• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    埃塞俄比亚西部布雷地区A型花岗岩成因及地质意义

    向文帅 姜军胜 雷义均 赵凯

    向文帅, 姜军胜, 雷义均, 赵凯, 2021. 埃塞俄比亚西部布雷地区A型花岗岩成因及地质意义. 地球科学, 46(7): 2299-2310. doi: 10.3799/dqkx.2020.209
    引用本文: 向文帅, 姜军胜, 雷义均, 赵凯, 2021. 埃塞俄比亚西部布雷地区A型花岗岩成因及地质意义. 地球科学, 46(7): 2299-2310. doi: 10.3799/dqkx.2020.209
    Xiang Wenshuai, Jiang Junsheng, Lei Yijun, Zhao Kai, 2021. Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia. Earth Science, 46(7): 2299-2310. doi: 10.3799/dqkx.2020.209
    Citation: Xiang Wenshuai, Jiang Junsheng, Lei Yijun, Zhao Kai, 2021. Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia. Earth Science, 46(7): 2299-2310. doi: 10.3799/dqkx.2020.209

    埃塞俄比亚西部布雷地区A型花岗岩成因及地质意义

    doi: 10.3799/dqkx.2020.209
    基金项目: 

    中国地质调查局项目“北部非洲大型铜金资源基地评价” 121201009000172708

    中国地质调查局项目“埃及及邻区矿产资源潜力评价” DD20160109

    详细信息
      作者简介:

      向文帅(1986-), 男, 高级工程师, 主要从事境外地质矿产调查与研究工作.ORCID: 0000-0001-9941-0429.E-mail: xiangwenshuai@mail.cgs.gov.cn

      通讯作者:

      姜军胜, ORCID: 0000-0003-4038-5825.E-mail: 850044300@qq.com

    • 中图分类号: P581

    Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia

    • 摘要: 为进一步约束埃塞俄比亚西部地区区域地质构造演化,选取埃塞俄比亚西部布雷地区岩浆岩开展岩石地球化学、年代学等分析.结果显示:布雷岩体具有相对较高的SiO2(66.4%~68.5%)、K2O(4.56%~4.87%)及铁值[TFeO/(TFeO+MgO]为0.75~0.79,相对较低的MgO(0.80%~1.3%)、CaO(2.01%~2.36%)和A/CNK(0.89~0.96),富集Zr、Hf、Y、Ga等元素,亏损Sr、P、Ti和Eu元素,显示了A型花岗岩的特征.锆石LA-ICP-MS U-Pb加权平均年龄为631±4 Ma,代表了东非造山运动后伸展阶段.锆石εHf(t)值为3.2~9.1,具有一定的不均一特征.布雷A型花岗岩形成于碰撞造山的后伸展环境.岩石地球化学及Hf同位素特征表明布雷岩体主体可能来源于减薄的岩石圈地幔玄武质岩浆,其后经历了广泛的结晶分异作用而形成.

       

    • 图  1  阿拉伯-努比亚地盾地质简图(据Johnson et al., 2011修改)

      Fig.  1.  Geological map of Arabian⁃Nubian Shield (after Johnson et al., 2011)

      图  2  西埃塞俄比亚地体区域地质简图(据Allen and Tadesse, 2003修改)

      Fig.  2.  Sketch of regional geology of western Ethiopian terrain (after Allen and Tadesse, 2003)

      图  3  布雷岩体岩石手标本(a)及镜下特征(b)

      Fig.  3.  Hand specimen photograph (a) and photomicrograph (b) of Burequartz monzonite

      图  4  埃塞俄比亚西部布雷地区石英二长岩锆石U-Pb同位素年龄谐和图(a)和锆石稀土元素球粒陨石模式图(b)

      Fig.  4.  U-Pb concordia diagram (a) and chondrite normalized REE distribution pattern (b) for Bure quartz monzonite zircon

      图  5  石英二长岩TAS图解(a);SiO2-K2O图解(b);Na2O-K2O图解(c);A/NK-A/CNK图解(d)

      a. 据Middlemos(1985);d. 据Maniar and Piccoli(1989);蓝色数据来自本文研究样品;紫色数据来自Kebede and Koeberl(2003)

      Fig.  5.  TAS diagram (a), SiO2-K2O diagram (b), Na2O-K2O diagram (c), and A/NK-A/CNK diagram(d)

