Zircon U-Pb Age, Hf Isotope and Geological Significance of Early Cretaceous Monzodiorite in Liaodong Peninsula
-
摘要: 为探讨辽东半岛中生代闪长岩类岩石成因及其形成构造背景,选取辽东半岛岫岩西南部黄岭岩体为研究对象,开展岩相学、锆石LA-ICP-MS U-Pb年代学、Hf同位素地球化学和岩石地球化学研究.结果表明:黄岭岩体由黑云母二长闪长岩组成;锆石LA-ICP-MS U-Pb年龄为127.4±1.9 Ma,成岩为早白垩世;岩石地球化学元素特征表明,黄岭黑云母二长闪长岩具高钾钙碱性,轻稀土元素富集,重稀土亏损,富集Rb、Zr、K等大离子亲石元素,亏损Nb、P、Ti等高场强元素,正Eu异常;εHf(t)值为-20.1~-18.0,二阶段Hf模式年龄TDM2为2 316~2 450 Ma,揭示二长闪长岩可能是古元古代古老地壳部分熔融形成.结合区域构造演化推测黄岭岩体形成于古太平洋板块向欧亚板块俯冲挤压后折返伸展的构造背景.Abstract: In order to determine the petrogenesis and tectonic setting of the Early Cretaceous biotite monzodiorite in Liaodong Peninsula,the lithology identification,zircon LA-ICP-MS U-Pb dating,major and trace elements,and Hf isotope data for the Huangling rock mass from southwest of Xiuyan are presented in this paper. The LA-ICP-MS U-Pb ages of the Huangling pluton of the monzodiorite is 127.4±1.9 Ma. The results of elemental and isotope geochemistry show that the Huangling monzodiorite belongs to high-K calc-alkaline series,and enriched in LREE and LILE (Rb,Zr,K),but depleted in HREE and HFSE (Nb,P,Ti) with positive Eu anomalies. The zircon εHf(t) values of the pluton range from -20.1 to -18.0,TDM2 ranges between 2 450 and 2 316 Ma,suggesting that the monzodiorite was mainly derived from the partial melting of the Paleoproterozoic crustal material. Combined with regional tectonic evolution,it is proposed that the Huangling monzodiorite diagenetic tectonic environment is the active continental margin,maybe formed in the extension tectonic environment,which is closely associated with the subduction of the Paleo-Pacific plate.
-
Key words:
- zircon U-Pb /
- rare earth elements /
- geochemistry /
- Huangling pluton /
- Liaodong Peninsula
-
图 4 辽东半岛岫岩地区黑云母二长闪长岩SiO2-Na2O+K2O图解(a)、SiO2-K2O (b)和A/CNK-A/NK图解(c)
a.据Le Maitre et al.(1989);b.据Rickwood (1989); c.据Maniar and Piccoli (1989)
Fig. 4. Plots of SiO2-Na2O+K2O (a), SiO2-K2O (b) and A/CNK-A/NK (c) for biotite monzodiorite rocks in Xiuyan area, Liaodong Peninsula
图 5 辽东半岛岫岩地区黑云母二长闪长岩的稀土配分曲线(a)和微量蛛网图(b)
Fig. 5. Rare earth element distribution curves (a) and trace element spider diagram (b) for biotite monzodiorite rocks in Xiuyan area, Liaodong Peninsula
图 8 辽东半岛岫岩地区黑云母二长闪长岩的锆石Lu-Hf同位素特征图解
Fig. 8. Lu-Hf diagram of the biotite monzodiorite rocks of Dingqishan rocks in Xiuyan area, Liaodong Peninsula
图 9 辽东半岛黄岭岩体二长闪长岩构造环境判别图解
a. La/Yb-Ba/Nb判别图(据White and Patchett, 1984);b. Ta/Yb-Th/Yb判别图(据Wood,1980)
Fig. 9. Discrimination diagrams for tectonic setting of biotite monzodiorite in Liaodong Peninsula
表 1 辽宁半岛岫岩黄岭黑云母二长闪长岩体的主量(%)、微量(10-6)元素分析结果
