• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏雄梅-班戈花岗岩带岩石地球化学与成矿作用

    耿全如 张璋 彭智敏 关俊雷 丛峰

    耿全如, 张璋, 彭智敏, 关俊雷, 丛峰, 2020. 西藏雄梅-班戈花岗岩带岩石地球化学与成矿作用. 地球科学, 45(8): 2805-2825. doi: 10.3799/dqkx.2020.204
    引用本文: 耿全如, 张璋, 彭智敏, 关俊雷, 丛峰, 2020. 西藏雄梅-班戈花岗岩带岩石地球化学与成矿作用. 地球科学, 45(8): 2805-2825. doi: 10.3799/dqkx.2020.204
    Geng Quanru, Zhang Zhang, Peng Zhimin, Guan Junlei, Cong Feng, 2020. Petrogeochemistry and Metallogenesis Related to Xiongmei-Baingoin Granitic Zone in Central Tibet. Earth Science, 45(8): 2805-2825. doi: 10.3799/dqkx.2020.204
    Citation: Geng Quanru, Zhang Zhang, Peng Zhimin, Guan Junlei, Cong Feng, 2020. Petrogeochemistry and Metallogenesis Related to Xiongmei-Baingoin Granitic Zone in Central Tibet. Earth Science, 45(8): 2805-2825. doi: 10.3799/dqkx.2020.204

    西藏雄梅-班戈花岗岩带岩石地球化学与成矿作用

    doi: 10.3799/dqkx.2020.204
    基金项目: 

    中国地质调查局项目 DD20190363

    中国地质调查局项目 12120113036500

    国家自然科学基金项目 41273047

    详细信息
      作者简介:

      耿全如(1963-), 男, 研究员, 博士, 从事青藏高原地质调查和研究.ORCID:000-0002-9739-5242.E-mail:cdgengqr@163.com

    • 中图分类号: P597

    Petrogeochemistry and Metallogenesis Related to Xiongmei-Baingoin Granitic Zone in Central Tibet

    • 摘要: 西藏中部的雄梅-班戈-青龙乡-桑雄一带发育一条连续的花岗岩带,属于班公湖-怒江成矿带的中段.该带在近年来已发现雄梅铜矿、苦嘎铜矿、日阿铜矿和青龙乡铅锌矿等中小型矿床和矿点,但仍未有更大的找矿突破.根据全面的资料收集和野外调查,对花岗岩体的地球化学性质、物质来源和成矿地质条件进行了研究.该带花岗岩主要可分为140~125 Ma、120~110 Ma、94~72 Ma三个侵入期次以及一些新生代岩体,其中120~110 Ma为岩浆活动大爆发阶段.本区西段的早白垩世的舍索、雄梅、苦嘎花岗岩体和晚白垩世的雪如、桑心日等岩体已发现显著的铜金铁等矿化,但它们的成岩成矿物质来源和围岩性质等方面与超大型斑岩铜矿有差距,可形成类似于青草山铜矿的中-大型斑岩铜金矿床或矽卡岩型矿床,有进一步找矿的潜力.沿班戈-青龙乡-桑雄连续分布的早白垩世花岗岩带与热液型、矽卡岩型铁铅锌多金属成矿作用关系密切.

       

    • 图  1  青藏高原及邻区构造略图

      Fig.  1.  Tectonic sketch map of Tibet Plateau and its adjacent areas

      图  2  雄梅-班戈花岗岩带地质矿产简图

      文献同位素年龄据Sui et al.(2013)Zhu et al.(2011)Sun et al.(2015).①~㉚矿床(点)详细说明见表 1

      Fig.  2.  Geological sketch map of XBGZ with ore deposits

      图  3  雄梅-班戈花岗岩带年龄-频数直方图

      Fig.  3.  Age-frequency histogram of XBGZ

      图  4  雄梅-班戈带花岗岩分类图解

      DI =CIPW标准矿物Qz +Or+Ab +Ne +Lc+Kp,Eu/Eu*= EuN/(SmN × GdN)1/2

      Fig.  4.  Granitoid classification diagrams of XBGZ

      图  5  雄梅-班戈花岗岩带t-A/CNK(a)和(Zr+Nb+Ce+Y)-(Na2O+K2O)/CaO(b)图解

      图例同图 4

      Fig.  5.  t-A/CNK diagram (a)and (Zr+Nb+Ce+Y)-(Na2O+K2O)/CaO diagram (b)of XBGZ

      图  6  雄梅-班戈花岗岩带主要成分氧化物和MgO*的Harker图解

      变岩浆岩源区高镁安山岩区域据Li et al. (2014).图例同图 4

      Fig.  6.  Harker diagrams for major oxides and MgO* of XBGZ

      图  7  雄梅-班戈花岗岩带球粒陨石标准化稀土元素配分模式图(a、c)和原始地幔标准化微量元素蛛网图(b、d)

      Fig.  7.  Chondrite-normalized REE patterns (a, c) and primitive-mantle-normalized trace element spider diagrams (b, d) for granitoids in XBGZ

