• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间

    杨毅 王斌 曹自成 黄诚 赵永强 郭小文 罗涛

    杨毅, 王斌, 曹自成, 黄诚, 赵永强, 郭小文, 罗涛, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
    引用本文: 杨毅, 王斌, 曹自成, 黄诚, 赵永强, 郭小文, 罗涛, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
    Yang Yi, Wang Bin, Cao Zicheng, Huang Cheng, Zhao Yongqiang, Guo Xiaowen, Luo Tao, 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
    Citation: Yang Yi, Wang Bin, Cao Zicheng, Huang Cheng, Zhao Yongqiang, Guo Xiaowen, Luo Tao, 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200

    塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间

    doi: 10.3799/dqkx.2020.200
    基金项目: 

    国家自然科学基金项目 41872139

    详细信息
      作者简介:

      杨毅(1996-), 男, 硕士研究生, 主要从事成岩流体研究.ORCID: 0000-0001-6979-628.E-mail: 576170139@qq.com

      通讯作者:

      郭小文, E-mail: guoxw@cug.edu.cn

    • 中图分类号: P618

    Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin

    • 摘要: 塔里木盆地顺托果勒低隆起北部中下奥陶统碳酸盐岩储层中发育多期方解石脉体,对流体活动历史和油气成藏过程都具有重要指示作用.本研究基于对方解石脉体薄片观察、阴极发光、微区原位元素、流体包裹体和锶同位素分析,划分方解石脉体发育期次,确定不同期次方解石脉体成因和形成时间.研究结果表明,顺托果勒低隆起北部碳酸盐岩储层中发育4期方解石脉(C1、C2、C3和C4),不同期次方解石脉的Fe/Mn值和U/Th值均存在一定的差异.C1、C2、C3和C4方解石阴极发光颜色分别为暗红色、不发光-暗蓝色、橙黄色和亮黄色.C1方解石成脉流体来源于深部具有高87Sr/86Sr值流体,C2与C3方解石成脉流体相似,均来源于同地层具有海水性质的成岩流体.C1、C2和C4方解石脉体形成于偏还原环境,C3方解石脉体形成于相对偏氧化环境.通过不同期次脉体中发育的原生盐水包裹体均一温度,结合单井埋藏史和热史确定顺托果勒低隆起北部的C1方解石脉形成于距今约445 Ma,对应于加里东中期Ⅲ幕,C2和C3方解石脉分别形成于距今约430~428 Ma与418 Ma,对应于加里东晚期.

       

    • 图  1  塔里木盆地顺托果勒北部构造位置、样品井位及岩性综合柱状图(据Deng et al., 2019修改)

      Fig.  1.  Structure location, location of sampling wells and stratigraphic columnar section in the northern Shuntuoguole low-uplift, Tarim basin (modified after Deng et al., 2019)

      图  2  顺托果勒低隆起北部中下奥陶统方解石脉体岩相学和阴极发光特征

      a,b.SP2井,鹰山组,7 535.46 m,裂缝充填C1方解石,暗红色阴极发光,硅质交代方解石,硅质为暗蓝色阴极发光;c,d.SP2井,鹰山组,7 536.10 m,孔洞中主要充填C1方解石,暗红色阴极发光,裂缝充填C2方解石,切割C1方解石,C2发暗蓝色阴极发光;e,f.SP3井,一间房组,7 436.48 m,早期裂缝充填C2方解石,可见破碎围岩颗粒,晚期高角度缝被C3方解石充填,切穿C2方解石,C3发橙黄色阴极光,裂缝边缘可见少量C4方解石,亮黄色阴极发光

      Fig.  2.  Characteristics of petrography and cathodoluminescence of calcite veins in the Middle-Lower Ordovician, northern Shuntuoguole low-uplift

      图  3  顺托果勒低隆起北部方解石脉与围岩U/Th-Fe/Mn关系

      Fig.  3.  U/Th-Fe/Mn diagram of calcite veins and host-rock in the northern Shuntuoguole low-uplift

      图  4  顺托果勒低隆起北部方解石脉与围岩稀土元素配分模式

      C样品指样品稀土元素含量,Csw指海水标准稀土元素含量

      Fig.  4.  Rare earth element distribution patterns of calcite veins and host-rocks in the northern Shuntuoguole low-uplift