Table 1. Major (%) and trace (10-6) element concentrations of the biotite monzodiorite rocks from Xiuyan area, Liaodong Peninsula
样品 SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 ω(LOI) ω(SUM) Na2O+K2O A/CNK A/NK Rb Ga 18HL-1 54.715 1.117 20.312 4.816 0 2.128 8 0.103 1.957 5.457 0 4.974 0 2.816 0.340 0 0.79 99.52 7.79 0.96 1.81 79.3 25.9 18HL-2 56.549 0.939 20.273 4.214 0 1.836 7 0.086 1.523 4.773 0 5.317 0 2.879 0.270 0 0.95 99.61 8.20 0.99 1.71 81.5 24.0 18HL-3 56.377 0.968 20.203 4.402 7 1.791 1 0.091 1.600 4.800 0 5.219 0 2.830 0.280 0 0.93 99.49 8.05 0.99 1.73 82.4 26.2 18HL-4 55.880 1.004 18.893 4.950 7 1.565 1 0.108 2.407 5.434 0 4.244 0 3.207 0.367 0 1.31 99.37 7.45 0.93 1.81 120 26.0 18HL-5 55.078 1.005 19.805 4.838 4 2.094 4 0.096 2.200 5.431 5 4.698 5 2.973 0.373 5 1.07 99.66 7.67 0.95 1.81 81.0 25.8 样品 Ba Th U Nb Ta La Ce Pr Sr Nd Zr Hf Sm Eu Ti Gd Tb Dy 18HL-1 1 900 6.885 6 1.165 0 11.72 0.616 9 67.159 0 112.213 1 11.918 6 1 300 40.572 7 541.39 11.993 9 5.254 5 2.608 8 6 695 4.822 8 0.554 1 2.618 2 18HL-2 2 100 7.037 9 1.240 0 10.61 1.830 0 78.682 1 119.197 4 11.950 2 1 300 38.720 0 487.30 10.569 1 4.379 8 2.809 8 5 628 4.247 1 0.444 7 1.959 7 18HL-3 2 100 7.832 3 1.684 0 10.82 1.038 9 86.918 2 136.555 4 13.340 2 1 300 42.457 5 520.29 12.581 8 4.644 3 2.745 2 5 802 4.727 4 0.484 6 2.157 9 18HL-4 1 800 9.242 2 4.253 0 16.19 0.460 4 43.291 1 102.414 5 12.687 3 1 100 47.105 2 278.87 7.387 6 7.267 6 2.504 8 6 018 5.990 2 0.843 2 4.409 8 18HL-5 1 700 6.766 1 0.968 5 13.02 0.380 0 52.801 9 93.309 3 11.144 5 1 100 40.374 6 335.92 7.748 7 5.677 5 2.458 3 6 024 4.831 4 0.606 2 2.987 1 样品 Y Ho Er Tm Yb Lu Pb K P ΣREE LREE HREE LREE/HREE δEu δCe LaN/YbN 18HL-1 12.012 0 0.528 5 1.689 2 0.253 8 1.659 4 0.265 1 17.720 2 337 7 1 484 159.91 152.24 7.67 18.18 0.91 1.07 27.13 18HL-2 8.736 0 0.413 6 2.126 1 0.195 3 1.313 8 0.218 6 18.250 2 390 0 1 178 161.93 154.87 7.06 18.98 0.92 1.07 28.52 18HL-3 9.517 2 0.458 0 2.975 1 0.235 6 1.654 2 0.280 6 18.510 2 349 3 1 222 163.94 157.50 6.44 19.78 0.92 1.07 29.90 18HL-4 22.019 0 0.879 1 2.423 4 0.427 8 2.653 8 0.379 5 19.070 2 662 3 1 602 165.96 160.13 5.83 20.58 0.93 1.08 31.28 18HL-5 14.377 0 0.593 5 1.634 8 0.282 3 1.812 9 0.277 6 18.265 2 468 0 1 630 167.97 162.76 5.21 21.38 0.93 1.08 32.66 表 2 辽东半岛岫岩地区黄岭岩体中黑云母二长闪长岩锆石U-Pb分析结果
Table 2. Zircon U-Pb data of the biotite monzodiorite in Xiuyan area, Liaodong Peninsula