      图  8  雄梅-班戈花岗岩带(87Sr/86Sr)i-εNd(t)图解

      尕尔穷、嘎拉勒铜金矿含矿斑岩数据来自赵元艺等(2011),下地壳、中上地壳和安多片麻岩范围据Zheng et al. (2015),多龙铜矿、冈底斯N1斑岩铜矿、雅鲁藏布江缝合带MORB范围据Geng et al. (2016),东巧蛇绿岩范围据Hu et al. (2019a)

      Fig.  8.  (87Sr/86Sr)i-εNd(t) diagram for granitoids in XBGZ

      图  9  雄梅-班戈花岗岩带和BNS带的构造演化和成矿作用示意图

      Fig.  9.  Tectonic and metallogenic evolution of XBGZ and BNS

      图  10  雄梅-班戈花岗岩带锆石t-εHf (t)图解

      尕尔穷和嘎拉勒CuAu矿资料来自Li et al. (2017);多龙Cu矿区、青草山Cu矿、弗野Fe矿和亚贵拉PbZn矿的范围来自Geng et al. (2016)

      Fig.  10.  Zircon t-εHf (t) diagram for granitoids in XBGZ

      表  1  雄梅-班戈岩浆弧矿床(点)综合信息

      Table  1.   Comprehensive information of ore deposits and occurrences in XBGZ

      编号名称规模成因类型成矿花岗岩和地层时代文献
      舍索铜(铅锌)多金属矿床小型矽卡岩型花岗闪长岩.郎山组(K1l)灰岩~116.4 Ma赵元艺等, 2009, 2011
      雄梅斑岩型铜金矿床小型斑岩型花岗闪长斑岩.多尼组(K1d)砂、泥岩~106 Ma曲晓明等, 2012
      桑心日金铜矿点矿点矽卡岩型二长花岗岩、花岗闪长岩.查果罗玛组(D2-3c)灰岩~72 Ma曲永贵等, 2011陈伟等, 2019
      苦嘎铜矿床中型矽卡岩型似斑状二长花岗岩.日拉组(J3K1r)碎屑岩夹灰岩~111 Ma、~123 Ma任强等, 2019
      再阿铁铜多金属矿点矿点矽卡岩型中细粒花岗闪长岩.郎山组(K1l)灰岩~79.78 Ma定立等, 2012
      梭沙矽卡岩型铁矿点矿点矽卡岩型细粒斑状花岗闪长岩.多尼组(K1d)碎屑岩,郎山组(K1l)灰岩~77.37 Ma定立等, 2012
      雪如铜多金属矿小型矽卡岩型中细粒二长花岗岩、中粗粒斑状二长花岗岩.郎山组(K1l)灰岩~79.72 Ma, ~79.25 Ma.高顺宝等, 2011王江朋等, 2012
      查朗拉铁铜多金属矿小型矽卡岩型中粗粒似斑状(二长)花岗岩.郎山组(K1l)灰岩~76.1 Ma王江朋等, 2012
      日阿铜多金属矿中型矽卡岩型二长花岗岩.郎山组(K1l)灰岩~79 Ma高顺宝等, 2011
      更乃多金属矿点矿点矽卡岩型二长花岗岩.多尼组(K1d)碎屑岩,郎山组(K1l)灰岩~79 Ma王江朋等, 2012
      插曲果棚磁铁矿矿点矽卡岩型二长花岗岩.多尼组(K1d)碎屑岩,郎山组(K1l)灰岩K2耿全如等, 2011
      金巴那铁矿点矿点矽卡岩型二长花岗岩.郎山组(K1l)灰岩K2耿全如等, 2011
      夺那磁铁矿点矿点矽卡岩型花岗闪长岩.贡塘组(J2-3l)砂板岩、灰岩等K1耿全如等, 2011
      卡列银铅多金属矿点矿点热液型中粒花岗岩闪长岩、细粒闪长岩拉贡塘组(J2-3l)粉砂岩、板岩及细砂岩K1耿全如等, 2011
      切岗切任金矿化点矿化点热液型中粒花岗闪长岩.拉贡塘组(J2-3l)粉砂岩、板岩及细砂岩K1耿全如等, 2011
      青龙乡铅锌矿床小型矽卡岩型花岗闪长岩.拉贡塘组砂板岩夹灰岩~123.1 Ma黄瀚霄等, 2012
      拉青铜矿小型斑岩-矽卡岩型二长花岗(斑)岩、石英斑岩.查果罗玛组(D2-3c)灰岩~114.24 Ma董磊等, 2013
      弄清期波拉铜铅锌多金属矿点矿点矽卡岩型二长花岗岩.多尼组(K1d)碎屑岩、灰岩K1耿全如等, 2011
      孔玛下尔玛金矿化点矿化点构造热液型二长花岗岩.拉贡塘组(J2-3l)粉砂岩、板岩及细砂岩不祥耿全如等, 2011
      果业多康夏磁铁矿化点矿化点热液型花岗闪长岩.拉贡塘组(J2-3l)粉砂岩、板岩及细砂岩不祥耿全如等, 2011
      果业多浪青铜矿点矿点构造热液型花岗闪长岩.拉贡塘组(J2-3l)粉砂岩、板岩及细砂岩不祥耿全如等, 2011
      长给铅锌多金属矿点矿点岩浆热液型永珠组(C1-2y)砂板岩、页岩不祥耿全如等, 2011
      补嘎错铅锌多金属矿矿点热液型查果罗玛组灰岩,东西向断层控制不祥耿全如等, 2011
      尤卡朗铅锌矿床大型中低温热液型拉贡塘组(J2-3l)粉砂岩、板岩及灰岩等不祥冯志兴等, 2011
      余卡山铜矿点矿点矽卡岩型马里组(J2m)砂岩、泥岩、粉砂岩、灰岩不祥黄瀚霄等, 2012
      卓卡朗铜矿点矿化点热液型诺错组(C1-2n)云母片岩、含砾板岩、千枚岩不祥冯志兴等, 2011
      那曲镇银多金属矿小型热液型多尼组(K1d)碎屑岩、灰岩不祥耿全如等, 2011
      达萨乡铅锌矿小型热液型拉贡塘组(J2-3l)粉砂岩、板岩及灰岩等不祥耿全如等, 2011
      聂拉铁矿点矿点矽卡岩型沙木罗组(J3K1s)、多尼组(K1d)碎屑岩、灰岩不祥耿全如等, 2011
      佳群乡磁铁矿点矿点热液型确哈拉群(T2-3Q)砾岩、变质砂板岩不祥曲永贵等, 2011
      注:编号对应于图 2中的矿床(点)编号.
      下载: 导出CSV

