Genesis of Fuchuan Chromitites at South Anhui, Implications from the Parental Melts
-
摘要: 皖南蛇绿岩带位于江南造山带北东段,该区地幔橄榄岩多已发生蚀变甚至全部蛇纹石化,成为制约该区深部研究工作的一个现实瓶颈.为查明该蛇绿岩及赋存其中的伏川铬铁矿床的成因,本研究通过电子显微镜以及电子探针等手段,对皖南蛇绿岩和不同类型铬铁矿石(Ⅰ类以铬绿泥石为主要脉石矿物和Ⅱ类以异剥辉石为主要脉石矿物)中铬铁矿及其共生矿物进行深入研究,发现铬铁矿为典型的阿尔卑斯型高铝型铬铁矿,大多发育裂隙结构,在颗粒边缘或裂隙处部分蚀变为铁铬铁矿.对铬铁矿核部未蚀变部分进行研究,得出方辉橄榄岩中铬尖晶石Cr#(100×Cr/(Cr+Al))为54.12~65.18,Mg#(100×Mg/(Mg+Fe2+))为42.37~54.84,铬铁矿石中铬铁矿Cr#为53.97~62.29,Mg#为59.49~68.57.铬铁矿母岩浆成分和MORB(mid-ocean ridge basalt)基本一致,表明伏川铬铁矿结晶时母岩浆的成分可能为MORB.对其氧化环境的研究发现其成岩成矿环境为低氧逸度(-0.14至+0.68log(QFM)),并具有从MORB向SSZ(suprasubduction zone)过渡的特征.结合野外地质现象,认为铬铁矿石可能是地幔橄榄岩和洋中脊玄武岩浆反应而形成,而方辉橄榄岩又体现出SSZ特征,说明皖南蛇绿岩应该是地幔橄榄岩部分熔融、岩石-熔体反应和板块俯冲等综合作用的结果,这为研究江南造山带的构造和演化提供重要依据.Abstract: South Anhui ophiolite, one of the oldest ophiolites in southern China, is located in the northeastern most segment of Jiangnan orogen. The ultramafic rocks in this area are extensively serpentinized which constrains the researches here and it is challenging for further studies. In order to investigate the origin of the South Anhui ophiolites and the Fuchuan chromitites, detailed observation with microscope and electron probe micro-analyzer was made for the mineralogy analysis of chromites and paragenetic minerals in harzburgites and chromitites. The chromites can be divided into two types, namely, type Ⅰ with kämmererite as the gangue mineral, and type Ⅱ with diallage as the gangue mineral. All the chromites are typical Alpine-type high aluminum chromites, most of which develop fractures, and along the rim and fractures are altered into ferritchromite. The unaltered core part of the chromites which retains the pristine composition was studied, and the spinels in harzburgites are characterized by moderate Cr# (100×Cr/(Cr+Al), 54.12-65.18) and low Mg# (100×Mg/(Mg+Fe2+), 42.37-54.84), and those of the chromites from the chromitites are 53.97-62.29 and 59.49-68.57, respectively. The calculated component of parental melts of the chromitites is similar to MORB (mid-ocean ridge basalt), indicating the derivation from MORB. The oxygen fugacity is low (-0.14 to +0.68log(QFM)), showing the feature of transition from MORB to SSZ (suprasubduction zone) setting. Combining with the field phenomena, it is believed that chromitites might be formed from the interaction of peridotites and MORB, and together with the SSZ feature of the harzburgites, reflecting that the formation of South Anhui ophiolites might be the result of the combined effect of partial melting of the peridotites, rock-melt interaction, and plate subduction, which provides vital evidence for the tectonic and evolution of the Jiangnan orogen.