测试点号 元素(10-6) Th/U 同位素比值 年龄值(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ(%) 207Pb/206Pb 1σ(%) 18HLZ-01 1 011 598 1.69 0.051 4 0.002 5 0.143 8 0.006 6 0.020 4 0.000 3 136 5.884 874 261 112.945 0 130 1.745 006 18HLZ-02 1 044 627 1.67 0.046 7 0.002 0 0.125 5 0.005 2 0.019 4 0.000 2 120 4.726 456 31.6 99.990 0 124 1.219 671 18HLZ-03 1 181 767 1.54 0.047 4 0.001 8 0.132 4 0.005 0 0.020 3 0.000 2 126 4.442 277 77.9 75.920 0 129 1.318 884 18HLZ-04 483 378 1.28 0.048 9 0.002 7 0.132 8 0.006 9 0.019 9 0.000 2 127 6.167 568 146 162.015 0 127 1.556 909 18HLZ-05 252 315 0.80 0.048 1 0.002 8 0.130 4 0.007 8 0.019 5 0.000 2 124 6.964 949 102 129.610 0 124 1.531 710 18HLZ-06 1 164 797 1.46 0.048 6 0.002 0 0.137 4 0.005 7 0.020 5 0.000 2 131 5.085 386 128 99.985 0 131 1.424 820 18HLZ-07 769 536 1.43 0.048 7 0.002 1 0.135 5 0.006 0 0.020 2 0.000 2 129 5.377 254 132 99.060 0 129 1.526 889 18HLZ-08 89.3 135 0.66 0.046 5 0.004 2 0.124 7 0.010 4 0.019 3 0.000 4 119 9.377 040 33.4 199.970 0 123 2.389 870 18HLZ-09 378 424 0.89 0.053 8 0.002 7 0.144 5 0.007 0 0.019 5 0.000 2 137 6.252 107 365 108.322 5 125 1.424 726 18HLZ-10 203 273 0.74 0.049 7 0.002 9 0.132 4 0.006 7 0.019 4 0.000 3 126 6.020 744 189 135.167 5 124 1.634 726 18HLZ-11 1 009 648 1.56 0.048 0 0.001 8 0.138 3 0.005 0 0.021 0 0.000 2 132 4.419 168 98.2 87.027 5 134 1.477 764 18HLZ-12 187 272 0.69 0.049 3 0.003 1 0.133 9 0.008 1 0.019 8 0.000 3 128 7.265 798 161 -47.217 5 127 1.771 254 18HLZ-13 365 296 1.23 0.050 0 0.002 9 0.132 9 0.007 1 0.019 7 0.000 3 127 6.349 179 195 137.017 5 126 1.697 877 18HLZ-14 656 482 1.36 0.048 3 0.002 0 0.138 2 0.005 9 0.020 7 0.000 2 131 5.243 167 122 99.987 5 132 1.541 785 18HLZ-15 228 354 0.64 0.049 1 0.002 8 0.141 1 0.007 8 0.021 1 0.000 3 134 6.915 571 154 135.167 5 135 1.948 628 18HLZ-16 533 466 1.14 0.046 5 0.002 2 0.131 8 0.006 1 0.020 7 0.000 3 126 5.505 815 33.4 166.645 0 132 1.721 154 18HLZ-17 352 321 1.10 0.053 0 0.003 0 0.142 9 0.007 9 0.019 7 0.000 3 136 7.057 890 328 129.612 5 126 1.980 885 18HLZ-18 204 277 0.74 0.053 1 0.003 2 0.139 8 0.007 7 0.019 1 0.000 3 133 6.858 646 345 135.167 5 122 1.745 131 18HLZ-19 593 450 1.32 0.046 2 0.002 4 0.120 5 0.005 9 0.019 0 0.000 2 116 5.314 884 5.7 122.210 0 122 1.576 904 18HLZ-20 386 360 1.07 0.052 3 0.002 5 0.139 5 0.006 8 0.019 2 0.000 2 133 6.098 624 298 109.242 5 123 1.482 205 18HLZ-21 490 522 0.94 0.047 9 0.002 0 0.125 7 0.005 0 0.019 1 0.000 2 120 4.537 776 94.5 99.990 0 122 1.328 618 18HLZ-22 325 311 1.05 0.051 0 0.002 6 0.140 4 0.007 0 0.019 8 0.000 3 133 6.253 271 243 116.650 0 127 1.901 799 18HLZ-23 2 316 1 134 2.04 0.046 1 0.001 6 0.138 6 0.004 8 0.021 6 0.000 3 132 4.277 740 400 -316.625 0 138 1.699 279 18HLZ-24 404 403 1.00 0.049 5 0.002 6 0.143 9 0.007 2 0.021 1 0.000 3 137 6.352 482 172 122.205 0 135 1.771 823 表 3 辽东半岛丹东地区黄岭岩体黑云母二长闪长岩锆石Lu⁃Hf分析结果
Table 3. Zircon Lu-Hf data of the biotite monzodiorite from Huangling pluton in Xiuyan area, Liaodong Peninsula