      表  2  雄梅-班戈花岗岩带成矿地质条件及远景区初步划分

      Table  2.   Summary of ore-forming geology and prospective areas in XBGZ

      花岗岩体 舍索、雄梅、苦嘎 桑心日 雪如 雄巴(梭沙、再阿) 班戈 班戈-青龙乡-桑雄 BNS带
      时代(Ma) 123~106 76~72 80~76 89~77 140~125 120~110 120~110
      岩体出露特征 小型岩体、局部为隐伏岩体 小型岩体, 剥蚀程度高 小型岩体, 剥蚀程度高 小型岩体, 剥蚀程度高 大型岩基, 强烈剥蚀 大型岩基, 强烈剥蚀 小岩体, 强烈剥蚀
      花岗岩的围岩及构造背景 古生界主要为碳酸盐地层,晚侏罗-早白垩世为灰岩、碎屑岩地层.冈底斯带相对稳定的微地块 早白垩世灰岩、碎屑岩等.冈底斯岩浆弧中相对稳定的微地块 中晚侏罗世砂板岩,早白垩世灰岩、碎屑岩.北冈底斯弧前盆地 侏罗纪砂板岩,古生界灰岩块体等;镁铁、超镁铁岩等.岩石成分复杂的混杂带
      花岗岩地化特征和成因 未分异偏铝质钙碱性-高钾钙碱性系列花岗岩类;壳-幔混合来源 弱分异偏铝质高钾钙碱性系列花岗岩类;壳-幔混合来源 弱分异弱过铝质高钾钙碱性系列二长花岗岩类;壳-幔混合来源 弱分异偏铝质高钾钙碱性系列花岗闪长岩类;壳-幔混合来源 弱分异、过铝质高钾钙碱性系列花岗岩类;壳-幔混合来源 分异的过铝质高钾钙碱性系列花岗岩类;壳-幔混合来源,中上地壳为主 弱分异过铝质高钾钙碱性系列花岗岩类;壳源和幔源
      代表性矿床(点) 雄梅斑岩铜矿、舍索矽卡岩型铜钼矿 桑心日矽卡岩型金铜矿点 雪如、查朗拉矽卡岩型铁铜矿, 日阿、更乃多金属矿 再阿铁铜多金属矿点、梭沙矽卡岩型铁矿点 卡列银铅多金属矿点、切岗切任金矿化点 青龙乡铅锌矿点、果业多康夏磁铁矿化点等 拉青斑岩铜矿、佳群乡矽卡岩型磁铁矿点
      成矿远景区 斑岩型和矽卡岩型铜金多金属矿远景区,值得进一步工作 热液型矽卡岩型铁、铅锌多金属矿远景区 斑岩、矽卡岩型铜铁铅锌矿远景区
      下载: 导出CSV
    • [1] Chen, W., Song, Y., Liu, H.Z., et al., 2019. MMEs Formed by Magma Mixing of Different Episodes of the Same Sourced Magma:A Case Study of the Late Cretaceous Sangxinri Pluton in the Middle Part of the Northern Lhasa Block. Acta Petrologica Sinica, 35(7):2143-2157 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.12
      [2] Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered ca. 113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2):449-463. http://doi.org/10.1016/j.gr.2013.06.005
      [3] Ding, L., Zhao, Y.Y., Yang, Y.Q., et al., 2012. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Ore-bearing Granite in Skarn-Type Iron Polymetallic Deposits of Duoba Area, Baingoin County, Tibet, and Their Significance. Acta Petrologica et Mineralogica, 31(4):479-496 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204003.htm
      [4] Dong, L., Li, G.M., Huang, H.X., et al., 2013. Geochemical Characteristics, Chronology and the Significance of Laqing Copper Polymetallic Skarn Deposit, Bange County, Tibet. Geological Bulletin of China, 32(5):767-773 (in Chinese with English abstract).
      [5] Feng, Z.X., Lü, X.B., Wang, T., 2011. A Preliminary Study of Metallogenesis of Youqialang Lead-Silver Deposit, Tibet. Mineral Deposits, 30(3):469-476 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201103009.htm
      [6] Gao, K., Liu, Z.B., Song, Y., et al., 2019. Petrogenesis and Tectonic Implications of Xueru Pluton, in Ban'ge County, Xizang (Tibet):Constraints from LA-ICP-MS Zircon U-Pb Age, Geochemical Characteristics and Hf Isotopic Compositions. Geological Review, 65(5):1170-1186 (in Chinese with English abstract).
      [7] Gao, S.B., Zheng, Y.Y., Xie, M.C., et al., 2011. Geodynamic Setting and Mineralizational Implication of the Xueru Intrusion in Ban'ge, Tibet. Earth Science, 36(4):729-739 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201104011.htm
      [8] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011. Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet. Geological Bulletin of China, 30(8):1261-1274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201108013.htm
      [9] Geng, Q.R., Wang, L.Q., Pan, G.T., et al., 2007a. Carboniferous Marginal Rifting in Gangdese:Volcanic Rocks and Stratigraphic Constraints, Xizang (Tibet), China. Acta Geologica Sinica, 81(9):1259-1276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200709011.htm
      [10] Geng, Q.R., Wang, L.Q., Pan, G.T., et al., 2007b. Volcanic Rock Geochemistry and Tectonic Implication of the Luobadui Formation on the Gangdese Zone, Xizang(Tibet). Acta Petrologica Sinica, 23(11):2699-2714 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711004.htm
      [11] Geng, Q. R., Zhang, Z., Peng, Z. M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77:163-175. http://doi.org/10.1016/j.oregeorev.2016.02.018
