Identification of Eocene Tectonic Transition and Its Geological Significance of Rift Basins Offshore China: A Case Study in Weixi'nan Sag, Beibu Bay Basin
-
摘要: 为明确始新世构造变革事件在中国近海盆地的表现形式和空间展布范围,揭示其动力学成因,以北部湾盆地涠西南凹陷为例,利用最新的地质资料,对始新世构造变革界面进行了精细厘定.结果表明:盆地在始新世中、晚期经历了裂陷作用南北转变、断裂体系转型、地层挠曲变形和沉积-沉降中心迁移等构造转换过程;始新世构造变革的发生与周缘板块重组所诱导的区域应力场南北向转变有密切的动力学成因联系,尤其是与太平洋板块俯冲方向转变和印度-欧亚板块强烈碰撞紧密相关;该构造事件的发生,揭示了中国近海裂陷盆地演化具有统一性与差异性共存、继承性与改造性同在、伸展性和走滑性叠加的特点,其深刻影响了成藏要素的耦合匹配关系,深部优质烃源岩与浅部走滑相关构造的配置决定了油气优势成藏部位.Abstract: In order to identify the expression and spatial distribution of Eocene tectonic transition event in petroliferous basins offshore China, and reveal the geodynamic origin ultimately, based on the new released geological data, investigation on interface was carried out from a case study of Weixi'nan sag. The results show that the basin experienced the rifting change to N-S-directed, transformation of fault system, flexural deformation of strata and the migration of the depocenters. The Eocene tectonic transition is closely related to the stress change due to the reorganization of neighboring plates, especially to the orientation change of Pacific plate subduction and collision of Indian plate and Eurasian plate. The occurrence of this tectonic event reveals the coexistence of consistency and diversity, inheritance and reworked structures, extension and strike-slip deformation. It deeply influences the coupling between different accumulation elements. The configuration of the high-quality source rocks and the shallower strike-slip structures determines the advantageous section of hydrocarbon accumulation.
-
图 6 北部湾盆地北部坳陷构造沉降史
井位置见图 1
Fig. 6. Tectonic subsidence history of the Beibu depression, Beibu Bay basin
图 9 北部湾盆地周缘始新世区域构造背景(据Müller et al., 2016)
Fig. 9. Regional tectonics of Eocene Beibu Bay basin and its adjacent area (modified from Müller et al., 2016)
-
[1] Hall, R., Spakman, W., 2015. Mantle Structure and Tectonic History of SE Asia. Tectonophysics, 658: 14-45. https://doi.org/10.1016/j.tecto.2015.07.003 [2] Henstra, G.A., Rotevatn, A., Gawthorpe, R.L., et al., 2015. Evolution of a Major Segmented Normal Fault during Multiphase Rifting: The Origin of Plan-View Zigzag Geometry. Journal of Structural Geology, 74: 45-63. https://doi.org/10.1016/j.jsg.2015.02.005 [3] Hu, Y., Wu, Z.P., Zhong, Z.H., et al., 2016. Characterization and Genesis of the Middle and Late Eocene Tectonic Changes in Zhu1 Depression of Pearl River Mouth Basin. Oil & Gas Geology, 37(5): 779-785(in Chinese with English abstract). http://www.researchgate.net/publication/316515237_Characterization_and_genesis_of_the_Middle_and_Late_Eocene_tectonic_changes_in_Zhu_1_Depression_of_Pearl_River_Mouth_Basin [4] Huang, B.J., Tian, H., Wilkins, R.W.T., et al., 2013. Geochemical Characteristics, Palaeoenvironment and Formation Model of Eocene Organic-Rich Shales in the Beibuwan Basin, South China Sea. Marine and Petroleum Geology, 48: 77-89. https://doi.org/10.1016/j.marpetgeo.2013.07.012 [5] Jiang, P., Qin, C.Y., Yang, X.B., et al., 2020. Sedimentary Architecture, Distribution Features and Genesis of Steep Slope Fan in Upper Liushagang Formation, Weixi'nan Sag. Earth Science, 45(2): 534-546(in Chinese with English