Contribution and Its Temporal Variation of Groundwater Discharge to the Water Mass Balance of Dongting Lake from 1996 to 2017
-
摘要: 地下水排泄在湖泊水量及营养盐均衡中发挥着重要作用,其中地下水向湖泊排泄的量化是关键,但目前对其时间变异性的研究却十分薄弱.针对这一科学问题,以长江中游重要调蓄湖泊-洞庭湖为例,通过收集1996~2017年洞庭湖流域的水文和气象数据,基于质量平衡模型,查明地下水排泄对洞庭湖水量均衡的贡献以及地下水向洞庭湖排泄强度随时间的变化.结果显示:(1)枯水期时地下水排泄量为(0.17~1.51)亿m3/d,地下水排泄强度为38.74~207.26 mm/d,地下水排泄对湖泊水量均衡的贡献为8.70%~30.37%;(2)地下水排泄量、地下水排泄强度、地下水排泄对湖泊水量均衡的贡献在1996~2017年间均呈现出明显的先降低再升高的变化趋势,三峡水库蓄水后至三峡工程全面竣工初期的地下水排泄相较于三峡水库蓄水前和三峡工程全面运行后显著降低;(3)三峡工程运行对长江水位及地下水位的改变可能是引起湖底地下水排泄时间变异性的重要原因.为洞庭湖区域的水量均衡提供了新的认识,也为今后洞庭湖区域水资源开发利用和区域生态安全管理提供了理论支撑.Abstract: Groundwater discharge plays an important role in lake water and nutrient mass balance, for which the key is to quantify lacustrine groundwater discharge (LGD). However, the temporal variation of LGD has been poorly known. In response to this scientific problem, this study takes the important lake in the middle reaches of the Yangtze River-Dongting Lake as an example. By collecting hydrological and meteorological data from the Dongting Lake basin in 1996-2017, the contribution of groundwater discharge to Dongting Lake and the temporal variation of LGD rate were determined based on the mass balance model. The results indicated that: (1) The LGD volume during the dry season was (0.17-1.51)×108 m3/d, the LGD rate was 38.74-207.26 mm/d, and the contribution of LGD to Dongting Lake was 8.70%-30.37%; (2) the LGD volume, rate and its contribution to Dongting Lake showed a decreasing tendency during 2003-2010 and an increasing tendency during 2010-2017, and the LGD from the impoundment of the Three Gorges Reservoir to the completion of the Three Gorges Project was significantly lower than that before the impoundment of the Three Gorges Reservoir and the completion of the Three Gorges Project; (3) the changes of the Yangtze River stage and groundwater table induced by the operation of the Three Gorges Project may be an important cause for the temporal variability of LGD. This study provides a new understanding of the water balance in the Dongting Lake area, as well as the theoretical support for the future utilization of water resources and regional ecological security management in the Dongting Lake area.
-
Key words:
- groundwater /
- Dongting Lake /
- mass balance model /
- temporal variation /
- water balance
-
表 1 敏感性分级
Table 1. Classification of sensitivity degree
等级 范围 敏感性表征 Ⅰ |S| < 0.05 不敏感 Ⅱ 0.05 < |S| < 0.20 弱敏感 Ⅲ 0.20 < |S| < 0.50 一般敏感 Ⅳ 0.50 < |S| < 1.00 比较敏感 Ⅴ 1.00 < |S| 极为敏感 表 2 1996~2017年枯水期的地下水排泄量、排泄强度和各入湖端元对水量均衡的贡献
Table 2. Groundwater discharge and discharge rate during dry season and percentage of contribution to the water balance by each lake end element from 1996 to 2017
地下水排泄量(亿m3/d) 地下水排泄强度(mm/d) 降水对水量均衡的贡献(%) 地表水对水量均衡的贡献(%) 地下水对水量均衡的贡献(%) 区间 0.71~1.51 38.74~207.26 0.09~0.65 69.31~91.00 8.70~30.37 均值 0.55 98.78 0.32 81.37 18.31 表 3 水量均衡模型的参数相对敏感度分析结果
Table 3. Results of relative sensitivity analysis of parameters of water balance model
参数 相对敏感度 敏感度分级 敏感性特征 出湖水量Ro 5.375 Ⅴ 极度敏感 入湖水量Ri 0.522 Ⅳ 比较敏感 降水量Pi 0.013 Ⅰ 不敏感 蒸发量Eo 0.009 Ⅰ 不敏感 湖容变化量ΔV 0.047 Ⅰ 不敏感 -