-
Key words:
- Fuchuan chromitite /
- South Anhui ophiolite /
- MORB /
- SSZ /
- Jiangnan orogen /
- mineral deposit
-
图 2 皖南蛇绿岩和铬铁矿床分布情况
Fig. 2. Distribution of South Anhui ophiolites and chromitites
图 3 伏川地幔橄榄岩野外产出状态及显微结构特征
a.伏川地幔橄榄岩野外照片,辉长岩脉侵入;b.方辉橄榄岩网格状结构发育,正交偏光,样号Fc-3-6;c.斜方辉石蚀变为绢石,裂缝处有蛇纹石挤入,边界呈港湾状,正交偏光,样号Fc-8-1;d.蠕虫状副矿物铬尖晶石呈半透明、红褐色分布于斜方辉石粒间,单偏光,样号Fc-8-1;e. 铬尖晶石颗粒边缘或裂隙处已部分或全部蚀变为铁铬铁矿,背散射照片,样号Fc-8-2-1;f. 铬尖晶石颗粒边缘或裂隙处蚀变为磁铁矿,背散射照片,样号Fc-9-1. Srp.蛇纹石;Bas.绢石;Sp.铬尖晶石;Fchr.铁铬铁矿;Käm.铬绿泥石;Mag.磁铁矿
Fig. 3. Outcrops and micro textures of the Fuchuan peridotites
图 4 Ⅰ类铬铁矿石手标本及显微结构特征
a.铬铁矿石手标本,脉石矿物主要为紫红色铬绿泥石,样号Fc-9-3;b.铬铁矿颗粒表面粗糙,已蚀变为铁铬铁矿,背散射照片,样号Fc-9-4-1;c.铬铁矿中铬绿泥石包裹体发育,背散射照片,样号Fc-9-3;d.铬铁矿中铬绿泥石包裹体及单斜辉石出溶体,背散射照片,样号Fc-9-3;e.碎裂状铬铁矿,裂隙中铬绿泥石充填,背散射照片,样号Fc-9-4-1;f.钙铬榴石和铬绿泥石相间呈揉皱状充填于铬铁矿颗粒之间,背散射照片,样号Fc-9-4-1. Chr.铬铁矿;Uvt.钙铬榴石;Chl.绿泥石;Cpx.单斜辉石;Käm、Fchr见图 3
Fig. 4. Photographs of hand specimen and micro textures of the type Ⅰ chromitites
图 5 Ⅱ类铬铁矿石手标本及显微结构特征
a.铬铁矿石手标本,脉石矿物主要为浅绿色异剥辉石,样号Fc-8-3-1;b.铬铁矿呈半透明褐红色,裂隙发育,单偏光,样号Fc-8-3-1;c.后成合晶结构铬铁矿,背散射照片,样号Fc-8-3-1;d.异剥辉石揉皱发育,边缘常蚀变为铬绿泥石,背散射照片,样号Fc-8-3-2;e.铬铁矿和绿泥石挤入异剥辉石颗粒中,在异剥辉石和铬铁矿接触处发育钙铝榴石,背散射照片,样号Fc-8-3-2. Dia.异剥辉石;Grs.钙铝榴石;Chr、Käm、Chl见图 3、图 4
Fig. 5. Photographs of hand specimen and micro textures of the type Ⅱ chromitites
图 6 伏川Ⅱ类铬铁矿石中异剥辉石成分图解
据Morimoto(1988).Di.透辉石;He.钙铁辉石;Au.普通辉石;Pi.易变辉石;ClEn.斜顽辉石;ClFs.铁斜辉石
Fig. 6. Diagram of diallages in Fuchuan type Ⅱ chromitites
图 7 伏川铬铁矿石中异剥辉石成分变化图
a.Mg#-Al2O3;b.Na2O-Al2O3;c.Cr2O3-Al2O3,据Pagé et al.(2008),图例同图 6.ABP.深海橄榄岩;FAP.弧前橄榄岩
Fig. 7. Variation of diallage compositions in the Fuchuan chromitites
图 8 伏川铬铁矿石中铬铁矿的TiO2-Cr2O3(a)、Al2O3-Cr2O3图解(b)和伏川方辉橄榄岩和铬铁矿石中铬铁矿的Cr#-Mg#图解(c)
a, b.据田亚洲(2015);c.据Dick and Bullen(1984)
Fig. 8. TiO2 vs. Cr2O3 (a) and Al2O3 vs. Cr2O3 (b) diagrams showing the compositional variation of Fuchuan chromitites and variation of Cr# vs. Mg# for chromites in chromitites and harzburgites from Fuchuan ophiolites (c)
图 9 伏川铬铁矿床铬铁矿和熔体间的关系
a.Al2O3; b.TiO2; c.FeO/MgO(据Rollinson,2008),图例同图 8. MORB.洋中脊玄武岩浆;ARC.岛弧岩浆
Fig. 9. Chromite-melt relationships for chromites and melts in the Fuchuan chromitites
图 10 与伏川铬铁矿平衡的母岩浆的(TiO2)melt-(Al2O3)melt图解(a)和与伏川铬铁矿平衡的母岩浆的(FeO/MgO)melt-(Al2O3)melt图解(b)
a.据Barnes and Roeder(2001); b.据Pagé and Barnes(2009), 图例同图 8. MORB.洋中脊玄武岩;BON.玻安岩;KOMA.科马堤岩;OPHIO.蛇绿岩
Fig. 10. (TiO2)melt vs. (Al2O3)melt in equilibrium with the chromite from Fuchuan chromitites (a) and (FeO/MgO)melt vs. (Al2O3)melt in equilibrium with chromite from the Fuchuan chromitites (b)
图 11 伏川方辉橄榄岩和铬铁矿石中铬铁矿的Fe3+/Fe2+-Al2O3图解
据Kamenetsky et al.(2001),图例同图 8. MORB.洋中脊玄武岩浆型橄榄岩;SSZ.超俯冲带型橄榄岩
Fig. 11. Fe3+/Fe2+ vs. Al2O3 variation diagram of chromites from the Fuchuan harzburgites and chromitites
图 12 伏川方辉橄榄岩铬尖晶石Δfo2log(QFM) vs. Cr#图解
据Dare et al.(2009). CAB.大陆弧玄武岩;IAT.岛弧玄武岩;harz.方辉橄榄岩;dun.纯橄岩;MORB、SSZ、BON见图 10、图 11
Fig. 12. Plot of Δfo2log(QFM) vs. Cr# of chromites from Fuchuan harzburgites
