• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川盆地喜马拉雅期张扭性断裂构造特征及形成机制

    苏楠 杨威 苑保国 戴鑫 王小丹 武赛军 马石玉 谢武仁 张光武 裴仰文

    苏楠, 杨威, 苑保国, 戴鑫, 王小丹, 武赛军, 马石玉, 谢武仁, 张光武, 裴仰文, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
    引用本文: 苏楠, 杨威, 苑保国, 戴鑫, 王小丹, 武赛军, 马石玉, 谢武仁, 张光武, 裴仰文, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
    Su Nan, Yang Wei, Yuan Baoguo, Dai Xin, Wang Xiaodan, Wu Saijun, Ma Shiyu, Xie Wuren, Zhang Guangwu, Pei Yangwen, 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
    Citation: Su Nan, Yang Wei, Yuan Baoguo, Dai Xin, Wang Xiaodan, Wu Saijun, Ma Shiyu, Xie Wuren, Zhang Guangwu, Pei Yangwen, 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202

    四川盆地喜马拉雅期张扭性断裂构造特征及形成机制

    doi: 10.3799/dqkx.2020.202
    基金项目: 

    中国石油天然气股份有限公司重大科技专项课题 2016E-0601

    国家科技重大专项“大型油气田及煤层气开发” 2016ZX05007-002

    国家自然科学基金面上项目 41872143

    中央高校基本科研业务费 19CX02005A

    详细信息
      作者简介:

      苏楠(1985-), 男, 博士, 主要从事构造地质学和石油天然气地质研究.ORCID: 0000-0003-1799-7217.E-mail: sunan11a23@petrochina.com.cn

      通讯作者:

      裴仰文, ORCID: 0000-0002-8687-8142.E-mail: peiyangwen@upc.edu.cn

    • 中图分类号: P542+.31

    Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin

    • 摘要: 前人对四川盆地盆缘冲断带及川中高-磨地区断裂系统进行了系统性研究,但对于盆地其他区块断裂发育特征、形成演化及应力背景的认识尚不充分.发现了梓潼-成都-威远-华蓥山-广安地区震旦系-下三叠统地层中发育的一套区域性张扭性断裂,主要自震旦系及以下地层向上延伸切穿二叠系地层,多为高陡、小断距正断层,部分形成负花状构造.根据该断裂系统的剖面产状、纵向穿层特征及盆地范围内体现出的分异性,推断该断裂系统形成于喜马拉雅期.物理模拟实验研究发现该断裂体系应发育于扭张性应力环境中,该断裂体系的发育指示了四川盆地内部新生代存在南西-北东向张应力,可能与四川盆地新生代发生的逆时针旋转有关.

       

    • 图  1  四川盆地构造单元划分及地震测线分布

      Fig.  1.  Map of tectonic zonation and seismic traces of Sichuan basin

      图  2  威远斜坡区二维地震断裂特征

      位置见图 1图 11AA

      Fig.  2.  Characterization of fault systems in the Weiyuan slope, 2D seismic data

      图  3  资阳地区二维地震断裂特征

      位置见图 1图 11B⁃B

      Fig.  3.  Characterization of fault systems in the Ziyang area, 2D seismic data

      图  4  高石梯-磨溪地区C⁃C’剖面三维地震断裂特征

      位置见图 1图 11CC

      Fig.  4.  Characterization of fault systems of C⁃C' profile in the Gaoshiti⁃Moxi area, 3D seismic data

      图  5  高石梯-磨溪地区C⁃C’剖面三维地震断裂特征

      位置见图 1图 11DD

      Fig.  5.  Characterization of fault systems C⁃C' profile in the Gaoshiti⁃Moxi area, 3D seismic data

      图  6  四川盆地高石梯-磨溪北部地区二维测线断层特征

      位置见图 1图 11EE

      Fig.  6.  Characterization of fault systems in the north Gaoshiti⁃Moxi area, 2D seismic data

      图  7  大巴山前龙岗地区龙岗三维地震断裂特征

      位置见图 1图 11F⁃F

      Fig.  7.  Characterization of fault systems in the Longgang area of the Dabashan Mountain, 3D seismic data

      图  8  川西地区大兴场三维地震断裂特征

      位置见图 1图 11G⁃G

      Fig.  8.  Characterization of fault systems in the Daxingchang area of the west Sichuan basin, 3D seismic data