      图  5  顺托果勒低隆起北部不同期次方解石脉87Sr/86Sr值直方图

      Fig.  5.  Histogram of 87Sr /86Sr of calcite veins in different periods in the northern Shuntuoguole low-uplift

      图  6  顺托果勒低隆起北部典型原生盐水包裹体照片

      a.SP2井,鹰山组,7 535.46 m,C1方解石脉;b.SP2井,一间房组,7 545.77 m,C2方解石脉;c.SBP3井,一间房组,7 425.64 m,C2方解石脉;D.SP3井,一间房组,7 436.48 m,C3方解石脉

      Fig.  6.  Photomicrographs of representative primary aqueous fluid inclusions in the northern Shuntuoguole low-uplift

      图  7  顺托果勒低隆起北部方解石脉原生盐水包裹体均一温度和盐度关系图(a)以及均一温度直方图(b)

      Fig.  7.  Cross plot of homogenization temperature and salinity(a), histogram of homogenization temperatures(b), for primary aqueous inclusions developed in the calcite, northern Shuntuoguole low-uplift

      图  8  顺托果勒低隆起北部方解石脉体成岩环境

      Fig.  8.  Diagenetic environment of calcite veins in the northern Shuntuoguole low-uplift

      图  9  顺托果勒低隆起北部SP2井和SP3井埋藏史和热演化史图与方解石脉体形成时间

      Fig.  9.  Burial and thermal history for SP2 well and SP3 well and the formation time of calcite veins in the northern Shuntuoguole low-uplift

      表  1  顺托果勒低隆起北部方解石脉与围岩的部分微量元素含量及比值的平均值及其变化范围

      Table  1.   The average values and variation range of trace element data and ratios of calcite veins and host-rocks in the northern Shuntuoguole low-uplift