测试点 年龄(Ma) 176Yb/177Hf 2δ 176Lu/177Hf 2δ 176Hf/177Hf 2δ εHf(0) εHf(t) TDM1(Ma) TDM2(Ma) fLu/Hf SGL-1 130 0.054 399 0.000 959 0.001 596 0.000 019 0.282 167 0.000 012 -21.4 -18.7 1 553 2 365 -0.95 SGL-2 124 0.057 702 0.000 458 0.001 757 0.000 014 0.282 131 0.000 015 -22.7 -20.1 1 612 2 450 -0.95 SGL-3 129 0.073 682 0.000 557 0.002 104 0.000 016 0.282 170 0.000 015 -21.3 -18.6 1 571 2 362 -0.94 SGL-4 127 0.030 151 0.000 145 0.000 909 0.000 008 0.282 170 0.000 011 -21.3 -18.6 1 521 2 357 -0.97 SGL-5 124 0.030 753 0.000 354 0.000 930 0.000 013 0.282 189 0.000 011 -20.6 -18.0 1 495 2 316 -0.97 SGL-6 131 0.061 258 0.001 757 0.001 768 0.000 039 0.282 146 0.000 013 -22.1 -19.4 1 590 2 412 -0.95 SGL-7 129 0.073 866 0.001 909 0.002 097 0.000 044 0.282 186 0.000 014 -20.7 -18.1 1 547 2 326 -0.94 SGL-8 123 0.026 114 0.000 246 0.000 808 0.000 006 0.282 182 0.000 011 -20.9 -18.2 1 500 2 332 -0.98 SGL-9 125 0.042 381 0.000 740 0.001 260 0.000 019 0.282 179 0.000 012 -21.0 -18.3 1 522 2 340 -0.96 SGL-10 124 0.026 121 0.000 546 0.000 796 0.000 015 0.282 168 0.000 011 -21.4 -18.7 1 520 2 364 -0.98 SGL-11 134 0.049 895 0.000 331 0.001 455 0.000 012 0.282 149 0.000 014 -22.0 -19.2 1 573 2 402 -0.96 SGL-12 127 0.025 482 0.000 387 0.000 784 0.000 009 0.282 175 0.000 009 -21.1 -18.4 1 510 2 347 -0.98 SGL-13 126 0.056 471 0.000 577 0.001 695 0.000 021 0.282 164 0.000 012 -21.5 -18.9 1 562 2 375 -0.95 SGL-14 132 0.055 959 0.000 204 0.001 653 0.000 006 0.282 160 0.000 012 -21.7 -18.9 1 566 2 381 -0.95 SGL-15 135 0.044 412 0.000 536 0.001 322 0.000 010 0.282 167 0.000 015 -21.4 -18.6 1 542 2 361 -0.96 SGL-16 132 0.117 961 0.002 183 0.003 329 0.000 062 0.282 158 0.000 015 -21.7 -19.1 1 642 2 392 -0.90 -
[1] Arnaud, N. O., Vidal, P., Tapponnier, P., et al., 1992. The High K2O Volcanism of Northwestern Tibet:Geochemistry and Tectonic Implications. Earth and Planetary Science Letters, 111(2-4):351-367. doi: 10.1016/0012-821X(92)90189-3 [2] Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola:Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5):554-566. doi: 10.1007/s004100000211 [3] Belousova, E., Griffin, W., O'Reilly, S. Y., 2002. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7 [4] Hofmann, A.W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letter, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X [5] Hou, H.X., Zhang, D.H., Zhang, R.Z., 2016.The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at the East Qinling. Earth Science, 41(10):1665-1682 (in Chinese with English abstract). [6] Kinny, P.D., Mass, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. In:Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Washington:Mineralogical