abstract). [6] Jicha, B.R., Garcia, M.O., Wessel, P., 2018. Mid-Cenozoic Pacific Plate Motion Change: Implications for the Northwest Hawaiian Ridge and Circum-Pacific. Geology, 46(11): 939-942. https://doi.org/10.1130/g45175.1 [7] Lei, C., Ren, J.Y., Zhang, J., 2015. Tectonic Province Divisions in the South China Sea: Implications for Basin Geodynamics. Earth Science, 40(4): 744-762(in Chinese with English abstract). [8] Li, C.R., Zhang, G.C., Liang, J.S., et al., 2012. Characteristics of Fault Structure and Its Control on Hydrocarbons in the Beibuwan Basin. Acta Petrolei Sinica, 33(2): 195-203(in Chinese with English abstract). http://www.researchgate.net/publication/282300287_Characteristics_of_fault_structure_and_its_control_on_hydrocarbons_in_the_Beibuwan_Basin [9] Li, S.T., 2015. Advancement, Trend and New Challenges in Basin Geodynamics. Earth Science Frontiers, 22(1): 1-8(in Chinese with English abstract). http://www.cqvip.com/QK/98600X/201501/662674853.html [10] Li, S.Z., Suo, Y.H., Li, X.Y., et al., 2019. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137. https://doi.org/10.1016/j.earscirev.2019.03.003 [11] Liu, J.S., Xu, H.Z., Jiang, Y.M., et al., 2020. Mesozoic and Cenozoic Basin Structure and Tectonic Evolution in the East China Sea Basin. Acta Geologica Sinica, 94(3): 675-691(in Chinese with English abstract). [12] Liu, Y.M., Liu, L.J., Wu, Z.P., et al., 2020. New Insight into East Asian Tectonism since the Late Mesozoic Inferred from Erratic Inversions of NW-Trending Faulting within the Bohai Bay Basin. Gondwana Research. https://doi.org/10.1016/j.gr.2020.01.022 [13] Liu, Y.M., Wu, Z.P., Liu, L.F., et al., 2019. Cenozoic Fault System and Tectonic Framework of Chengbei Sag and Its Adjacent Areas, Bohai Bay Basin. Geotectonica et Metallogenia, 43(6): 1133-1143(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201906005.htm [14] Liu, Y.M., Wu, Z.P., Yan, S.Y., et al., 2021. New Insight into the Origin of Horsetail-Like Structure in Beibu Depression, Beibu Gulf Basin. Journal of China University of Mining & Technology, 50(1): 163-175(in Chinese with English abstract). [15] Ma, Y., Li, S.Z., Zhang, B.K., et al., 2013. Unconformities in the Beibuwan Basin and Their Implications for Tectonic Evolution. Marine Geology & Quaternary Geology, 33(2): 63-72(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2014MGQG...33...63M [16] Marshak, S., Haq, S.S.B., Sen, P., 2019. Ramp Initiation in Fold-Thrust Belts: Insight from PIV Analysis of Sandbox Models. Journal of Structural Geology, 118: 308-323. https://doi.org/10.1016/j.jsg.2018.11.006 [17] Müller, R.D., Seton, M., Zahirovic, S., et al., 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44(1): 107-138. https://doi.org/10.1146/annurev-earth-060115-012211 [18] Northrup, C.J., Royden, L.H., Burchfiel, B.C., et al., 1995. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia. Geology, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2 [19] Qi, J.F., Wu, J.F., Ma, B.S., et al., 2019. The Structural Model and Dynamics Concerning Middle Section, Pearl River Mouth Basin in North Margin of South China Sea. Earth Science Frontiers, 26(2): 203-221(in Chinese with English abstract). http://www.researchgate.net/publication/333191763_The_structural_model_and_dynamics_concerning_middle_section_Pearl_River_Mouth_Basin_in_north_margin_of_South_China_Sea [20] Ravnås, R., Nøttvedt, A., Steel, R.J., et al., 2000. Syn-Rift Sedimentary Architectures in the Northern North Sea. Geological Society, London, Special Publications, 167(1): 133-177. https://doi.org/10.1144/gsl.sp.2000.167.01.07 [21] Ren, J.Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361(in Chinese with English abstract). [22] Ren, J.Y., Tamaki, K., Li, S.T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3-4): 175-205. https://doi.org/10.1016/s0040-1951(01)00271-2 [23] Shi, H.S., Yu, S.M., Mei, L.F., et al., 2009. Features of Paleogene Episodic Rifting in Huizhou Fault Depression in the Pearl River Mouth Basin. Natural Gas Industry, 29(1): 35-37, 40, 133(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_natural-gas-industry_thesis/0201218643919.html [24] Shi, X.B., Jiang, H.Y., Yang, J., et al., 2017. Models of the Rapid Post-Rift Subsidence in the Eastern Qiongdongnan Basin, South China Sea: Implications for the Development of the Deep Thermal Anomaly. Basin Research, 29(3): 340-362. https://doi.org/10.1111/bre.12179 [25] Sun, Z., Zhou, D., Zhong, Z.H., et al., 2003. Experimental Evidence for the Dynamics of the Formation of the Yinggehai Basin, NW South China Sea. Tectonophysics, 372(1-2): 41-58. https://doi.org/10.1016/s0040-1951(03)00230-0 [26] Suo, Y.H., Li, S.Z., Cao, X.Z., et al., 2020. Two-Stage Eastward Diachronous Model of India-Eurasia Collision: Constraints from the Intraplate Tectonic Records in Northeast Indian Ocean. Gondwana Research. https://doi.org/10.1016/j.gr.2020.01.006 [27] Tapponnier, P., Lacassin, R., Leloup, P.H., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343: 431-437. https://doi.org/10.1038/343431a0 [28] Tong, H.M., 2012. Sandbox Modeling of Fault Formation and Evolution in the Weixinan Sag, Beibuwan Basin, China. Petroleum Science, 9(2): 121-128. https://doi.org/10.1007/s12182-012-0192-y [29] Tong, H.M., Fan, C.W., Meng, L.J., et al., 2018. Manifestation and Origin Mechanism of the Fault System Complexity in Rift Basins in Eastern-Southern China: Case Study of the Nanbu and Weixinan Sags. Acta Geologica Sinica, 92(9): 1753-1765(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201809001.htm [30] Wang, J.H., Liu, L.H., Chen, S.H., et al., 2011. Tectonic-Sedimentary Responses to the Second Episode of the Zhu-Qiong Movement in the Enping Depression, Pearl River Mouth Basin and Its Regional Tectonic Significance. Acta Petrolei Sinica, 32(4): 588-595(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB201104006.htm [31] Wei, C.G., He, Y.D., Geng, C.B., et al., 2008. Faulting Mechanism in Northern Depression of the Beibuwan Basin, China. Geotectonica et Metallogenia, 32(1): 28-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200801005.htm [32] Xie, X.N., Lin, C.S., Li, Z., et al., 2017. Research Reviews and Prospects of Sedimentary Basin Geodynamics in China. Acta Sedimentologica Sinica, 35(5): 877-887(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201705002.htm [33] Xu, C.G., 2016. Strike-Slip Transfer Zone and Its Control on Formation of