      图  9  蜀南地区云锦三维地震断裂特征

      位置见图 1图 11H⁃H

      Fig.  9.  Characterization of fault systems in the Yunjin area of south Sichuan basin, 3D seismic data

      图  10  川西北地区九龙山-剑阁三维地震断裂特征

      位置见图 1图 11I⁃I

      Fig.  10.  Characterization of fault systems in the Jiulongshan⁃Jiange area of the northwest Sichuan basin, 3D seismic data

      图  11  四川盆地寒武系底界断裂展布

      Fig.  11.  Fault system map of the bottom of Cambrian in Sichuan basin

      图  12  实验模拟条件及应力场配置

      θ为弹性胶皮与砂箱边界的夹角

      Fig.  12.  Setup of physical analog modeling and stress field configuration

      图  13  物理模拟实验结果及应力应变分析

      A.伸展性应力场;B.张扭性应力场;C.扭张性应力场

      Fig.  13.  Results of physical analog modelling and stress/strain analysis

    • [1] Atmaoui, N., Kukowski, N., Stöckhert, B., et al., 2006. Initiation and Development of Pull⁃Apart Basins with Riedel Shear Mechanism: Insights from Scaled Clay Experiments. International Journal of Earth Sciences, 95(2): 225-238. https://doi.org/10.1007/s00531⁃005⁃0030⁃1
      [2] Chen, Z.X., Jia, D., Zhang, Q., et al., 2005. Balanced Cross⁃Section Analysis of the Fold: Thrust Belt of the Longmen Mountains. Acta Geologica Sinica, 79(1): 38-45 (in Chinese with English abstract). http://www.researchgate.net/publication/279548725_Balanced_Cross-section_Analysis_of_the_Fold-Thrust_Belt_of_the_Longmen_Mountains?ev=auth_pub
      [3] Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike⁃Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201805004.htm
      [4] Deng, S., Li, H.L., Zhang, Z.P., et al., 2019. Structural Characterization of Intracratonic Strike⁃Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      [5] Han, X.Y., Deng, S., Tang, L.J., et al., 2017. Geometry, Kinematics and Displacement Characteristics of Strike⁃Slip Faults in the Northern Slope of Tazhong Uplift in Tarim Basin: A Study Based on 3D Seismic Data. MarineandPetroleum Geology, 88(20): 410-427. https://doi.org/10.1016/j.marpetgeo.2017.08.033
      [6] Han, X.Y., Tang, L.J., Deng, S., et al., 2020. Spatial Characteristics and Controlling Factors of the Strike⁃Slip Fault Zones in the Northern Slope of Tazhong Uplift, Tarim Basin: Insight from 3D Seismic Data. Acta Geologica SinicaEnglish Edition, 94(2): 516-529. https://doi.org/10.1111/1755⁃6724.14333
      [7] He, W.G., Zhou, J.X., 2018. Analogue Modeling of Feature and Formation Mechanism of Horsetail⁃Shaped Fold Belt in Southeast Sichuan Basin, South China. Earth Science, 43(6): 2133-2148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806026.htm
      [8] Hu, Z.Q., Zhu, G., Liu, G.S., et al., 2009. The Folding Time of the Eastern Sichuan Jura⁃Type Fold Belt: Evidence from Unconformity. Geological Review, 55(1) : 32-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901006.htm
      [9] Huang, G.M., Wang, Y.J., Zhao, Y.G., et al., 2016. Numerical Simulation of Structural Styles and Evolution of the Daba Shan Foreland Thrust Belt. Acta Geologica Sinica, 90(4): 653-668 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201604005&dbcode=CJFD&year=2016&dflag=pdfdown
      [10] Jia, D., Wei, G.Q., Chen, Z.X., et al., 2006. Longmen Shan Fold⁃Thrust Belt and Its Relation to the Western Sichuan Basin in Central China: New Insights from Hydrocarbon Exploration. AAPG Bulletin, 90(9): 1425-1447. https://doi.org/10.1306/03230605076