      [12] Guynn, J., Kapp, P., Gehrels, G. E., et al., 2012. U-Pb Geochronology of Basement Rocks in Central Tibet and Paleogeographic Implications. Journal of Asian Earth Sciences, 43(1):23-50. http://doi.org/10.1016/j.jseaes.2011.09.003
      [13] He, Y.Y., Wen, C.Q., Liu, X.F., et al., 2014. Chemical Component Characteristics and Tectonic Setting of Sandstone from Quse Group in Duobuza Copper Deposit, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(1):113-118 (in Chinese with English abstract).
      [14] He, Z.H., Yang, D.M., Wang, T.W., 2007. Geochemistry and Tectonic Setting of Miocene Granitoids near Gulou Area, Gangdise Belt. Journal of Jilin University (Earth Science Edition), 37(1):31-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200701004.htm
      [15] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402005.htm
      [16] Hou, Z. Q., Zhang, H. R., 2015. Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 70:346-384. http://doi.org/10.1016/j.oregeorev.2014.10.026
      [17] Hu, P. Y., Zhai, Q. G., Jahn, B. M., et al., 2017. Late Early Cretaceous Magmatic Rocks (118-113 Ma) in the Middle Segment of the Bangong-Nujiang Suture Zone, Tibetan Plateau:Evidence of Lithospheric Delamination. Gondwana Research, 44:116-138. http://doi.org/10.1016/j.gr.2016.12.005
      [18] Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2018a. Precambrian Origin of the North Lhasa Terrane, Tibetan Plateau:Constraint from Early Cryogenian Back-Arc Magmatism. Precambrian Research, 313:51-67. http://doi.org/10.1016/j.precamres.2018.05.014
      [19] Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2018b. Ediacaran Magmatism in the North Lhasa Terrane, Tibet and Its Tectonic Implications. Precambrian Research, 307:137-154. http://doi.org/10.1016/j.precamres.2018.01.012
      [20] Hu, P. Y., Zhai, Q. G., Zhao, G. C., et al., 2018c. Early Neoproterozoic (ca. 900 Ma) Rift Sedimentation and Mafic Magmatism in the North Lhasa Terrane, Tibet:Paleogeographic and Tectonic Implications. Lithos, 320-321:403-415. http://doi.org/10.1016/j.lithos.2018.09.036
      [21] Hu, P. Y., Zhai, Q. G., Zhao, G. C., et al., 2019a. The North Lhasa Terrane in Tibet was Attached with the Gondwana before It was Drafted away in Jurassic:Evidence from Detrital Zircon Studies. Journal of Asian Earth Sciences, 185:104055. http://doi.org/10.1016/j.jseaes.2019.104055
      [22] Hu, P. Y., Zhai, Q. G., Zhao, G. C., et al., 2019b. Late Cryogenian Magmatic Activity in the North Lhasa Terrane, Tibet:Implication of Slab Break-off Process. Gondwana Research, 71:129-149. http://doi.org/10.1016/j.gr.2019.02.005
      [23] Hu, W. L., Wang, Q., Yang, J. H., et al., 2019c. Late Early Cretaceous Peraluminous Biotite Granites along the Bangong-Nujiang Suture Zone, Central Tibet:Products Derived by Partial Melting of Metasedimentary Rocks? Lithos, 344-345:147-158. http://doi.org/10.1016/j.lithos.2019.06.005
      [24] Huang, H.X., Li, G.M., Dong, S.L., et al., 2012. SHRIMP Zircon U-Pb Age and Geochemical Characteristics of Qinglung Granodiorite in Baingoin Area, Tibet. Geological Bulletin of China, 31(6):852-859 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201206004.htm
      [25] Ji, W.H., Chen, S.J., Zhao, Z.M., et al., 2009. Discovery of the Cambrian Volcanic Rocks in the Xainza Area, Gangdese Orogenic Belt, Tibet, China and Its Significance. Geological Bulletin of China, 28(9):1350-1354 (in Chinese with English abstract).
      [26] Li, C., Wang, T.W., Li, H.M., et al., 2003. Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdise Area:Evidence for the Existence of Paleo-Gangdise. Geological Bulletin of China, 22(5):364-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200305010.htm
      [27] Li, C., Wu, Y.W., Wang, M., et al., 2010. Significant Progress on Pan-African and Early Paleozoic Orogenic Events in Qinghai-Tibet Plateau-Discovery of Pan-African Orogenic Unconformity and Cambrian System in the Gangdise Area, Tibet, China. Geological Bulletin of China, 29(12):1733-1736 (in Chinese with English abstract).