图 13 伏川方辉橄榄岩和铬铁矿石中铬铁矿TiO2-Al2O3图解(a)和TiO2 - Cr#图解(b)
a.据Kamenetsky et al.(2001),图例同图 8. SSZ、MORB见图 11;b. 据Tamura and Arai(2006).ABP、FAP见图 7;BON见图 10
Fig. 13. Plot of TiO2 versus Al2O3 (a) and the relation between TiO2 and Cr# (b) of chromites in Fuchuan harzburgites and chromitites
图 14 伏川方辉橄榄岩和铬铁矿石中铬铁矿Cr#-TiO2图解(a)和伏川铬铁矿石中铬铁矿Cr# - Fe#变化图(b)
a.据Pearce et al.(2000); b. 据Pagé and Barnes(2009); 图例同图 8. Lher.二辉橄榄岩;MORB、BON见图 10;IAT、dun、harz见图 12
Fig. 14. Cr# vs. TiO2 of chromites from Fuchuan harzburgites and chromitites (a) and variations diagram of Cr# vs. Fe# for chromite from Fuchuan chromitites (b)
表 1 伏川Ⅱ类铬铁矿石中异剥辉石电子探针数据(%)
Table 1. Representative electron microprobe analyses of diallages in Fuchuan type Ⅱ chromitites (%)
样品 Fc-8-3-2 Fc-8-3-1 点号 19-2-01 19-2-03 19-2-08 19-1-01 19-1-05 19-1-15 19-1-18 SiO2 52.70 52.00 52.65 51.86 54.68 55.20 54.34 TiO2 0.07 0.17 0.18 0.13 0.03 0.02 0.04 Al2O3 2.09 3.69 2.65 3.88 0.41 0.80 0.39 Cr2O3 0.91 1.41 1.20 1.55 0.51 0.07 0.05 FeO 2.09 2.19 2.28 2.54 0.82 0.52 1.97 MnO 0.07 0.05 0.07 0.10 0.05 0.01 0.04 MgO 16.52 16.34 15.92 16.33 17.41 17.46 16.63 CaO 23.62 22.24 23.22 22.48 25.02 25.22 25.26 Na2O 0.12 0.27 0.27 0.31 0.15 0.37 0.25 K2O 0.05 0.00 0.04 0.01 0.01 0.00 0.04 NiO 0.01 0.03 0.00 0.07 0.07 0.04 0.04 Total 98.24 98.39 98.48 99.27 99.17 99.71 99.04 Si 1.95 1.92 1.95 1.90 2.00 2.00 1.99 Ti 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Al 0.09 0.16 0.12 0.17 0.02 0.03 0.02 Cr 0.03 0.04 0.04 0.04 0.01 0.00 0.00 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Fe2+ 0.06 0.07 0.07 0.08 0.03 0.02 0.05 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.91 0.90 0.88 0.89 0.95 0.94 0.91 Ca 0.94 0.88 0.92 0.88 0.98 0.98 0.99 Na 0.01 0.02 0.02 0.02 0.01 0.03 0.02 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total 4 Mg# 93.37 93.02 92.57 91.96 97.43 98.37 93.78 En 47.59 48.66 46.93 48.06 48.53 48.67 46.32 Fs 3.50 3.74 3.88 4.37 1.36 0.82 3.14 Wo 48.91 47.60 49.19 47.57 50.11 50.51 50.54 注:Mg#为100×Mg/(Mg+Fe2+). 表 2 皖南蛇绿岩方辉橄榄岩和伏川铬铁矿石中铬铁矿电子探针数据(%)
Table 2. Representative electron microprobe analyses of chromites in harzburgites and chromitites from South Anhui ophiolites(%)
样品 Fc-3-3 Fc-8-2-1 Fc-9-1 Fc-9-3 Fc-9-4-1 Fc-9-4-2 Fc-8-3-2 Fc-8-3-1 岩性 方辉橄榄岩 Ⅰ类铬铁矿石 Ⅱ类铬铁矿石 点数 7个点
(平均值)17个点
(平均值)12个点
(平均值)7个点
(平均值)5个点
(平均值)9个点
(平均值)11个点
(平均值)12个点
(平均值)SiO2 0.07 0.04 0.03 0.02 0.07 0.02 0.02 0.14 TiO2 0.02 0.02 0.00 0.19 0.24 0.28 0.28 0.29 Al2O3 22.29 21.92 19.25 21.85 21.79 22.24 23.18 24.06 Cr2O3 44.43 46.15 48.16 47.63 46.69 45.72 44.51 44.15 FeO 22.40 20.54 21.71 13.82 16.36 16.71 16.98 15.83 MnO 0.32 0.29 0.30 0.23 0.24 0.23 0.25 0.21 MgO 9.67 10.21 10.24 14.69 13.58 13.74 13.66 14.18 V2O3 0.35 0.27 0.38 0.17 0.21 0.28 0.30 0.29 ZnO 0.39 0.38 0.26 0.04 0.06 0.04 0.07 0.06 NiO 0.06 0.04 0.07 0.12 0.10 0.12 0.11 0.14 Total 99.98 99.85 100.42 98.76 99.33 99.39 99.37 99.35 Si 