      方解石脉/围岩 Mn(10-6) Fe(10-6) Fe/Mn Th(10-6) U(10-6) U/Th
      C1(N=2) 11.89~15.79 262.50~288.71 18.28~22.08 0.006~0.014 0.012~0.050 2.02~3.67
      (13.84) (275.61) (20.18) (0.010) (0.031) (2.85)
      C2(N=3) 8.58~15.55 46.02~133.48 5.36~8.58 0.009~0.251 0.098~1.752 6.90~10.60
      (10.99) (77.41) (6.64) (0.106) (0.748) (8.16)
      C3(N=4) 24.87~35.90 58.47~93.18 1.69~2.60 0.018~0.051 0.003~0.012 0.06~0.66
      (31.69) (73.83) (2.35) (0.036) (0.006) (0.25)
      C4(N=1) 255.21 197.06 0.77 0.182 0.898 4.93
      围岩(N=3) 6.25~15.05 89.00~229.51 12.91~19.38 0.061~0.226 0.334~0.554 2.45~5.51
      (9.40) (146.53) (15.85) (0.148) (0.471) (3.77)
      注:微量元素括号内为平均值.
      下载: 导出CSV
    • [1] Bourdet, J., Pironon, J., Levresse, G., et al., 2008. Petroleum Type Determination through Homogenization Temperature and Vapour Volume Fraction Measurements in Fluid Inclusions. Geofluids, 8(1): 46-59. https://doi.org/10.1111/j.1468-8123.2007.00204.x
      [2] Caja, M.A., Permanyer, A., Marfil, R., et al., 2006. Fluid Flow Record from Fracture-Fill Calcite in the Eocene Limestones from the South-Pyrenean Basin (NE Spain) and Its Relationship to Oil Shows. Journal of Geochemical Exploration, 89(1-3): 27-32. https://doi.org/10.1016/j.gexplo.2005.11.009
      [3] Chen, H.H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150(in Chinese with English abstract). http://www.researchgate.net/publication/309049761_Advances_in_geochronology_of_hydrocarbon_accumulation
      [4] Denison, R.E., Koepnick, R.B., Burke, W.H., et al., 1998. Construction of the Cambrian and Ordovician Seawater 87Sr/86Sr Curve. Chemical Geology, 152(3-4): 325-340. https://doi.org/10.1016/s0009-2541(98)00119-3
      [5] Deng, S., Li, H.L., Han, J., et al., 2019. Characteristics of the Central Segment of Shunbei 5 Strike-Slip Fault Zone in Tarim Basin and Its Geological Significance. Oil & Gas Geology, 40(5): 990-998, 1073(in Chinese with English abstract).
      [6] Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201805004.htm
      [7] Deng, S., Li, H.L., Zhang, Z.P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      [8] Faure, G., Powell, J.L., 2012. Strontium Isotope Geology. Minerals, Rocks and Mountains. Springer, Berlin, Heidelberg.
      [9] Gao, J., He, S., He, Z.L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1): 33-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201401006.htm
      [10] Guo, X.W., Chen, J.X., Yuan, S.Q., et al., 2020. Constraint of In-Situ Calcite U-Pb Dating by Laser Ablation on Geochronology of Hydrocarbon Accumulation in Petroliferous Basins: A Case Study of Dongying Sag in the Bohai Bay Basin. Acta Petrolei Sinica, 41(3): 284-291(in Chinese with English abstract).
      [11] Guo, X.W., Liu, K.Y., Jia, C.Z., et al., 2016. Fluid Evolution in the Dabei Gas Field of the Kuqa Depression, Tarim Basin, NW China: Implications for Fault-Related Fluid Flow. Marine and Petroleum Geology, 78: 1-16. https://doi.org/10.1016/j.marpetgeo.2016.08.024
      [12] Hu, W.X., Chen, Q., Wang, X.L., et al., 2010. REE Models for the Discrimination of Fluids in the Formation and Evolution of Dolomite Reservoirs. Oil & Gas Geology, 31(6): 810-818(in Chinese with English abstract). http://www.researchgate.net/publication/308353614_REE_models_for_the_discrimination_of_fluids_in_the_formation_and_evolution_of_dolomite_reservoirs
      [13] Huang, S.J., Liu, S.G., Li, G.R., et al., 2004. Strontium Isotope Composition of Marine Carbonate and the Influence of Diagenetic Fluid on It in Ordovician. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 1-7(in Chinese with English abstract). http://www.researchgate.net/publication/287626028_Strontium_isotope_composition_of_marine_carbonate_and_the_influence_of_diagenetic_fluid_on_it_in_Ordovician
      [14] Huang, S.J., Qing, H.R., Hu, Z.W., et al., 2008. Cathodoluminescence and Diagenesis of the Carbonate Rocks in Feixianguan Formation of Triassic, Eastern Sichuan Basin of China. Earth Science, 33(1): 26-34(in Chinese with English abstract). http://www.researchgate.net/publication/283868068_Cathodoluminescence_and_diagenesis_of_the_carbonate_rocks_in_Feixianguan_formation_of_triassic_Eastern_Sichuan_basin_of_China