      [28] Li, C., Zhai, Q.G., Dong, Y.S., et al., 2007. Establishment of the Upper Triassic Wanghuling Formation at Guoganjianian Mountain, Central Qiangtang, Qinghai-Tibet Plateau, and Its Significance. Geological Bulletin of China, 26(8):1003-1008 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200708011.htm
      [29] Li, G. M., Qin, K. Z., Li, J. X., et al., 2017. Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet:Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41:110-127. http://doi.org/10.1016/j.gr.2015.09.006
      [30] Li, J. X., Qin, K. Z., Li, G. M., et al., 2014. Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications. Lithos, 198-199:77-91. http://doi.org/10.1016/j.lithos.2014.03.025
      [31] Li, S., Yin, C. Q., Guilmette, C., et al., 2019. Birth and Demise of the Bangong-Nujiang Tethyan Ocean:A Review from the Gerze Area of Central Tibet. Earth-Science Reviews, 198:102907. http://doi.org/10.1016/j.earscirev.2019.102907
      [32] Li, X.S., Zhao, Y.Y., Wang, J.P., et al., 2013. Geochemical Characteristics, Chronology and Significance of Gengnai Skarn-Type Iron Polymetallic Deposit, Tibet. Acta Geologica Sinica, 87(11):1679-1693 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201311004.htm
      [33] Li, X.Y., Chen, W., Qu, X.M., et al., 2018. S, Pb Isotopic Characteristics of Xiongmei Porphyry Copper Deposit in Tibet and Their Metallogenic Significance. Mineral Deposits, 37(3):643-655 (in Chinese with English abstract).
      [34] Li, Y.B., Duo, J., Zhong, W.T., et al., 2012. An Exploration Model of the Duobuza Porphyry Cu-Au Deposit in Gaize County, Northern Tibet. Geology and Exploration, 48(2):274-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201202010.htm
      [35] Liu, Q.S., Wu, Z.H., Ye, P.S., et al., 2005. Isotopic Dating of the Nyainqentanglha Granite and Its Significance. Acta Geologica Sinica, 79(3):331-337 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe200503007.htm
      [36] Lu, L., Wu, Z. H., Zhao, Z., et al., 2014. Zircon SHRIMP U-Pb Dating, Geochemical Characteristics and Tectonic Significance of Granitic Gneisses in Amdo, Tibet. Journal of Earth Science, 25(3):473-485. http://doi.org/10.1007/s12583-014-0448-0
      [37] Pan, G.T., Li, X.Z., Wang, L.Q., et al., 2002. Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions. Geological Bulletin of China, 21(11):701-707 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200211001.htm
      [38] Qu, X.M., Hou, Z.Q., Li, Y.G., 2002. Implications of S and Pb Isotopic Compositions of the Gangdise Porphyry Copper Belt for the Ore-Forming Material Source and Material Recycling within the Orogenic Belt. Geological Bulletin of China, 21(11):768-776 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200211014.htm
      [39] Qu, X.M., Wang, R.J., Dai, J.J., et al., 2012. Discovery of Xiongmei Porphyry Copper Deposit in Middle Segment of Bangonghu-Nujiang Suture Zone and Its Significance. Mineral Deposits, 31(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201201002.htm
      [40] Qu, Y. G., Wang, Y. S., Duan, J. X., et al., 2011. Regional Geological Survey Report and Geological Map of the People's Republic of China (Toiba District). China University of Geosciences Press, Wuhan (in Chinese).
      [41] Ren, Q., Ma, J.M., Sun, J.B., 2019. Genetic Type and Ore-Controlling Factors of Kuga Copper Deposit in Bange County, Tibet. Jilin Geology, 38(4):9-12, 18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JLDZ201904002.htm
      [42] Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of ca. 110 Ma Magmatism in the Northern Lhasa Terrane, Tibet:Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168-169:144-159. http://doi.org/10.1016/j.lithos.2013.01.012