Society of America, 53:327-341. [7] Li, S.Z., Hao, D.F., Zhao, G.C., et al., 2004. Geochemical Feaures and Origin of Dandong Granite. Acta Petrologica Sinica, 20(6):1417-1423 (in Chinese with English abstract). [8] Lin, W., Ji, W.B., Faure, M., et al., 2015. Early Cretaceous Extensional Reworking of the Triassic HP-UHP Metamorphic Orogen in Eastern China. Tectonophysics, 662:256-270. doi: 10.1016/j.tecto.2015.05.028 [9] Liu, J.L., Ji, M., Shen, L., et al., 2011. Early Cretaceous Extensional Structures in the Liaodong Peninsula:Structural Associations, Geochronological Constraints and Regional Tectonic Implications. Science in China (Series D:Earth Science), 41(5):618-637 (in Chinese with English abstract). [10] Liu, J. L., Shen, L., Ji, M., et al., 2013. The Liaonan/Wanfu Metamorphic Core Complexes in the Liaodong Peninsula:Two Stages of Exhumation and Constraints on the Destruction of the North China Craton. Tectonics, 32(5):1121-1141. doi: 10.1002/tect.20064 [11] Liu, J.X., Guo, W., Zhu, K., 2016. Geochronology, Geochemistry and Geological Significance of the Early Cretaceous Intrusive Rocks from Xiuyuan Area, Eastern Liaoning Province. Acta Petrologica Sinica, 32(9):2889-2900 (in Chinese with English abstract). [12] Liu, Y.J., Han, X.T., Liu, Z.H., et al., 2020. Zircon U-Pb Ages, Geochemical Characteristics and Geological Significance of Early Cretaceous Granites in Fengcheng Area, Eastern Liaoning Province. Earth Science, 45(1):145-155 (in Chinese with English abstract). [13] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitolids. Geological Society America Bulletin, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [14] Pang, C. J., Wang, X. C., Xu, Y. G., et al., 2015. Pyroxenite Derived Early Cretaceous Lavas in the Liaodong Peninsula:Implication for Metasomatism and Thinning of the Lithospheric Mantle beneath North China Craton. Lithos, 227:77-93. https://doi.org/10.1016/j.lithos.2015.03.022 [15] Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5 [16] Shen, L., Liu, J. L., Hu, L., et al., 2011. The Dayingzi Detachment Fault System in Liaodong Peninsula and Its Regional Tectonic Significance. Science in China (Series D:Earth Sciences), 41(4):437-451 (in Chinese). [17] Sun, J.F., Yang, J.H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 34(1):137-147 (in Chinese with English abstract). [18] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [19] Thompson, A. B., 1996. Fertility of Crustal Rocks during Anatexis. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2):1-10. doi: 10.1017/S0263593300006428 [20] Wang, Y., Fu, J.Y., Na, F.C., et al., 2013.Geochemical Characteristics and Zircon U-Pb Age of the Gabbro-Diorite in Jalaid Banner of Inner Mongolia and Their Geological Significance. Geological Bulletin of China, 32(10):1525-1535 (in Chinese with English abstract). [21] White, W. M., Patchett, J., 1984. Hf-Nd-Sr Isotopes and Incompatible Element Abundances in Island Arcs:Implications for Magma Origins and Crust-Mantle Evolution. Earth and Planetary Science Letters, 67(2):167-185. doi: 10.1016/0012-821X(84)90112-2 [22] Wood, D.A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Eatablishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. doi: 10.1016/0012-821X(80)90116-8 [23] Wu, F.Y., Li, X.H., Yang, J.H, et al., 2007. Some Problems on the Genesis of Granite. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). [24] Wu, F. Y., Sun, D. Y., Ge, W.C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [25] Wu, F.Y., Yang, J.H., Liu, X.M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3):305-317 (in Chinese with English abstract). [26] Yang, F.C., Sun, J.G., Song, Y.H., et al., 2016. SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China. Earth Science, 41(12):2008-2018 (in Chinese with English abstract). [27] Yang, J.H., Wu, F.Y., Liu, X.M., et al., 2007. Petrogenesis and Geological Significance of the Jurassic Xiaoheishan Pluton in the Liaodong Peninsula, East China:In-Situ Zircon U-Pb Dating and Hf Isotopic Analysis. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1):29-43. [28] Yang, J.H., Wu, F.Y., Luo, Q.H., et al., 2004.Deformation Age of Jurassic Granites in the Dandong Area, Eastern China:40Ar/39Ar Geochronological Constraints. Acta Petrologica Sinica, 20(5):1241-1250 (in Chinese with English abstract). [29] Yang, J. H., Wu, F. Y., Shao, J. A., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246:336-352. doi: 10.1016/j.epsl.2006.04.029 [30] Yang, J.H., Wu, F.Y., Wilde, S. A., et al., 2001. Tracing Magma Mixing in Granite Genesis:In Situ U-Pb Dating and Hf Isotope Analysis of Zircon. Contributions to Mineralogy and Petrology, 153:177-190. [31] Yang, J.H., Wu, F.Y., Zhong, S.L., et al., 2008. The Extensional Geodynamic Setting of Early Creataceous Granitic Intrusions in the Eastern North China Craton:Evidence from Laser 40Ar/39Ar dating of K-Bearing Minerals. Acta Petrologica Sinica, 24(6):1175-1184 (in Chinese with English abstract). [32] Zhai, G. M., Meng, Q.R., Liu, J.M., et al., 2004. Geological Features of Mesozoic Tectonic Regime Inversion in Eastern North China and Implication for Geodynamics. Eartn Science Frontiers, 11(3):285-297 (in Chinese with English abstract). [33] Zhang, P., Chen, D., Kou, L.L., et al., 2015. Geochronology, Geochemistry