[1] Chen, Y.P., 2016. The Variation and Response of Water and Sediment Exchange between Yangtze River and Dongting Lake after the Three Gorges Reservoir Impoundment(Dissertation). China Institute of Resources & Hydropower Research, Beijing (in Chinese with English abstract). [2] Choi, J.Y., Choi, C.H., 1992. Sensitivity Analysis of Multilayer Perception with Differentiable Activation Functions. IEEE Transactions on Neural Networks, 3(1) : 101-107. https://doi.org/10.1109/72.105422. [3] Fu, L., Wang, G. C., Shi, Z. M., et al., 2018. Estimation of Groundwater Discharge and Associated Chemical Fluxes into Poyang Lake, China: Approaches Using Stable Isotopes (δD and δ18O) and Radon. Hydrogeology Journal, 26(5): 1625-1638. https://doi.org/10.1007/s10040-018-1793-3 [4] Fu, X., Zhao, Q.X., Sun, Z.H., 2019. Effects of 175m Experimental Operation of the Three Gorges Reservoir on the Storage Capacity of Lake Dongting. Journal of Lake Sciences, 31(6): 1713-1725 (in Chinese with English abstract). https://doi.org/10.18307/2019.0603. [5] Gurrieri, J. T., Furniss, G., 2004. Estimation of Groundwater Exchange in Alpine Lakes Using Non-Steady Mass-Balance Methods. Journal of Hydrology, 297(1/2/3/4): 187-208. https://doi.org/10.1016/j.jhydrol.2004.04.021 [6] He, Z., Wan, R.R., Dai, X., et al., 2015. Seasonal Water Regime Change of Dongting Lake in Recent 30 Years and Its Response to Changes in Water Exchange in Rivers and Lakes. Lake Science, 27(6): 991-996 (in Chinese with English abstract). doi: 10.18307/2015.0601 [7] Huang, D.F., Yang, S.Z., Liu, Z.Q., et al., 1965. Lake Geology of the Three Large Freshwater Lakes in the Lower Reaches of the Yangtze River and Its Formation and Development. Ocean and Lake, 7(4): 396-426 (in Chinese with English abstract). [8] Jiang, D.W., Huang, S.C., Zhang, Y.P., et al., 2010. A Discussion on the Evolution of the Dongting Lake Based on Geo-Environmental Remote Sensing Investigation and Monitoring Data. Remote Sensing for Land & Resources, (S1): 124-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GTYG2010S1028.htm [9] Kai, D., Yang, S. Y., Lian, E. G., et al., 2016. Three Gorges Dam Alters the Changjiang (Yangtze) River Water Cycle in the Dry Seasons: Evidence from H-O Isotopes. Science of the Total Environment, 562(Part D): 89-97. https://doi.org/10.1016/j.scitotenv.2016.03.213 [10] Lewandowski, J., Meinikmann, K., Nützmann, G., et al., 2015. Groundwater: The Disregarded Component in Lake Water and Nutrient Budgets. Part 2: Effects of Groundwater on Nutrients. Hydrological Processes, 29(13): 2922-2955. https://doi.org/10.1002/hyp.10384 [11] Li, Y., Li, Z.F., Xi, Q., et al., 2013. Parameter Sensitivity Analysis of Runoff Simulation and Model Adaptability Research Based on HSPF. Environmental Science, 34(6): 2139-2145 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/hjkx201306011 [12] Li, Y., Yang, W.Y., 2016. The Evolution of Runoff in the Three Rivers of Dongting Lake and the Challenges Faced by Agricultural Water. China Rural Water and Hydropower, (11): 86-92+100 (in Chinese with English abstract). [13] Li, Z.L., 2003. The Change of Water Distribution between Yangtze River and Dongting