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 Al 0.83 0.81 0.72 0.79 0.79 0.81 0.84 0.86 Cr 1.10 1.15 1.20 1.16 1.14 1.11 1.08 1.06 Fe3+ 0.06 0.03 0.07 0.03 0.05 0.06 0.06 0.05 Fe2+ 0.53 0.51 0.50 0.32 0.37 0.37 0.37 0.36 Mn 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 Mg 0.45 0.48 0.48 0.67 0.62 0.63 0.62 0.64 V 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 Zn 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total 3 Mg# 46.00 48.51 48.83 67.67 62.54 63.16 62.62 64.40 Cr# 57.23 58.54 62.68 59.38 58.99 57.97 56.30 55.18 Al# 0.42 0.41 0.36 0.40 0.40 0.41 0.42 0.44 Fe3+# 0.03 0.02 0.04 0.02 0.02 0.03 0.03 0.02 (Al2O3)melt - - - 14.93 14.92 14.99 15.14 15.28 (TiO2)melt - - - 0.56 0.65 0.72 0.71 0.72 (FeO/MgO)melt - - - 0.89 1.14 1.15 1.20 1.10 注:Cr#为100×Cr/(Cr+Al),Mg#为100×Mg/(Mg+Fe2+),Al#为Al/(Cr+Al+Fe3+),Fe3+#为Fe3+/(Cr+Al+Fe3+),(Al2O3)melt、(TiO2)melt据Rollinson(2008)计算,(FeO/MgO)melt据Maurel and Maurel(1982)计算. 表 3 伏川方辉橄榄岩共生橄榄石和铬尖晶石数据以及温度、氧逸度
Table 3. Olivine and spinel data of Fuchuan harzburgite and their temperature and oxygen fugacity
橄榄石
点号共生铬铁矿点号 铬尖晶石 橄榄石 温度(℃) Δfo2log
(QFM)Fe2+ Mg Fe3+ Al Cr Ti Mg Fe FC-9A-12 FC-9A-13 0.483 0.499 0.090 0.845 1.049 0.014 1.808 0.161 609 0.68 FC-9A-13 FC-9A-15 0.499 0.490 0.058 0.879 1.058 0.003 1.811 0.171 581 -0.14 FC-9A-14 FC-9A-17 0.502 0.483 0.073 0.824 1.093 0.010 1.796 0.168 602 0.20 注:橄榄石和铬尖晶石成分丁炳华等(2008)中方辉橄榄岩样品FC-9A,温度和氧逸度根据 Ballhaus et al.(1991) 计算. -
[1] Anhui Bureau of Geology and Mineral Resources, 1987. Regional Geological Map of Anhui Province, China (Scale 1∶500 000), 4 Sheets. Geological Publishing House, Beijing (in Chinese). [2] Arai, S., 1994. Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships: Review and Interpretation. Chemical Geology, 113(3-4): 191-204. https://doi.org/10.1016/0009-2541(94)90066-3 [3] Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264: 277-295. https://doi.org/10.1016/j.lithos.2016.08.039 [4] Bai, W. J., Yang, J. S., Robinson, P. T., et al., 2001. Study of Diamonds from Chromitites in the Luobusa Ophiolite, Tibet. Acta Geologica Sinica, (3): 404-409 (in Chinese with English abstract). [5] Ballhaus, C., Berry, R. F., Green, D. H., 1991. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle. Contributions to Mineralogy and Petrology, 107(1): 27-40. https://doi.org/10.1007/BF00311183 [6] Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(12): 2279-2302. https://doi.org/10.1093/petrology/42.12.2279 [7] Chen, Y.H., Yang, J.S., 2018. Formation of Podiform Chromitite Deposits: Review and Prospects. Earth Science, 43(4): 991-1010 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804005.htm [8] Cottrell, E., Kelley, K. A., 2011. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle. Earth and Planetary Science Letters, 305(3-4): 270-282. https://doi.org/10.1016/j.epsl.2011.03.014 [9] Dare, S. A. S., Pearce, J. A., Mcdonald I., et al., 2009. Tectonic Discrimination of Peridotites Using fo2-Cr# and Ga-Ti-FeⅢ Systematics in Chrome-Spinel. Chemical Geology, 261(3 - 4): 199-216. https://doi.org/10.1016/j.chemgeo.2008.08.002 [10] Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76. https://doi.org/10.1007/BF00373711 [11] Ding, B.H., Shi, R.D., Zhi, X.C., et al., 2008. Neoproterozoic (about 850 Ma) Subduction in the Jiangnan Orogen: Evidence from the SHRIMP U-Pb Dating of the SSZ-Type Ophiolite in Southern Anhui Province. Acta Petrologica et Mineralogica, 27(5): 375-388 (in Chinese with English abstract). [12] Droop, G. T. R., 1987. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 51: 431-435. https://doi.org/10.1180/minmag.1987.051.361.10 [13] Garuti, G., Pushkarev, E. V., Thalhammer, O. A. R., et al., 2012. Chromitites of the Urals (Part 1): Overview of Chromite Mineral Chemistry and Geotectonic Setting. Ofioliti, 37(1): 27-53. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220121000281609 [14] Irvine, T. N., 1965. Chromian Spinel as a Petrogenetic Indicator Part 1, Theory. Canadian Journal of Earth Science, 2: 648-673. https://doi.org/10.1139/e65-046 [15] Kamenetsky, V. S., Crawford, A. J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4): 655-671. https://doi.org/10.1093/petrology/42.4.655 [16] Lian, D. Y., Yang, J. S., Liu, F., et al., 2019. Diamond Classification, Compositional Characteristics, and Research Progress: A Review. Earth Science, 44(10): 3409-3453 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910017.htm [17] Liu, T., Zheng, Y.Y., Guo, T.J., 2019a. Optimal Geochemical Features of Medium and Large-Sized Podiform Chromite Ores. Geological Science and Technology Information, 38(2): 217-225 (in Chinese with English abstract). [18] Liu, T., Zheng, Y.Y., Wang, P.C., et al., 2019b. Geochemical Indicator for Podiform Chromite Mineralization and Its Formation Mechanism. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 176-183, 194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201901020.htm [19] Liu, X., Su, B.X., Bai, Y., et al., 2018. Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite: Inference from Mineral Inclusions. Earth Science, 43(4): 1038-1050 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804008.htm [20] Maurel, C., Maurel, P., 1982. Étude Expérimental de la Distribution de L'aluminium Entre Bain Silicate Basique et Spinelle Chromifére. Implications Pétrogenetiques: Teneur en Chrome des Spinelles. Bulletin de Mineralogie, 105: 197-202. https: //doi.org/10.3406/bulmi.1982.7605 [21] Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262 [22] Najafzadeh, A. R., 2017. Mineralogy and Composition of Chromitites and Host Peridotites from the Colkahan Ultramafic Complex (Nazdasht Mine), Kerman, Southeastern Iran. Mineralogy and Petrology, 111(3): 337-350. https://doi.org/10.1007/s00710-016-0479-6 [23] Ni, X. Y., Ba, D. Z., Yang, M. T., 1992. Texture and Structure of Upper Mantle Peridotites and Chromitites in Tibet. China University of Geosciences Press, China(in Chinese). [24] No. 332 Geological Team of Anhui Bureau of Geology and Mineral Exploration, 1962. Report on the Geochemical Ore Exploration of Ultramafic Rocks at the East Shexian, Anhui Province (in Chinese). [25] Pagé, P., Barnes, S., 2009. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology, 104: 997-1018. https://doi.org/10.2113/gsecongeo.104.7.997 [26] Pagé, P., Bédard, J. H., Schroetter, J., et al., 2008. Mantle Petrology and Mineralogy of the Thetford Mines Ophiolite Complex. Lithos, 100: 255-292. https://doi.org/10.1016/j.lithos.2007.06.017 [27] Pearce, J. A., Barker, P. F., Edwards, S. J., et al., 2000. Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53. https://doi.org/10.1007/s004100050572 [28] Rollinson, H., 2005. Chromite in the Mantle Section of the Oman Ophiolite: A New Genetic Model. Island Arc, 14(4): 542-550. https://doi.org/10.1111/j.1440-1738.2005.00482.x [29] Rollinson, H., 2008. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite: Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 156(3): 273-288. https://doi.org/10.1007/s00410-008-0284-2 [30] Rollinson, H., Adetunji, J., Yousif, A. A., et al., 2012. New Mössbauer Measurements of Fe3+ / ΣFe in Chromites from the Mantle Section of the Oman Ophiolite: Evidence for the Oxidation of the Sub-Oceanic Mantle. Mineralogical Magazine, 76(3): 579-596. https://doi.org/10.1180/minmag.2012.076.3.09 [31] Shu, L. S., Wang, J. Q., Yao J. L., 2019. Tectonic Evolution of the Eastern Jiangnan Region, South China: New Findings and Implications on the Assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42-65. https://doi.org/10.1016/j.precamres.2018.12.007 [32] Tamura, A., Arai, S., 2006. Harzburgite-Dunite-Orthopyroxenite Suite as a Record of Supra-Subduction Zone Setting for the Oman Ophiolite Mantle. Lithos, 90: 43-56. https://doi.org/10.1016/j.lithos.2005.12.012 [33] Tian, Y. Z., 2015. Genesis of High-Al Chromitite of the Sartohay Ophiolite, Xinjiang (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [34] Uysal, I., Akmaz, R. M., Kapsiotis, A., et al., 2015. Genesis and Geodynamic Significance of Chromitites from the Orhaneli and Harmancık Ophiolites (Bursa, NW Turkey) as Evidenced by Mineralogical and Compositional Data. Ore Geology Reviews, 65: 26-41. https://doi.org/10.1016/j.oregeorev.2014.08.006 [35] Whattam, S. A., Stern, R. J., 2011. The 'Subduction Initiation Rule': A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation. Contributions to Mineralogy and Petrology, 162(5): 1031-1045. https://doi.org/10.1007/s00410-011-0638-z [36] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopyroxene Exsolution Lamellae in Chromites: In-Situ Ultrahigh Pressure Evidence from Podiform Chromites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109: 