      [15] Jiang, L., Deng, B., Liu, S.G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2): 524-538(in Chinese with English abstract). http://www.researchgate.net/publication/332561265_Paleo-Fluid_Migration_and_Conservation_Conditions_of_Shale_Gas_in_Jiaoshiba-Wulong_Area
      [16] Jiao, F.Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839(in Chinese with English abstract). http://www.researchgate.net/publication/321697527_Significance_of_oil_and_gas_exploration_in_NE_strike-slip_fault_belts_in_Shuntuoguole_area_of_Tarim_Basin
      [17] Jiao, F.Z., 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216(in Chinese with English abstract). http://www.researchgate.net/publication/325534119_Significance_and_prospect_of_ultra-deep_carbonate_fault-karst_reservoirs_in_Shunbei_area_Tarim_Basin
      [18] Jochum, J., Friedrich, G., Leythaeuser, D., et al., 1995. Hydrocarbon-Bearing Fluid Inclusions in Calcite-Filled Horizontal Fractures from Mature Posidonia Shale (Hils Syncline, NW Germany). Ore Geology Reviews, 9(5): 363-370. https://doi.org/10.1016/0169-1368(94)00019-k
      [19] Kawabe, I., Toriumi, T., Ohta, A., et al., 1998. Monoisotopic REE Abundances in Seawater and the Origin of Seawater Tetrad Effect. Geochemical Journal, 32(4): 213-229. https://doi.org/10.2343/geochemj.32.213
      [20] Larson, L.T., Miller, J.D., Nadeau, J.E., et al., 1973. Two Sources of Error in Low Temperature Inclusion Homogenization Determination, and Corrections on Published Temperatures for the East Tennessee and Laisvall Deposits. Economic Geology, 68(1): 113-116. https://doi.org/10.2113/gsecongeo.68.1.113
      [21] Li, Y.T., Qi, L.X., Zhang, S.N., et al., 2019. Characteristics and Development Mode of the Middle and Lower Ordovician Fault-Karst Reservoir in Shunbei Area, Tarim Basin. Acta Petrolei Sinica, 40(12): 1470-1484(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJDL201911002.htm
      [22] Liu, L., He, S., Zhai, G.Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm
      [23] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [24] McArthur, J.M., Burnett, J., Hancock, J.M., 1992. Strontium Isotopes at K/T Boundary. Nature, 355: 28. https://doi.org/10.1038/355028a0
      [25] McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0-509 Ma and Accompanying Look-up Table for Deriving Numerical Age. The Journal of Geology, 109(2): 155-170. https://doi.org/10.1086/319243
      [26] McLimans, R.K., 1987. The Application of Fluid Inclusions to Migration of Oil and Diagenesis in Petroleum Reservoirs. Applied Geochemistry, 2(5-6): 585-603. https://doi.org/10.1016/0883-2927(87)90011-4
      [27] Morad, S., Al-Aasm, I.S., Sirat, M., et al., 2010. Vein Calcite in Cretaceous Carbonate Reservoirs of Abu Dhabi: Record of Origin of Fluids and Diagenetic Conditions. Journal of Geochemical Exploration, 106(1-3): 156-170. https://doi.org/10.1016/j.gexplo.2010.03.002
      [28] Nothdurft, L.D., Webb, G.E., Kamber, B.S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/s0016-7037(03)00422-8
      [29] Qi, L.X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KTSY201603004.htm
      [30] Qi, L.X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract).
      [31] Qian, Y.X., Wu, H.Z., Zhou, L.F., et al., 2019. Characteristic and Origin of Dolomites in the Third and Fourth Members of Leikoupo Formation of the Middle Triassic in NW Sichuan Basin: Constraints in Mineralogical, Petrographic and Geochemical Data. Acta Petrologica Sinica, 35(4): 1161-1180(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201270235641.html
      [32] Roberts, N.M.W., Rasbury, E.T., Parrish, R.R., et al., 2017. A Calcite Reference Material for LA-ICP-MS U-Pb Geochronology. Geochemistry, Geophysics, Geosystems, 18(7): 2807-2814. https://doi.org/10.1002/2016gc006784
      [33] Shang, P., Chen, H.H., Hu, S.Z., et al., 2020. Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area, Tarim Basin. Earth Science, 45(3): 1013-1026(in Chinese with English abstract).
      [34] Tenger., Liu, W.H., Xu, Y.C., et al., 2004. The Discussion on Anoxic Environments and Its Geochemical Identifying Indices. Acta Sedimentologica Sinica, 22(2): 365-372(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-sedimentologica-sinica_thesis/0201251750777.html