      [43] Sun, M., Chen, W., Qu, X.M., et al., 2018. Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet. Earth Science, 43(9):3234-3251 (in Chinese with English abstract). http://www.researchgate.net/publication/329030921_Petrogenesis_of_the_Late_Cretaceous_Jiangba_Volcanic_Rocks_and_Its_Indications_for_the_Thinning_of_the_Thickened_Crust_in_Xiongmei_Area_Tibet
      [44] Sun, S. J., Sun, W. D., Zhang, L. P., et al., 2015. Zircon U-Pb Ages and Geochemical Characteristics of Granitoids in Nagqu Area, Tibet. Lithos, 231:92-102. http://doi.org/10.1016/j.lithos.2015.06.003
      [45] Wang, B.D., Wang, L.Q., Xu, J.F., et al., 2015. The Discovery of High-Pressure Granulite at Shelama in Dongco Area along the Bangong Co-Nujiang River Suture Zone and Its Tectonic Significance. Geological Bulletin of China, 34(9):1605-1616 (in Chinese with English abstract).
      [46] Wang, J.P., Zhao, Y.Y., Cui, Y.B., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Important Skarn Type Iron(Copper) Polymetallic Deposits in Baingoin County of Tibet and Geochemical Characteristics of Granites. Geological Bulletin of China, 31(9):1435-1450 (in Chinese with English abstract).
      [47] Wang, J.Q., Qu, X.M., Ma, X.D., et al., 2016. Comparative Study of Genesis of Ore-bearing Porphyry and Barren Porphyry in Xiongmei Copper Deposit, Tibet. Mineral Deposits, 35(3):437-455 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201603001.htm
      [48] Wang, M., Li, C., Xie, C.M., et al., 2012. LA-ICP-MS U-Pb Dating of Zircon from Granitic Gneiss of the Nierong Microcontinent:The Discovery of the Neoproterozoic Basement Rock and Its Significance. Acta Petrologica Sinica, 28(12):4101-4108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201212023.htm
      [49] Wang, W., Wang, M., Zhai, Q. G., et al., 2020. Transition from Oceanic Subduction to Continental Collision Recorded in the Bangong-Nujiang Suture Zone:Insights from Early Cretaceous Magmatic Rocks in the North-Central Tibet. Gondwana Research, 78:77-91. http://doi.org/10.1016/j.gr.2019.09.008
      [50] Wang, Y., Ma, X. D., Qu, X. M., et al., 2019. Geochronology and Petrogenesis of the Xiongmei Cu-Bearing Granodiorite Porphyry in North Lhasa Subterrane, Central Tibet:Implication for the Evolution of Bangong-Nujiang Metallogenic Belt. Ore Geology Reviews, 114:103119. http://doi.org/10.1016/j.oregeorev.2019.103119
      [51] Wang, Y., Ma, X.D., Chen, W., et al., 2019. Geochemical Characteristics of Early Cretaceous Cu-Rich Rocks in Middle Segment of Bangong-Nujiang Metallogenic Belt:A Case Study of Xiongmei Area. Mineral Deposits, 38(1):181-196 (in Chinese with English abstract).
      [52] Xie, C.M., Li, C., Su, L., et al., 2010. LA-ICP-MS U-Pb Dating of Zircon from Granite-Gneiss in the Amdo Area, Northern Tibet, China. Geological Bulletin of China, 29(12):1737-1744 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201012003.htm
      [53] Xie, C. M., Li, C., Su, L., et al., 2013. Pan-African and Early Paleozoic Tectonothermal Events in the Nyainrong Microcontinent:Constraints from Geochronology and Geochemistry. Science China Earth Sciences, 56(12):2066-2079. http://doi.org/10.1007/s11430-013-4724-0
      [54] Xie, C.M., Li, C., Wang, M., et al., 2014. Tectonic Affinity of the Nyainrong Microcontinent:Constraints from Zircon U-Pb Age and Hf Isotopes Compositions. Geological Bulletin of China, 33(11):1778-1792 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201411014.htm
      [55] Yi, J. K., Wang, Q., Zhu, D. C., et al., 2018. Westward-Younging High-Mg Adakitic Magmatism in Central Tibet:Record of a Westward-Migrating Lithospheric Foundering beneath the Lhasa-Qiangtang Collision Zone during the Late Cretaceous. Lithos, 316-317:92-103. http://doi.org/10.1016/j.lithos.2018.07.001
      [56] Yu, Y. P., Xie, C. M., Dong, Y. S., et al., 2020. Early Neoproterozoic Granitic Gneisses in the Amdo Micro-continent, Tibet:Petrogenesis and Geodynamic Implications. International Geology Review, 1:1-15. http://doi.org/10.1080/00206814.2019.1710866