Lake and Its Influence on Flood Control. Proceedings of the Fourth Symposium of Hydrology and Sediment Committee of Chinese Society of Hydraulic Engineering, Beijing, 65-68(in Chinese with English abstract). [14] Liu, P.L., Mao, D.H., Zhou, H., et al., 2015. The Variation of Runoff in the Flood Season of Hunan Four Waters into Dongting Lake from 1990 to 2013. Water Conservation, 31(4): 52-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SZYB201504013.htm [15] Liu, W.B., Yang, T., Du, M.Y., et al., 2018. Influence of Three Gorges Reservoir Operation on Hydrological Mechanism of Typical Hydrological Stations in the Middle and Lower Reaches of the Yangtze River. Three Gorges Ecological Environment Monitoring, 3(3): 8-15(in Chinese with English abstract). [16] Meinikmann, K., Hupfer, M., Lewandowski, J., et al., 2015. Phosphorus in Groundwater Discharge: A Potential Source for Lake Eutrophication. Journal of Hydrology, 524(6): 214-226. https://doi.org/10.1016/j.jhydrol.2015.02.031 [17] Qian, Z., Zhang, S.H., Zhuo, S.Y., et al., 2014. Analysis on Variation Trends and Cycle of Water Inflow from Four Rivers to Dongting Lake. Yangtze River, 45(15): 39-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RIVE201415010.htm [18] Rosenberry, D. O., Winter, T. C., 2009. Hydrologic Processes and the Water Budget: Chapter 2. Mirror Lake: Interactions among Air, Land, and Water. Academic Press, Utah, 23-68. [19] Scardi, M., Harding, L. W. Jr., 1999. Developing an Empirical Model of Phytoplankton Primary Production: A Neural Network Case Study. Ecological Modelling, 120(2/3): 213-223. https://doi.org/10.1016/s0304-3800(99)00103-9 [20] Stets, E. G., Winter, T. C., Rosenberry, D. O., et al., 2010. Quantification of Surface Water and Groundwater Flows to Open- and Closed-Basin Lakes in a Headwaters Watershed Using a Descriptive Oxygen Stable Isotope Model. Water Resources Research, 46(3): W03515. https://doi.org/10.1029/2009wr007793 [21] Sun, S.R., Xie, P., Zhao, J.Y., et al., 2018. Analysis of Flood Peak Flow and Water Level Variation Characteristics of Three Mouths in Dongting Lake. Lake Science, 30(3): 812-824 (in Chinese with English abstract). doi: 10.18307/2018.0323 [22] Sun, Z.D., Huang, Q., Jiang, J.H., et al., 2011. Analysis on the Changes of Main Ecological Environment Problems in Dongting Lake. Resources and Environment in the Yangtze River Basin, 20 (9): 1108-1113. (in Chinese with English abstract). [23] Tian, Y., Lei, X, H., Jiang, Y, Z, et al., 2010. Comment on Parameter Sensitivity Analysis of Hydrological Model. Journal of China Hydrology, 30(4): 9-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWZZ201004004.htm [24] Wang, H.X., Cha, H.F., Li, Y., et al., 2018. Study on Hydrological Situation Change of Dongting Lake after Impoundment of Three Gorges Reservoir. Hydropower Energy Science, 36(10): 31-33+48 (in Chinese with English abstract). [25] Wang, L.J., Tian, Z.B., Li, Y.J., et al., 2020. Trend and Driving Factors of Water Environment Change in Dongting Lake in the Last 30 Years. Research of Environmental Sciences, 33(5): 1140-1149(in Chinese with English abstract). [26] Wang, W.Q., 