle Metasomatism. Geotectonica et Metallogenia, 30(3):381-391 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200603013 [4] Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k [5] Huang, J.Q., Chen, G.M., Chen, B. W., 1984. Preliminary Analysis of the Tethys-Himalayan Tectonic Domain. Acta Geologica Sinica, 58(1):1-17 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10017398705 [6] Jian, P., Liu, D. Y., Krö net, A., et al., 2009a. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (I):Insights from Zircom Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3-4):767-784. https://doi.org/10.1016/j.lithos.2009.04.006 [7] Jian, P., Liu, D. Y., Krö net, A., et al., 2009b. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (П):Geochemistry of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113(3-4):748-766. https://doi.org/10.1016/j.lithos.2009.04.004 [8] Li, S.G., 1993. Ba-Nb-Th-La Diagrams Used to Identify Tectonic Environments of Ophiolite. Acta Petrologica Sinica, 9(2):146-157 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199302004.htm [9] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [10] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [11] Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [12] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [13] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract). https://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ [14] Nakano, N., Osanai, Y., Adachi, T., 2010. Major and Trace Element Zoning of Euhedral Garnet in High-Grade (> 900℃) Mafic Granulite from the Song Ma Suture Zone, Northern Vietnam. Journal of Mineralogical and Petrological Sciences, 105(5):268-273. https://doi.org/10.2465/jmps.100620a [15] Osanai, Y., Nakano, N., Owada, M., et al., 2008.Collision Zone Metamorphism in Vietnam and Adjacent South-Eastern Asia:Proposition for Trans Vietnam Orogenic Belt. Journal of Mineralogical and Petrological Sciences, 103(4):226-241. https://doi.org/10.2465/jmps.080620e [16] Peng, T. P., Zhao, G. C., Fan, W. M., et al., 2015. Late Triassic Granitic Magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau:Geochronology, Petrogenesis and Implications for the Tectonic Evolution of the Paleo-Tethys. Gondwana Research, 27(4):1494-1508. https://doi.org/10.1016/j.gr.2014.01.009 [17] Ryan, J. G., Morris, J., Tera, F., et al., 1995. Cross-Arc Geochemical Variations in the Kurile Arc as a Function of Slab Depth. Science, 270(5236):625-627. https://doi.org/10.1126/science.270.5236.625 [18] Sun, L.H., Peng, T.P., Wang, Y.J., 2007. Geochemical Characteristics of Basaltic Andesites from Dahalajunshan Formation, Southeastern Tekesi (Xinjiang):Petrogenesis and Its Tectonic Significance. Geotectonica et Metallogenia, 31(3):372-379 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200703020.htm [19] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [20] Tang, Y., Qin, Y. D., Gong, X.D., et al., 2020. Discovery of Eclogites in Jinsha River Suture Zone, Gonjo County, Eastern Tibet and Its Restriction on Paleo-Tethyan Evolution. China Geology, 3(1):83-103. https://doi.org/10.31035/cg2020003 [21] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [22] Wang, B. D., Wang, L. Q., Chen, J. L., et al., 2014. Triassic Three-Stage Collision in the Paleo-Tethys:Constraints from Magmatism in the Jiangda-Deqen-Weixi Continental Margin Arc, SW China. Gondwana Research, 26(2):475-491. https://doi.org/10.1016/j.gr.2013.07.023 [23] Wang, B.D., Wang, L.Q., Pan, G.T., et al., 2013. U-Pb Zircon Dating of Early Paleozoic Gabbro from the Nantinghe Ophiolite in the Changning-Menglian Suture Zone and Its Geological Implication. Chinese Science Bulletin, 58(4):344-354 (in Chinese). doi: 10.1360/csb2013-58-4-344 [24] Wang, B.D., Wang, L.Q., Wang, D.B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8):2527-2550 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808001 [25] Wang, L.Q., Pan, G.T., Ding, J., et al., 2013. The Geological Map and Instruction of the Qinghai-Tibet Plateau and Its Adjacent Areas (1: 1 500 000). Geological Publishing House, Beijing (in Chinese). [26] Wang, L.Q., Pan, G.T., Li, D.M., et al., 1999. The Spatio-temporal Framework and Geological Evolution of the Jinshajiang Arc-Basin Systems. Acta Geologica Sinica, 73(3):206-218 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900084696 [27] Wood, D. A, 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8 [28] Yan, G.C., Wang, B.D., Liu, H., et al., 2018. Delineation of Middle Carboniferous Arc Volcanic Rocks in Jomda Area, Eastern Tibet and Its Tectonic Implications. Earth Science, 43(8):2715-2726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808013 [29] Zhao, C.H., 1989. The ATK Diagram of Basic-Intermediate Volcanic Rocks and Tectonic Environment. Geological Science and Technology Information, 8(4):1-5 (in Chinese with English abstract). http://www.researchgate.net/publication/284255129_The_ATK_diagram_of_basic-intermediate_volcanic_rocks_and_tectonic_environment [30] Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [31] Zhu, J. J., Hu, R. Z., Bi, X. W., et al., 2011. Zircon U-Pb Ages, Hf-O Isotopes and Whole-Rock Sr-Nd-Pb Isotopic Geochemistry of Granitoids in the Jinshajiang Suture Zone, SW China:Constraints on Petrogenesis and Tectonic Evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4):248-264. https://doi.org/10.1016/j.lithos.2011.07.003 [32] Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144-145:145-160. https://doi.org/10.1016/j.lithos.2012.04.020 [33] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [34] 辜平阳, 何世平, 计文化, 等, 2013.青海玉树县南洞卡组粗面安山岩地球化学特征:岩石成因与构造背景探讨.地质科学, 48(4):1069-1082. http://d.wanfangdata.com.cn/Periodical/dzkx201304008 [35] 韩江伟, 熊小林, 吴金花, 2006.埃达克岩的Na亏损及其对地幔Na交代的指示意义.大地构造与成矿学, 30(3):381-391. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200603013 [36] 黄汲清, 陈国铭, 陈炳蔚, 1984.特提斯-喜马拉雅构造域初步分析.地质学报, 58(1):1-17. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198401000.htm [37] 李曙光, 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146-157. http://www.cqvip.com/qk/94579X/199302/1213325.html [38] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200303013 [39] 孙林华, 彭头平, 王岳军, 2007.新疆特克斯东南大哈拉军山组玄武安山岩地球化学特征:岩石成因和构造背景探讨.大地构造与成矿学, 31(3):372-379. http://www.cnki.com.cn/Article/CJFDTotal-DGYK200703020.htm [40] 王保弟, 王立全, 潘桂棠, 等, 2013.昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义.科学通报, 58(4):344-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201304008 [41] 王保弟, 王立全, 王冬兵, 等, 2018.三江昌宁-孟连带原-古特提斯构造演化.地球科学, 43(8):2527-2550. doi: 10.3799/dqkx.2018.160 [42] 王立全, 潘桂棠, 丁俊, 等, 2013.青藏高原及邻区地质图及说明书(1:1 500 000).北京:地质出版社. [43] 王立全, 潘桂棠, 李定谋, 等, 1999.金沙江弧-盆系时空结构及地史演化.地质学报, 73(3):206-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900084696 [44] 闫国川, 王保弟, 刘函, 等, 2018.藏东江达中石炭世弧火山岩的厘定及其构造意义.地球科学, 43(8):2715-2726. doi: 10.3799/dqkx.2018.546 [45] 赵崇贺, 1989.中基性火山岩成分的ATK图解与构造环境.地质科技情报, 8(4):1-5. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ198904000.htm -
dqkx-45-8-2920-Table1.docx