      图  6  埃塞俄比亚西部布雷地区石英二长岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化分布图(b)

      b. 据Sun and McDonough(1989);蓝色数据来自本文研究样品;红色数据来自Kebede and Koeberl(2003)

      Fig.  6.  Primitive mantle normalized trace element spider diagram (a) and chondirite normalized REE distribution diagram (b)

      图  7  (a) εHf(t)-Age图解;(b) TDM2年龄直方图

      Fig.  7.  (a) εHf(t)-Age diagram; (b) Histogram of TDM2 ages

      图  8  A型花岗岩判别图

      a. TFeO/MgO-Zr+Nb+Ce+Y图解(Whalen et al., 1987);b. K2O+Na2O/CaO-Zr+Nb+Ce+Y图解(Whalen et al., 1987);c. TFeO/(TFeO+MgO)-SiO2图解(Frost et al., 2001Frost and Frost, 2011);d. K2O+Na2O-CaO-SiO2图解(Frost et al., 2001Frost and Frost, 2011);蓝色数据来自本文研究样品;紫色数据来自Kebede and Koeberl(2003)

      Fig.  8.  Discriminant diagrams of A-type granites

      图  9  (a) La/Sm-Sm/Yb图解(Kay and Mpodozis, 2001);(b) La/Sm-La图解(Allegre and Minster, 1978);(c) Rb/Sr-Sr图解(Rollinson, 1993);(d) (La/Yb)N-La图解(Rollinson, 1993)

      Fig.  9.  (a) La/Sm vs. Sm/Yb diagram; (b) La/Sm vs. La diagram(Allegre and Minster, 1978); (c) Rb/Sr vs. Sr diagram (Rollinson, 1993); (d) (La/Yb)N vs. La diagram (Rollinson, 1993)

      图  10  构造判别图

      a. Rb-Y+Nb图解(Pearce et al., 1984);b. Y-Nb-3Ga (Eby,1992)