314-322. https://doi.org/10.1016/j.lithos.2008.05.003 [37] Yang, J. S., Ba, D. Z., Xu, X. Z., et al., 2010. A Restudy of Podiform Chromite Deposits and Their Ore Prospecting Vista in China. Geology in China, 37(4): 1141-1150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm [38] Zhang, C. L., Santosh, M., Zou, H. B., et al., 2013. The Fuchuan Ophiolite in Jiangnan Orogen: Geochemistry, Zircon U-Pb Geochronology, Hf Isotope and Implications for the Neoproterozoic Assembly of South China. Lithos, 179: 263-274. doi: 10.1016/j.lithos.2013.08.015 [39] Zhou, M. F., Robinson, P. T., 1994. High-Cr and High-Al Podiform Chromitites, Western China: Relationship to Partial Melting and Melt/Rock Reaction in the Upper Mantle. International Geology Review, 36(7): 678-686. https://doi.org/10.1080/00206819409465481 [40] Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3-21. https://doi.org/10.1093/petrology/37.1.3 [41] Zhou, W. T., 2016. Characteristic and Tectonic Significances of Zonal Spinel in Northeastern Jiangxi Ophiolite (Dissertation). East China Institute of Technology, Nanchang (in Chinese with English abstract). [42] Zhou, X. M., Zou, H. B., Yang, J. D., et al., 1989. Sm-Nd Isochronous Age of Fuchuan Ophiolite Suite in Shexian County, Anhui Province and Its Geological Significance. Chinese Science Bulletin, (16): 1243-1245 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW199003006.htm [43] 安徽省地质矿产局, 1987. 安徽省区域地质图(1∶500 000), 四幅. 北京: 地质出版社. [44] 白文吉, 杨经绥, Robinson, P. T., 等, 2001. 西藏罗布莎蛇绿岩铬铁矿中金刚石的研究. 地质学报, (3): 404-409. doi: 10.3321/j.issn:0001-5717.2001.03.014 [45] 陈艳虹, 杨经绥, 2018. 豆荚状铬铁矿床研究回顾与展望. 地球科学, 43(4): 991-1010. doi: 10.3799/dqkx.2018.704 [46] 丁炳华, 史仁灯, 支霞臣, 等, 2008. 江南造山带存在新元古代(~850 Ma)俯冲作用: 来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据. 岩石矿物学杂志, 27(5): 375-388. doi: 10.3969/j.issn.1000-6524.2008.05.001 [47] 连东洋, 杨经绥, 刘飞, 等, 2019. 金刚石分类、组成特征以及我国金刚石研究展望. 地球科学, 44(10): 3409-3453. doi: 10.3799/dqkx.2018.392 [48] 刘婷, 郑有业, 郭统军, 2019a. 大中型豆荚状铬铁矿床地球化学特征研究. 地质科技情报, 38(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902025.htm [49] 刘婷, 郑有业, 王朋冲, 等, 2019b. 豆荚状铬铁矿床成矿地球化学指标对比和成矿作用讨论. 矿物岩石地球化学通报, 38(1): 176-183, 194. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901020.htm [50] 刘霞, 苏本勋, 白洋, 等, 2018. 蛇绿岩中铬铁岩母岩浆的富Ca特征: 矿物包裹体证据. 地球科学, 43(4): 1038-1050. doi: 10.3799/dqkx.2018.707 [51] 倪心垣, 巴登珠, 杨茂同, 1992. 西藏上地幔橄榄岩及铬铁矿石结构构造图册. 武汉: 中国地质大学出版社. [52] 安徽省地质矿产勘查局332地质队, 1962. 安徽省歙县东部地区超基性岩地球化学普查找矿工作报告. [53] 田亚洲, 2015. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因(博士学位论文). 北京: 中国地质科学院. [54] 杨经绥, 巴登珠, 徐向珍, 等, 2010. 中国铬铁矿床的再研究及找矿前景. 中国地质, 37(4): 1141-1150. doi: 10.3969/j.issn.1000-3657.2010.04.028 [55] 周文婷, 2016. 赣东北蛇绿混杂岩岩石地球化学特征及构造意义(硕士学位论文). 南昌: 东华理工大学. [56] 周新民, 邹海波, 杨杰东, 等, 1989. 安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义. 科学通报, (16): 1243-1245. doi: 10.3321/j.issn:0023-074X.1989.16.003