      [11] Jin, W.Z., Tang, L.J., Yang, K.M., et al., 2010. Segmentation of the Longmen Mountains Thrust Belt, Western Sichuan Foreland Basin, SW China. Tectonophysics, 485(1/2/3/4): 107-121. https://doi.org/10.1016/j.tecto.2009.12.007
      [12] Li, D.L., 1994. Simulation of Tectonic Stress Field and Crack of Yangxin Carbonate Rocks in Weiyuan Area, Sichuan Basin. Petroleum Exploration and Development, 21(3): 33-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK403.004.htm
      [13] Li, R., Hu, M.Y., Pan, R.F., et al., 2019. Development Characteristics and Forming Mechanism of Middle Permian Fault⁃Karst Carbonate Reservoirs in the Central Sichuan Basin. China Petroleum Exploration, 24(1): 105-114 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTSY201901012.htm
      [14] Li, Y.Y., Qi, J.F., Zhou, S., 2017. Differential Deformation and Its Main Controls on Strike⁃Slip Structures: Evidence from Sandbox. Petroleum Geology & Experiment, 39(5): 711-715 (in Chinese with English abstract).
      [15] Li, Y., Zhou, R.J., Densmore, A.L., et al., 2007. Geomorphic and Sedimentary Evidence for Reversion of Strike⁃Slip Direction in Longmen Shan Fault Zone. Journal of Mineral Petroleum, 26(4): 26-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200604004.htm
      [16] Li, Z.W., 2006. Meso⁃Cenozoic Evolution of Dabashan Foreland Basin⁃Thrust Belt, Cetral China (Dissertation). Chengdu University of Technology, Chengdu (in Chinese).
      [17] Liu, H.F., Liang, H.S., Cai, L.G., et al., 1994. Structural Styles of the Longmenshan Thrust Belt and Evolution of the Foreland Basin in Western Sichuan Province, China. Acta Geologica Sinica, 68(2): 101-118 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW199404000.htm
      [18] Ma, D.B., Wang, Z.C., Duan, S.F., et al., 2018. Structural Characteristics and Its Significance for Hydrocarbon Accumulation of Strike⁃Slip Fault in Gaoshiti⁃Moxi Area, Central Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805 (in Chinese with English abstract).
      [19] Panien, M., Schreurs, G., Pfiffner, A., 2006. Mechanical Behaviour of Granular Materials Used in Analogue Modelling: Insights from Grain Characterization, Ring⁃Shear Tests and Analogue Experiments. Journal of Structural Geology, 28(9): 1710-1724. https://doi.org/10.1016/j.jsg.2006.05.004
      [20] Pei, Y.W., Paton, D.A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behavior and Its Evaluation in Siliciclastic Rocks. EarthScience Reviews, 150(3): 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
      [21] Pei, Y.W., Paton, D.A., Knipe, R. J., et al., 2018. Unraveling the Influence of Throw and Stratigraphy in Controlling Subseismic Fault Architecture of Fold⁃Thrust Belts: An Example from the Qaidam Basin, Northeast Tibetan Plateau. AAPG Bulletin, 102(6): 1091-1117. https://doi.org/10.1306/08101716503
      [22] Pei, Y.W., Knipe, R. J., Paton, D. A., et al., 2020. Field⁃Based Investigation of Fault Architecture: A Case Study from the Lenghu Fold⁃and⁃Thrust Belt, Qaidam Basin, NE Tibetan Plateau. GSA Bulletin, 132(1/2): 389-408. https://doi.org/10.1130/b35140.1
      [23] Qi, L., Han, T.H., 1992. Influence of Evolution of the Crustal Stress Field on Migration and Accumulation of Oil and Gas in the Sichuan Basin during the Himalayan Movement. Acta Geologica Sichuan, 3: 232-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB199203007.htm
      [24] Qiu, H.B., Deng, S., Cao, Z.C., et al., 2019. The Evolution of the Complex Anticlinal Belt with Crosscutting Strike⁃Slip Faults in the Central Tarim Basin, NW China. Tectonics, 38(6): 2087-2113. https://doi.org/10.1029/2018tc005229