      Fig.  10.  Tectonic discriminant diagrams

    • [1] Allegre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012⁃821x(78)90123⁃1
      [2] Allen, A., Tadesse, G., 2003. Geological Setting and Tectonic Subdivision of the Neoproterozoic Orogenic Belt of Tuludimtu, Western Ethiopia. Journal of African Earth Sciences, 36: 329-343. https://doi.org/10.1016/S0899⁃5362(03)00045⁃9
      [3] Bonin, B., 2007. A⁃Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      [4] Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A⁃Type Granites Revisited: Assessment of a Residual⁃Source Model. Geology, 19(2): 163. https://doi.org/10.1130/0091⁃7613(1991)019<0163:atgrao>2.3.co;2 doi: 10.1130/0091⁃7613(1991)019<0163:atgrao>2.3.co;2
      [5] Dall'Agnol, R., Oliveira, D. C., 2007. Oxidized, Magnetite⁃Series, Rapakivi⁃Type Granites of Carajás, Brazil: Implications for Classification and Petrogenesis of A⁃Type Granites. Lithos, 93(3/4): 215-233. https://doi.org/10.1016/j.lithos.2006.03.065
      [6] Eby, G.N., 1992. Chemical Subdivision of the A⁃Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      [7] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [8] Frost, C.D., Frost, B.R., 2011. On Ferroan (A⁃Type) Granitoids: Their Compositional Variability and Modes of Rrigin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070
      [9] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      [10] Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust⁃Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009⁃2541(94)00145⁃x
      [11] Grenne, T., Pedersen, R. B., Bjerkgård, T., et al., 2003. Neoproterozoic Evolution of Western Ethiopia: Igneous Geochemistry, Isotope Systematics and U⁃Pb Ages. Geological Magazine, 140(4): 373-395. https://doi.org/10.1017/s001675680300801x
      [12] Hoskin, P. W. O., 2005. Trace⁃Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
      [13] Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian⁃Ediacaran History of the Arabian⁃Nubian Shield: A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3): 167-232. https://doi.org/10.1016/j.jafrearsci.2011.07.003
      [14] Kebede, T., Kloetzli, U.S., Koeberl, C., et al., 2000. Single⁃Grain Zircon 207Pb/206Pb Ages and Evolution of Granitoid Magmatism in Western Ethiopia. Abstracts: 18th Colloquium of African Geology, Graz. Journal of African Earth Science, 30: 45. http://www.researchgate.net/publication/290793621_Single-grain_zircon_207Pb206Pb_ages_and_evolution_of_granitoid_magmatism_in_western_Ethiopia_Abstracts_18th_Colloquium_of_African_Geology_Graz_Austria
      [15] Kay, S. M., Mpodozis, C., 2001. Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust. GSA Today, 11(3): 4. https://doi.org/10.1130/1052⁃5173(2001)011<0004:caodlt>2.0.co;2 doi: 10.1130/1052⁃5173(2001)011<0004:caodlt>2.0.co;2
      [16] Kebede, T., Koeberl, C., 2003. Petrogenesis of A⁃Type Granitoids from the Wallagga Area, Western Ethiopia: Constraints from Mineralogy, Bulk⁃Rock Chemistry, Nd and Sr Isotopic Compositions. Precambrian Research, 121(1/2): 1-24. https://doi.org/10.1016/s0301⁃9268(02)00198⁃5
      [17] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A⁃Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      [18] Li, J.F., Fu, J.M., Ma, C.Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U⁃Pb Geochronology, Petrogeochemistry, and Sr⁃Nd⁃Hf Isotopes. Earth Science, 45(2): 374-388. https://doi.org/10.3799/dqkx.2019.013
      [19] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling⁃Induced Melt⁃Peridotite Interactions in the Trans⁃North China Orogen: U⁃Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      [20] Loiselle, M.C., Wones, D.R., 1979. Characteristics of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11(7): 468. http://ci.nii.ac.jp/naid/10019593683
      [21] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016⁃7606(1989)101<0635:tdog>2.3.co;2
      [22] Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London, New York: Longman, 1-266.
      [23] Pearce, J. A., Harris, N. B. W., Tindle, A. G., et al., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [24] Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, and Interpretation. Longman Scientific and Technical, Singapore, 352.
      [25] Stern, R. J., 2002. Crustal Evolution in the East African Orogen: A Neodymium Isotopic Perspective. Journal of African Earth Sciences, 34(3/4): 109-117. https://doi.org/10.1016/s0899⁃5362(02)00012⁃x
      [26] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [27] Wang, Y., 2013. What is the Essence of A⁃Type Granite? Geological Journal of China Universities, (19): 157-158.
      [28] Whalen, J. B., Currie, K. L., Chappell, B. W., et al., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      [29] Woldemichael, B. W., Kimura, J. I., Dunkley, D. J., et al., 2010. SHRIMP U⁃Pb Zircon Geochronology and Sr⁃Nd Isotopic Systematic of the Neoproterozoic Ghimbi⁃Nedjo Mafic to Intermediate Intrusions of Western Ethiopia: A Record of Passive Margin Magmatism at 855 Ma?. International Journal of Earth Sciences, 99(8): 1773-1790. https://doi.org/10.1007/s00531⁃009⁃0481⁃x
      [30] Xie, J.C., Chen, S., Rong, W., et al., 2012. Geochronology, Geochemistry and Tectonic Significance of Guniujiang A⁃Type Granite in Anhui Province. Acta Petrologica Sinica, 28 (12): 4007- 4020 (in Chinese with English abstract).
      [31] Yuan, Z.X., 2001. A Discussion on the Naming of A⁃Type Granite. Acta Ptrologica et Mineralogica, 20 (3): 293-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200103010.htm
      [32] Zhang, Q., Ran, B.G., Li, C.D., 2012. What is the Essence of A⁃Type Granite? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
      [33] Zhao, K., Yao, H.Z., Wang, J.X., et al., 2020. Zircon U⁃Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea. Earth Science, 45(1): 156-167 (in Chinese with English abstract).
      [34] 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U⁃Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013
      [35] 汪洋, 2013. A型花岗岩的实质是什么? 高校地质学报, (19): 174-175.
      [36] 谢建成, 陈思, 荣伟, 等, 2012. 安徽牯牛降A型花岗岩的年代学、地球化学和构造意义. 岩石学报, 28(12): 4007-4020.
      [37] 袁忠信, 2001. 关于A型花岗岩命名问题的讨论. 岩石矿物学杂志, 20 (3): 293-296.
      [38] 张旗, 冉白皋, 李承东, 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      [39] 赵凯, 姚华舟, 王建雄, 等, 2020. 厄立特里亚Koka花岗岩锆石U⁃Pb年代学、地球化学特征及其地质意义. 地球科学, 45(1): 156-167. doi: 10.3799/dqkx.2018.237
    • 加载中
    图(10)
    计量
    • 文章访问数:  811
    • HTML全文浏览量:  304
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-16
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回