and Sr-Nd-Pb Isotopes of the Wolongquan Intrusion in Liaodong and Its Tectonic Significance. Acta Geologica Sinica, 89(10):1762-1772 (in Chinese with English abstract). [34] Zhang, P., Chen, D., Kou, L.L., et al., 2016.Chronology, Geochemistry and Hf Isotope of Monzonitic Granite from the Dongbeigou Molydbenum Deposit in Kuandian, Liaoning Province. Geology in China, 43(6):2092-2103 (in Chinese with English abstract). [35] Zhang, P., Zhao, Y., Kou, L.L., et al., 2016. Zircon U-Pb and Molybdenite Re-Os Geochronology of Copper-Molybdenum deposits in Southeast Liaoning Province, China. International Geology Review, 58:1481-1491. doi: 10.1080/00206814.2016.1163647 [36] Zhang, P., Zhao, Y., Kou, L.L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10):3297-3313 (in Chinese with English abstract). [37] Zhao, G.C., Cawood, P., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. doi: 10.1016/j.precamres.2012.09.017 [38] Zhu, R.X., Yang, J.H., Wu, F.Y., 2012. Timing of Destruction of the North China Craton. Lithos, 149:51-60. https://doi.org/10.1016/j.lithos.2012.05.013 [39] 侯红星, 张德会, 张荣臻, 2016.东秦岭中生代石瑶沟隐伏花岗岩年代学、地球化学特征及地质意义.地球科学, 41(10):1665-1682. doi: 10.3799/dqkx.2016.122 [40] 李三忠, 郝德峰, 赵国春, 等, 2004.丹东花岗岩的地球化学特征及其成因.岩石学报, 20(6):1417-1423. [41] 刘俊来, 纪沫, 申亮, 等, 2011.辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵.中国科学(D辑:地球科学), 41(5):618-637. [42] 刘杰勋, 郭巍, 朱凯, 2016.辽东岫岩地区早白垩世侵入岩的年代学、地球化学及地质意义.岩石学报, 32(9):2889-2900. [43] 刘永俊, 韩晓涛, 刘正宏, 等, 2020.辽东凤城地区早白垩世花岗岩的锆石U-Pb年龄、地球化学特征及地质意义.地球科学, 45(1):145-155. doi: 10.3799/dqkx.2018.278 [44] 申亮, 刘俊来, 胡玲, 等, 2011.辽东半岛大营子拆离断层系及其区域构造意义.中国科学(D辑:地球科学), 41(4):437-451. [45] 孙金凤, 杨进辉, 2009.华北东部早白垩世A型花岗岩与克拉通破坏.地球科学, 34(1):137-147. http://www.earth-science.net/article/id/1793 [46] 汪岩, 付俊彧, 那福超, 等, 2013.内蒙古扎赉特旗辉长岩闪长岩地球化学特征和LA-ICP-MS锆石U-Pb年龄.地质通报, 32(10):1525-1535. [47] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. [48] 吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3):305-317. [49] 杨凤超, 孙景贵, 宋运红, 等, 2016.辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义.地球科学, 41(12):2008-2018. doi: 10.3799/dqkx.2016.140 [50] 杨进辉, 吴福元, 罗清华, 等, 2004.辽宁丹东地区侏罗纪花岗岩的变形时代:40Ar/39Ar年代学制约.岩石学报, 20(5):1241-1250. [51] 杨进辉, 吴福元, 钟孙霖, 等, 2008.华北东部早白垩世花岗岩侵位的伸展地球动力学背景:激光40Ar/39Ar年代学证据.岩石学报, 24(6):1175-1184. [52] 翟明国, 孟庆任, 刘建明, 等, 2004.华北东部中生代构造体质转折峰期的主要地质效应和形成动力学探讨.地学前缘, 11(3):285-297. [53] 张朋, 陈冬, 寇林林, 等, 2015.辽东卧龙泉岩体锆石U-Pb年龄、地球化学、Sr-Nd-Pb同位素特征及其构造意义.地质学报, 89(10):1762-1772. [54] 张朋, 陈冬, 寇林林, 等, 2016.辽东宽甸东北沟钼矿二长花岗岩年代学、地球化学及Hf同位素特征.中国地质, 43(6):2092-2103. [55] 张朋, 赵岩, 寇林林, 等, 2019.辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(10):3297-3313. doi: 10.3799/dqkx.2019.129