      [25] Schellart, W. P., 2000. Shear Test Results for Cohesion and Friction Coefficients for Different Granular Materials: Scaling Implications for Their Usage in Analogue Modeling. Tectonophysics, 324(1/2): 1-16. https://doi.org/10.1016/s0040⁃1951(0)00111⁃6
      [26] Shi, H.Y., Ma, N.J., Ma, J., 2018. Numerical Simulation for the Formation Process of the Longmenshan Fault Zone and Its Crustal Stress. Chinese Journal of Geophysics, 61(5): 1817-1823 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201805012.htm
      [27] Su, N., Zou, L.J., Shen, X.H., et al., 2014a. Identification of Fracture Development Period and Stress Field Analysis Based on Fracture Fabrics in Tectonic Superposition Areas. Arabian Journal of Geosciences, 7(10): 3983-3994. https://doi.org/10.1007/s12517⁃013⁃1063⁃6
      [28] Su, N., Zou, L.J., Shen, X.H., et al., 2014b. Fracture Patterns in Successive Folding in the Western Sichuan Basin, China. Journal of Asian EarthS cience, 81(3): 65-76. https://doi.org/10.1016/j.jseaes.2013.12.003
      [29] Sun, C., 2017. Physical Modeling of the Longmen Shan Fold and Thrust Belt (Dissertation). Nanjing University, Nanjing(in Chinese).
      [30] Wang, E., Meng, K., Su, Z., et al., 2014. Block Rotation: Tectonic Response of the Sichuan Basin to the Southeastward Growth of the Tibetan Plateau along the Xianshuihe⁃Xiaojiang Fault. Tectonics, 33(5): 686-718. https://doi.org/10.1002/2013tc003337
      [31] Wang, X.G., 2016. Analysis of the Late Quaternary Activity along the Maowen⁃Wenchuan Fault: Middle Part of the Back⁃Range Fault at the Longmenshan Fault Zone (Dissertation). Institute of Geology, China Earthquake Administration, Beijing(in Chinese).
      [32] Wang, Z.C., Zhao, W.Z., Xu, A.N., et al., 2006. Structure Styles and Their Deformation Mechanisms of Dabashan Foreland Thrust Belt in the North of Sichuan Basin. Geoscience, 3: 429-435 (in Chinese with English abstract). http://www.researchgate.net/publication/281468587_Structure_styles_and_their_deformation_mechanisms_of_Dabashan_foreland_thrust_belt_in_the_north_of_Sichuan_basin
      [33] Wei, G.Q., Jia, D., Yang, W., et al., 2019. Tectonic Characteristics and Petroleum of the Sichuan Basin. Science Press, Beijing (in Chinese).
      [34] Xiao, A.C., Wei, G.Q., Shen, Z.Y., et al., 2011. Basin⁃Mountain System and Tectonic Coupling between Yangtze Block and South Qinling Orogeny. Acta Petrologica Sinica, 27(3): 601-611 (in Chinese with English abstract). http://www.oalib.com/paper/1473666
      [35] Xie, L.J., Pei, Y.W., Li, A.R., et al., 2018. Implications of Meso⁃ to Micro⁃Scale Deformation for Fault Sealing Capacity: Insights from the Lenghu5 Fold⁃and⁃Thrust Belt, Qaidam Basin, NE Tibetan Plateau. Journal of Asian Earth Sciences, 158: 336-351. https://doi.org/10.1016/j.jseaes.2018.03.004
      [36] Xu, H.L., Wei, G.Q., Jia, C.Z., et al., 2012. Tectonic Evolution of the Leshan⁃Longnüsi Paleo⁃Uplift and Its Control on Gas Accumulation in the Sinian Strata, Sichuan Basin. Petroleum Exploration and Development, 39(4): 406-416(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600603
      [37] Xu, Z.Q., Lu, Y.L., Tang, Y.Q., et al., 1986. Deformation Characteristics and Tectonic Evolution of the Eastern Qinling Orogenic Belt. Acta Geologica Sinica, 60(3): 237-47 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW198603002.htm