2000. Water resources of Dongting Lake and Its Impact on Wetland Ecological Environment. Land and Resources Technology Management, (6): 1-7 (in Chinese with English abstract). [27] Wang, Y., 2014. Temporal and Spatial Distribution of Nitrogen and Phosphorus in Dongting Lake and Ecological Risk Assessment(Dissertation). Northeast Forestry University, Harbin (in Chinese with English abstract). [28] Xie, W.J., Yue, C.Y., Zhang, W., et al., 2017. Study on the Temporal and Spatial Characteristics of Dongting Lake from 1996 to 2016. Water Resources Informatization, (5): 32-38(in Chinese with English abstract). [29] Xiong, J.X., Wu, N.F., Chen, D.L., et al., 2018. Spatial and Temporal Differentiation of Ecological Carrying Capacity Response in Dongting Lake Area. Journal of Central South University of Forestry and Technology, (12): 13-21+29. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNLB201812002.htm [30] Yi, P.L., Li, X.B., Mei, J.H., et al., 2000. Assessment of the Relationship between the Volume and Water Level of Dongting Lake and Its Storage Capacity. Hunan Geology, (4): 267-270 (in Chinese with English abstract). [31] Yu, S.C., Yu, D.Q., Wang, L.C., et al., 2019. Remote Sensing Study of Dongting Lake Beach Changes before and after Operation of Three Gorges Reservoir. Earth Science, 44(12): 4275-4283 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912037.htm [32] Zhan, L.C., Chen, J.S., Zhang, S.Y., et al., 2014. Characteristics of Stable Isotopes in Precipitation, Surface Water and Groundwater in the Dongting Lake Region. Advances in Water Science, 25(3): 327-335 (in Chinese with English abstract). http://www.researchgate.net/publication/286338289_Characteristics_of_stable_isotopes_in_precipitation_surface_water_and_groundwater_in_the_Dongting_Lake_region [33] Zhang, J., Zhai, H.J., 2011. Dongting Lake and Lake District Water Resources Protection Plan. Yangtze River, 42(2): 56-58 (in Chinese with English abstract). [34] Zhao, J.K., Li, J.F., Dai, Z.J., et al., 2011. Analysis of Water Exchange Effect of Rivers and Lakes in the Middle and Lower Reaches of the Yangtze River. Journal of Natural Resources, 26(9): 1613-1627(in Chinese with English abstract). [35] Zhao, J.X., Li, C.A., Zhang, Y, F., et al., 2016. Quaternary Chronostratigraphy of Borehole S3-7 in Dongting Basin. Earth Science, 41(4): 633-643 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201604008.htm [36] Zhao, Q.X., Fu, X., Sun, Z.H., et al., 2020. Evaluation of the Impact of Three Gorges Reservoir on Three Outlets of Jingjiang River. Journal of Yangtze River Scientific Research Institute, 37(2): 7-14 (in Chinese with English abstract). [37] Zou, W.F., 1989. Relationship between Soil Gleization and Geological features in Dongting Lake Area. Journal of Natural Science of Hunan Normal University, 12 (1): 88-93 (in Chinese with English abstract). [38] 陈虞平, 2016. 三峡水库运用后长江与洞庭湖水沙交换的变化及响应(博士毕业论文). 北京: 中国水利水电科学研究院. [39] 付湘, 赵秋湘, 孙昭华, 等, 2019. 三峡水库175 m试验性蓄水期调度运行对洞庭湖蓄水量变化的影响. 湖泊科学, 31(6): 1713-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201906020.htm [40] 何征, 万荣荣, 戴雪, 等, 2015. 近30年洞庭湖季节性水情变化及其对江湖水量交换变化的响应. 