      [57] Zhang, T. Y., 2018. Early Paleozoic Tectonic Movement on the Tibetan Plateau and Its Adjacent Area: A Case Study of Cambrian-Ordovician Unconformity (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [58] Zhang, X. R., Shi, R. D., Huang, Q. S., et al., 2014a. Early Jurassic High-Pressure Metamorphism of the Amdo Terrane, Tibet:Constraints from Zircon U-Pb Geochronology of Mafic Granulites. Gondwana Research, 26(3-4):975-985. http://doi.org/10.1016/j.gr.2013.08.003
      [59] Zhang, Z. M., Dong, X., Santosh, M., et al., 2014b. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1):170-189. http://doi.org/10.1016/j.gr.2012.08.024
      [60] Zhang, X.Z., Dong, Y.S., Xie, C.M., et al., 2010. Identification and Significance of High-Pressure Granulite in Anduo Area, Tibetan Plateau. Acta Petrologica Sinica, 26(7):2106-2112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201007013.htm
      [61] Zhao, Y.Y., Cui, Y.B., Lü, L.N., et al., 2011. Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet. Acta Petrologica Sinica, 27(7):2132-2142 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb201107021.htm
      [62] Zhao, Y.Y., Song, L., Fan, X.T., et al., 2009. Re-Os Dating of Molybdenite from the Shesuo Copper Polymetallic Ore in Shenzha County, Tibet and Its Geological Significance. Acta Geologica Sinica, 83(8):1150-1158 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200908015.htm
      [63] Zheng, H.T., Zheng, Y.Y., Xu, J., et al., 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet. Earth Science, 43(8):2858-2874 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808024.htm
      [64] Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet. Ore Geology Reviews, 70:510-532. http://doi.org/10.1016/j.oregeorev.2015.04.004
      [65] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. http://doi.org/10.1016/j.epsl.2010.11.005
      [66] 陈伟, 宋杨, 刘洪章, 等, 2019.同源岩浆不同期次之间混合产生的暗色包体:以北拉萨地块中部晚白垩世桑心日岩体为例.岩石学报, 35(7):2143-2157. http://www.cqvip.com/QK/94579X/20197/7002713230.html
      [67] 定立, 赵元艺, 杨永强, 等, 2012.西藏班戈县多巴区矽卡岩型铁多金属矿床含矿花岗岩LA-ICP-MS锆石U-Pb定年、地球化学及意义.岩石矿物学杂志, 31(4):479-496. http://www.cnki.com.cn/Article/CJFDTotal-YSKW201204003.htm
      [68] 董磊, 李光明, 黄瀚霄, 等, 2013.西藏班戈县拉青铜多金属矿床地球化学特征和年龄.地质通报, 32(5):767-773. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201305010.htm
      [69] 冯志兴, 吕新彪, 王涛, 2011.西藏尤卡朗铅银矿床成矿作用初步研究.矿床地质, 30(3):469-476. http://d.wanfangdata.com.cn/Periodical/kcdz201103008
      [70] 高轲, 刘治博, 宋扬, 等, 2019.西藏班戈雪如岩体岩石成因及构造意义:来自LA-ICP-MS锆石U-Pb年龄、地球化学特征及Hf同位素证据.地质论评, 65(5):1170-1186. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201905011.htm
      [71] 高顺宝, 郑有业, 谢名臣, 等, 2011.西藏班戈地区雪如岩体的形成环境及成矿意义.地球科学, 36(4):729-739. doi: 10.3799/dqkx.2011.073
      [72] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8):1261-1274. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201108013.htm
      [73] 耿全如, 王立全, 潘桂棠, 等, 2007a.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据.地质学报, 81(9):1259-1276. http://www.cqvip.com/Main/Detail.aspx?id=25730352
      [74] 耿全如, 王立全, 潘桂棠, 等, 2007b.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义.岩石学报, 23(11):2699-2714. http://d.wanfangdata.com.cn/Periodical/ysxb98200711003
      [75] 何阳阳, 温春齐, 刘显凡, 等, 2014.西藏多不杂铜矿区曲色组砂岩化学组分特征及构造背景.成都理工大学学报(自然科学版), 41(1):113-118. http://www.cnki.com.cn/Article/CJFDTotal-CDLG201401014.htm
      [76] 和钟铧, 杨德明, 王天武, 2007.冈底斯带谷露区中新世花岗岩地球化学特征及构造环境.吉林大学学报(地球科学版), 37(1):31-37. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ200701004.htm
      [77] 侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20(2):239-248. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200402005.htm
      [78] 黄瀚霄, 李光明, 董随亮, 等, 2012.西藏班戈地区青龙花岗闪长岩SHRIMP锆石U-Pb年龄及其地球化学特征.地质通报, 31(6):852-859. http://d.wanfangdata.com.cn/Periodical/zgqydz201206004