      [35] Wang, D., Wang, G.Z., Liu, S.G., et al., 2012. Geochemical Tracing of the Cambrian-Ordovician Reservoir Fluid in Well Yingdong-2, Eastern Tarim Basin. Oil & Gas Geology, 33(6): 867-876(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201206007.htm
      [36] Wang, F.R., He, S., Yang, X.Y., 2011. Diagenetic Environments of Calcite Veins Hosted in Marine Carbonate Rocks in Middle Yangtze Region of South China. Petroleum Geology & Experiment, 33(1): 56-60, 65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201101013.htm
      [37] Yang, X.Y., He, S., He, Z.L., et al., 2013. Characteristics and Paleo-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan Area. Journal of China University of Petroleum (Edition of Natural Science), 37(1): 19-26, 34(in Chinese with English abstract). http://www.researchgate.net/publication/288171368_Characteristics_and_pale-fluid_activity_implications_of_fluid-inclusion_and_isotope_of_calcite_veins_in_Jingshan_area
      [38] Yu, C.Y., Cui, J.P., 2019. Geochemical Characteristics and Genesis of Dolomite in Majiagou Ma55 Submember of the Northeast Yishan Slope, Ordos Basin. Earth Science, 44(8): 2761-2774(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908021.htm
      [39] Zhao, Y.D., 2019. Salinity Analysis and Application of Fluid Inclusions: A Case Study of Fushan Sag. Journal of Jilin University (Earth Science Edition), 49(5): 1261-1269(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201905006.htm
      [40] 陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003
      [41] 邓尚, 李慧莉, 韩俊, 等, 2019. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义. 石油与天然气地质, 40(5): 990-998, 1073. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm
      [42] 邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
      [43] 高键, 何生, 何治亮, 等, 2014. 中扬子京山地区方解石脉成因及其对油气保存的指示意义. 石油与天然气地质, 35(1): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401006.htm
      [44] 郭小文, 陈家旭, 袁圣强, 等, 2020. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束——以渤海湾盆地东营凹陷为例. 石油学报, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm
      [45] 胡文瑄, 陈琪, 王小林, 等, 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006017.htm
      [46] 黄思静, 刘树根, 李国蓉, 等, 2004. 奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响. 成都理工大学学报(自然科学版), 31(1): 1-7. doi: 10.3969/j.issn.1671-9727.2004.01.001
      [47] 黄思静, 卿海若, 胡作维, 等, 2008. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学, 33(1): 26-34. doi: 10.3321/j.issn:1000-2383.2008.01.004
      [48] 姜磊, 邓宾, 刘树根, 等, 2019. 焦石坝-武隆构造带古流体活动差异及对页岩气保存条件的影响. 地球科学, 44(2): 524-538. doi: 10.3799/dqkx.2018.515
      [49] 焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
      [50] 焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
      [51] 李映涛, 漆立新, 张哨楠, 等, 2019. 塔里木盆地顺北地区中——下奥陶统断溶体储层特征及发育模式. 石油学报, 40(12): 1470-1484. doi: 10.7623/syxb201912006
      [52] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
      [53] 漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51. doi: 10.3969/j.issn.1672-7703.2016.03.004
      [54] 漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111. doi: 10.3969/j.issn.1672-7703.2020.01.010
      [55] 钱一雄, 武恒志, 周凌方, 等, 2019. 川西中三叠统雷口坡组三段-四段白云岩特征与成因——来自于岩相学及地球化学的约束. 岩石学报, 35(4): 1161-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904012.htm
      [56] 尚培, 陈红汉, 胡守志, 等, 2020. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程. 地球科学, 45(3): 1013-1026. doi: 10.3799/dqkx.2019.046
      [57] 腾格尔, 刘文汇, 徐永昌, 等, 2004. 缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例. 沉积学报, 22(2): 365-372. doi: 10.3969/j.issn.1000-0550.2004.02.026
      [58] 王东, 王国芝, 刘树根, 等, 2012. 塔东地区英东2井寒武系-奥陶系储层流体地球化学示踪. 石油与天然气地质, 33(6): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201206007.htm
      [59] 王芙蓉, 何生, 杨兴业, 2011. 中扬子海相碳酸盐岩中方解石脉成岩环境研究. 石油实验地质, 33(1): 56-60, 65. doi: 10.3969/j.issn.1001-6112.2011.01.009
      [60] 杨兴业, 何生, 何治亮, 等, 2013. 京山地区方解石脉包裹体、同位素特征及古流体指示意义. 中国石油大学学报(自然科学版), 37(1): 19-26, 34. doi: 10.3969/j.issn.1673-5005.2013.01.004
      [61] 于春勇, 崔军平, 2019. 鄂尔多斯盆地伊陕斜坡东北部马家沟组马五5亚段白云岩地球化学特征及其成因. 地球科学, 44(8): 2761-2774. doi: 10.3799/dqkx.2019.954
      [62] 赵迎冬, 2019. 流体包裹体中盐度分析与应用——以福山凹陷为例. 吉林大学学报(地球科学版), 49(5): 1261-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905006.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  835
    • HTML全文浏览量:  266
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-08
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回