湖泊科学, 27(6): 991-996. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201506001.htm [41] 黄第藩, 杨世倬, 刘中庆, 等, 1965. 长江下游三大淡水湖的湖泊地质及其形成与发展. 海洋与湖沼, 7(4): 396-426. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ196504004.htm [42] 姜端午, 黄树春, 张苑平, 等, 2010. 基于地质环境遥感调查与监测数据探讨洞庭湖演变规律. 国土资源遥感, (S1): 124-129. doi: 10.6046/gtzyyg.2010.s1.26 [43] 李燕, 李兆富, 席庆, 等, 2013. HSPF径流模拟参数敏感性分析与模型适用性研究. 环境科学, 34(6): 2139-2145 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201306011.htm [44] 李杨, 杨文尧, 2016. 洞庭湖三口河系地区径流演变情势与农业用水面临的挑战. 中国农村水利水电, (11): 86-92+100. doi: 10.3969/j.issn.1007-2284.2016.11.021 [45] 李振林, 2003. 荆江与洞庭湖水量分配关系的变化及对防洪的影响. 中国水力发电工程学会水文泥沙专业委员会第四届学术讨论会论文集, 65-68. [46] 刘培亮, 毛德华, 周慧, 等, 2015. 1990~2013年湖南四水入洞庭湖汛期径流量的变化规律. 水资源保护, 31(4): 52-6 https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201504013.htm [47] 刘文彬, 杨涛, 杜牧野, 等, 2018. 三峡水库运行对长江中下游典型水文站水文机制的影响. 三峡生态环境监测, 3(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHC201803003.htm [48] 钱湛, 张双虎, 卓志宇, 等, 2014. 四水入洞庭湖水量变化趋势及周期分析. 人民长江, 45(15): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201415010.htm [49] 孙思瑞, 谢平, 赵江艳, 等, 2018. 洞庭湖三口洪峰流量和水位变异特性分析. 湖泊科学, 30(3): 812-824. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201803023.htm [50] 孙占东, 黄群, 姜加虎, 2011. 洞庭湖主要生态环境问题变化分析. 长江流域资源与环境, 20(9): 1108-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201109014.htm [51] 田雨, 雷晓辉, 蒋云钟, 等, 2010. 水文模型参数敏感性分析方法研究评述. 水文, 30(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201004004.htm [52] 王鸿翔, 查胡飞, 李越, 等, 2018. 三峡水库蓄水后洞庭湖水文情势变化研究. 水电能源科学, 36(10): 31-33+48. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201810008.htm [53] 王丽婧, 田泽斌, 李莹杰, 等, 2020. 洞庭湖近30年水环境演变态势及影响因素研究. 环境科学研究, 33(5): 1140-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202005011.htm [54] 王文清, 2000. 洞庭湖水资源及其对湿地生态环境的影响. 国土资源科技管理, (6): 1-7. doi: 10.3969/j.issn.1009-4210.2000.06.001 [55] 王岩, 2014. 洞庭湖氮磷时空分布及生态风险评价(博士毕业论文). 哈尔滨: 东北林业大学. [56] 谢文君, 岳翠莹, 张文, 等, 2017. 洞庭湖1996~2016年时空特征变化研究. 水利信息化, (5): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSW201705008.htm [57] 熊建新, 吴南飞, 陈端吕, 等, 2018. 洞庭湖区生态承载力响应的时空分异. 中南林业科技大学学报, (12): 13-21+29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201812002.htm [58] 易波琳, 李晓斌, 梅金华, 等, 2000. 洞庭湖面积容积与水位关系及调蓄能力评估. 湖南地质, (4): 267-270. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ200004014.htm [59] 余姝辰, 余德清, 王伦澈, 等, 2019. 三峡水库运行前后洞庭湖洲滩面积变化遥感认识. 地球科学, 44(12): 4275-4283. doi: 10.3799/dqkx.2019.182 [60] 詹泸成, 陈建生, 张时音, 等, 2014. 洞庭湖湖区降水-地表水-地下水同位素特征. 水科学进展, 25(3): 327-335. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201403003.htm [61] 张季, 翟红娟, 2011. 洞庭湖湖区水资源保护规划. 人民长江, 42(2): 56-58. doi: 10.3969/j.issn.1001-4179.2011.02.016 [62] 赵军凯, 李九发, 戴志军, 等, 2011. 枯水年长江中下游江湖水交换作用分析. 自然资源学报, 26(9): 1613-1627. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201109017.htm [63] 赵举兴, 李长安, 张玉芬, 等, 2016. 洞庭盆地S3-7孔第四纪年代地层. 地球科学, 41(4): 633-643. doi: 10.3799/dqkx.2016.052 [64] 赵秋湘, 付湘, 孙昭华, 等, 2020. 三峡水库运行对长江三口分流的影响评估. 长江科学院院报, 37(2): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202002004.htm [65] 邹文发, 1989. 洞庭湖区土壤潜育化和地质地貌的关系. 湖南师范大学自然科学学报, 12(1): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSZ198901014.htm