Medium and Large-Sized Oilfields in Bohai Sea Area. Earth Science, 41(9): 1548-1560(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201609010.htm [34] Ye, Q., Mei, L.F., Shi, H.S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area: An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth-Science Reviews, 187: 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013 [35] Zhang, X.Q., Ren, J., Liu, Y.M., et al., 2019. Segmentation Characteristic and Its Effect on Sag Evolution in Cenozoic of Chengbei Fault, Bohai Bay Basin. Earth Science, 44(12): 4264-4274(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912036.htm [36] Zhu, W.L., Wu, J.F., Zhang, G.C., et al., 2015. Discrepancy Tectonic Evolution and Petroleum Exploration in China Offshore Cenozoic Basins. Earth Science Frontiers, 22(1): 88-101(in Chinese with English abstract). http://www.researchgate.net/publication/282320485_Discrepancy_tectonic_evolution_and_petroleum_exploration_in_China_offshore_Cenozoic_basins [37] 胡阳, 吴智平, 钟志洪, 等, 2016. 珠江口盆地珠一坳陷始新世中-晚期构造变革特征及成因. 石油与天然气地质, 37(5): 779-785. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605020.htm [38] 姜平, 秦春雨, 杨希冰, 等, 2020. 涠西南凹陷一号断裂陡坡带扇体沉积展布特征及主控因素. 地球科学, 45(2): 534-546. doi: 10.3799/dqkx.2018.369 [39] 雷超, 任建业, 张静, 2015. 南海构造变形分区及成盆过程. 地球科学, 40(4): 744-762. doi: 10.3799/dqkx.2015.062 [40] 李春荣, 张功成, 梁建设, 等, 2012. 北部湾盆地断裂构造特征及其对油气的控制作用. 石油学报, 33(2): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202004.htm [41] 李思田, 2015. 沉积盆地动力学研究的进展、发展趋向与面临的挑战. 地学前缘, 22(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501002.htm [42] 刘金水, 许怀智, 蒋一鸣, 等, 2020. 东海盆地中、新生代盆架结构与构造演化. 地质学报, 94(3): 675-691. doi: 10.3969/j.issn.0001-5717.2020.03.001 [43] 刘一鸣, 吴智平, 刘丽芳, 等, 2019. 埕北凹陷及邻区新生代断裂体系与构造格局. 大地构造与成矿学, 43(6): 1133-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201906005.htm [44] 刘一鸣, 吴智平, 颜世永, 等, 2021. 北部湾盆地北部坳陷马尾状构造成因新认识. 中国矿业大学学报, 50(1): 163-175. [45] 马云, 李三忠, 张丙坤, 等, 2013. 北部湾盆地不整合面特征及构造演化. 海洋地质与第四纪地质, 33(2): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201302011.htm [46] 漆家福, 吴景富, 马兵山, 等, 2019. 南海北部珠江口盆地中段伸展构造模型及其动力学. 地学前缘, 26(2): 203-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902019.htm [47] 任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330 [48] 施和生, 于水明, 梅廉夫, 等, 2009. 珠江口盆地惠州凹陷古近纪幕式裂陷特征. 天然气工业, 29(1): 35-37, 40, 133. doi: 10.3787/j.issn.1000-0976.2009.01.008 [49] 童亨茂, 范彩伟, 孟令箭, 等, 2018. 中国东-南部裂陷盆地断裂系统复杂性的表现形式及成因机制: 以南堡凹陷和涠西南凹陷为例. 地质学报, 92(9): 1753-1765. doi: 10.3969/j.issn.0001-5717.2018.09.001 [50] 王家豪, 刘丽华, 陈胜红, 等, 2011. 珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义. 石油学报, 32(4): 588-595. doi: 10.3969/j.issn.1001-8719.2011.04.015 [51] 魏春光, 何雨丹, 耿长波, 等, 2008. 北部湾盆地北部坳陷新生代断裂发育过程研究. 大地构造与成矿学, 32(1): 28-35. doi: 10.3969/j.issn.1001-1552.2008.01.004 [52] 解习农, 林畅松, 李忠, 等, 2017. 中国盆地动力学研究现状及展望. 沉积学报, 35(5): 877-887. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705002.htm [53] 徐长贵, 2016. 渤海走滑转换带及其对大中型油气田形成的控制作用. 地球科学, 41(9): 1548-1560. doi: 10.3799/dqkx.2016.508 [54] 张晓庆, 任健, 刘一鸣, 等, 2019. 渤海湾盆地埕北断层新生代分段特征及其对凹陷演化的控制. 地球科学, 44(12): 4264-4274. doi: 10.3799/dqkx.2019.002 [55] 朱伟林, 吴景富, 张功成, 等, 2015. 中国近海新生代盆地构造差异性演化及油气勘探方向. 地学前缘, 22(1): 88-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501010.htm