      [38] Yin, J.F., Gu, Z.D., Li, Q.F., 2013. Characteristics of Deep⁃Rooted Faults and Their Geological Significances in Dachuanzhong Area, Sichuan Basin. Oil & Gas Geology, 34(3): 376-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201303019.htm
      [39] Yu, Y., Li, Z.Q., Yang, Y.Y., et al., 2013. Characteristics of Tectonic Evolution of Weiyuan Area in Sichuan Basin andIts Effect on Lower Paleozoic Oil and Gas Reservoirs. Natural Gas Exploration & Development, 36(2): 1-4(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRKT201302002.htm
      [40] 陈竹新, 贾东, 张惬, 等, 2005. 龙门山前陆褶皱冲断带的平衡剖面分析. 地质学报, 79(1): 38-45. doi: 10.3321/j.issn:0001-5717.2005.01.005
      [41] 邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
      [42] 何文刚, 周建勋, 2018. 川东南马尾状褶皱带特征与形成机制的物理模拟. 地球科学, 43(6): 2133-2148. doi: 10.3799/dqkx.2017.619
      [43] 胡召齐, 朱光, 刘国生, 等, 2009. 川东"侏罗山式"褶皱带形成时代: 不整合面的证据. 地质评论, 55(1: )32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901006.htm
      [44] 黄光明, 王岳军, 赵勇刚, 等, 2016. 大巴山前陆冲断带构造样式和演化过程的数值模拟. 地质学报, 90(4): 653-668. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604005.htm
      [45] 黎荣, 胡明毅, 潘仁芳, 等, 2019. 川中地区中二叠统断溶体发育特征及形成机制. 中国石油勘探, 24(1): 105-114. doi: 10.3969/j.issn.1672-7703.2019.01.011
      [46] 李定龙, 1994. 四川威远地区构造应力场模拟及阳新统裂缝分析. 石油勘探与开发, 21(3): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK403.004.htm
      [47] 李艳友, 漆家福, 周赏, 2017. 走滑构造差异变形特征及其主控因素分析——基于砂箱模拟实验. 石油实验地质, 39(5): 711-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201705019.htm
      [48] 李勇, 周荣军, Densmore, A. L., 等, 2007. 龙门山断裂带走滑方向的反转及其沉积与地貌标志. 矿物岩石, 26(4): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200604004.htm
      [49] 李智武, 2009. 中-新生代大巴山前陆盆地-冲断带的形成演化(博士学位论文). 成都: 成都理工大学.
      [50] 刘和甫, 梁慧社, 蔡立国, 等, 1994. 川西龙门山冲断系构造样式与前陆盆地演化. 地质学报, 68(2): 101-118. doi: 10.3321/j.issn:0001-5717.1994.02.001
      [51] 马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      [52] 祁林, 韩永辉, 1992. 四川盆地喜马拉雅期地应力场演化对油气运移聚集影响. 四川地质学报, 3: 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199203007.htm
      [53] 师皓宇, 马念杰, 马骥, 2018. 龙门山断裂带形成过程及其地应力状态模拟. 地球物理学报, 61(5): 1817-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805012.htm
      [54] 孙闯, 2017. 龙门山褶皱冲断带构造物理模拟研究(博士学位论文). 南京: 南京大学.
      [55] 汪泽成, 赵文智, 徐安娜, 等, 2006. 四川盆地北部大巴山山前带构造样式与变形机制. 现代地质, 3: 429-435. doi: 10.3969/j.issn.1000-8527.2006.03.010
      [56] 王旭光, 2016. 龙门山断裂带后山断裂中段茂汶-汶川断裂晚第四纪活动性分析(硕士学位论文). 北京: 中国地震局地质研究所.
      [57] 魏国齐, 贾东, 杨威, 等, 2019. 四川盆地构造特征与油气. 北京: 科学出版社.
      [58] 肖安成, 魏国齐, 沈中延, 等, 2011. 扬子地块与南秦岭造山带的盆山系统与构造耦合. 岩石学报, 27(3): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103002.htm
      [59] 许海龙, 魏国齐, 贾承造, 等, 2012. 乐山-龙女寺古隆起构造演化及对震旦系成藏的控制. 石油勘探与开发, 39(4): 406-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201204004.htm
      [60] 许志琴, 卢一伦, 汤耀庆, 等, 1986. 东秦岭造山带的变形特征及构造演化. 地质学报, 60(3): 237-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198603002.htm
      [61] 殷积峰, 谷志东, 李秋芬, 2013. 四川盆地大川中地区深层断裂发育特征及其地质意义. 石油与天然气地质, 34(3): 376-382. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303019.htm
      [62] 喻颐, 李忠权, 杨渊宇, 等, 2013. 四川盆地威远地区构造演化特征及其对下古生界油气富集的控制作用. 天然气勘探与开发, 36(2): 1-4. doi: 10.3969/j.issn.1673-3177.2013.02.001
    • 加载中
    图(13)
    计量
    • 文章访问数:  1075
    • HTML全文浏览量:  362
    • PDF下载量:  134
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-10
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回