      [79] 计文化, 陈守建, 赵振明, 等, 2009.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义.地质通报, 28(9):1350-1354. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200909028.htm
      [80] 李才, 王天武, 李惠民, 等, 2003.冈底斯地区发现印支期巨斑花岗闪长岩:古冈底斯造山的存在证据.地质通报, 22(5):364-366. http://d.wanfangdata.com.cn/Periodical/zgqydz200305011
      [81] 李才, 吴彦旺, 王明, 等, 2010.青藏高原泛非-早古生代造山事件研究重大进展:冈底斯地区寒武系和泛非造山不整合的发现.地质通报, 29(12):1733-1736. http://www.cnki.com.cn/article/cjfdtotal-zqyd201012002.htm
      [82] 李才, 翟庆国, 董永胜, 等, 2007.青藏高原羌塘中部果干加年山上三叠统望湖岭组的建立及意义.地质通报, 26(8):1003-1008. http://d.wanfangdata.com.cn/Periodical/zgqydz200708012
      [83] 李小赛, 赵元艺, 王江朋, 等, 2013.西藏更乃矽卡岩型铁多金属矿床地球化学特征、年代学及意义.地质学报, 87(11):1679-1693. http://www.cqvip.com/QK/95080X/201311/47738243.html
      [84] 黎心远, 陈伟, 曲晓明, 等, 2018.西藏申扎县雄梅铜矿床的硫、铅同位素特征及其成矿意义.矿床地质, 37(3):643-655. http://www.kcdz.ac.cn/kcdzen/ch/reader/view_abstract.aspx?file_no=20180312&flag=1
      [85] 李玉彬, 多吉, 钟婉婷, 等, 2012.西藏改则县多不杂斑岩型铜金矿床勘查模型.地质与勘探, 48(2):274-287. http://www.cqvip.com/QK/93079X/201202/41311294.html
      [86] 刘琦胜, 吴珍汉, 叶培盛, 等, 2005.念青唐古拉花岗岩的同位素年龄测定及其地质意义.地质学报, 79(3):331-337. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200503007.htm
      [87] 潘桂棠, 李兴振, 王立全, 等, 2002.青藏高原及邻区大地构造单元初步划分.地质通报, 21(11):701-707. http://www.cqvip.com/Main/Detail.aspx?id=7014520
      [88] 曲晓明, 侯增谦, 李佑国, 2002. S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报, 21(11):768-776. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200211014.htm
      [89] 曲晓明, 王瑞江, 代晶晶, 等, 2012.西藏班公湖-怒江缝合带中段雄梅斑岩铜矿的发现及意义.矿床地质, 31(1):1-12. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201201002.htm
      [90] 曲永贵, 王永胜, 段建祥, 等, 2011.中华人民共和国区域地质调查报告和地质图(多巴区幅).武汉:中国地质大学出版社.
      [91] 任强, 马俊明, 孙继彬, 2019.西藏班戈县苦嘎铜矿床成因类型及控矿因素.吉林地质, 38(4):9-12, 18. http://d.wanfangdata.com.cn/periodical/jldz201904002
      [92] 孙渺, 陈伟, 曲晓明, 等, 2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学, 43(9):3234-3251. doi: 10.3799/dqkx.2018.146
      [93] 王保弟, 王立全, 许继峰, 等, 2015.班公湖-怒江结合带洞错地区舍拉玛高压麻粒岩的发现及其地质意义.地质通报, 34(9):1605-1616. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201509002.htm
      [94] 王江朋, 赵元艺, 崔玉斌, 等, 2012.西藏班戈地区重要矽卡岩型铁(铜)多金属矿床LA-ICP-MS锆石U-Pb测年与花岗岩地球化学特征.地质通报, 31(9):1435-1450. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201209008.htm
      [95] 王佳奇, 曲晓明, 马旭东, 等, 2016.西藏雄梅铜矿区含矿斑岩与非含矿斑岩成因对比研究.矿床地质, 35(3):437-455. http://d.wanfangdata.com.cn/Periodical/kcdz201603001
      [96] 王明, 李才, 解超明, 等, 2012.聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年:新元古代基底岩石的发现及其意义.岩石学报, 28(12):4101-4108. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201212023.htm
      [97] 王韵, 马旭东, 陈伟, 等, 2019.班公湖-怒江成矿带中段早白垩世含铜岩体地球化学特征:以雄梅地区为例.矿床地质, 38(1):181-196.
      [98] 解超明, 李才, 苏黎, 等, 2010.藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年.地质通报, 29(12):1737-1744. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201012003.htm
      [99] 解超明, 李才, 王明, 等, 2014.藏北聂荣微陆块的构造亲缘性:来自LA-ICP-MS锆石U-Pb年龄及Hf同位素的制约.地质通报, 33(11):1778-1792. http://www.cqvip.com/QK/95894A/201411/663255629.html
      [100] 张天羽, 2018.青藏高原及邻区早古生代构造运动: 以寒武系与奥陶系不整合为例(博士学位论文).长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1018213469.htm
      [101] 张修政, 董永胜, 解超明, 等, 2010.安多地区高压麻粒岩的发现及其意义.岩石学报, 26(7):2106-2112. http://d.wanfangdata.com.cn/Periodical/ysxb98201007012
      [102] 赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201107021.htm
      [103] 赵元艺, 宋亮, 樊兴涛, 等, 2009.西藏申扎县舍索铜多金属矿床辉钼矿Re-Os年代学及地质意义.地质学报, 83(8):1150-1158. http://www.cqvip.com/Main/Detail.aspx?id=32199526
      [104] 郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):2858-2874. doi: 10.3799/dqkx.2018.111
    • dqkx-45-8-2805-Table2-1.doc
      dqkx-45-8-2805-Table1.doc
      dqkx-45-8-2805-Table4.doc
      dqkx-45-8-2805-Table3.doc
      dqkx-45-8-2805-Table2-2.xls
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  886
    • HTML全文浏览量:  254
    • PDF下载量:  77
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-17
    • 刊出日期:  2020-08-15

    目录

      /

      返回文章
      返回