Distribution of Elements in Different Natural Systems: A General Rule after the Even Number Law, an Example of Terrestrial Planets
-
摘要: 在地球化学、天体化学乃至宇宙化学领域中,有一个应用十分广泛的著名的偶数规则(即Oddo-Harkins规律),该规律认为,元素在太阳系分布中,原子序数为偶数的元素丰度通常会比相邻的两个奇数元素丰度值高.通过研究发现,化学元素在宇宙不同自然体系中分布与分配,至少对非亲气元素而言,在统计上还呈周期性变化,而这种周期性变化恰好和元素周期律吻合.而偶数规则也和元素周期性变化规律存在着某种深刻的联系,实际上是同一地球化学现象不同侧面的反映.以地球和金星等自然体系的化学元素质量丰度的比值为例,说明任意两个自然体系,其形成与演化的历程、机制、程度、条件以及物质的来源和化学构成愈是接近,二者之间的元素比值的变化波形就愈符合元素周期律.定量地确定元素在自然体系中分布/分配曲线对元素周期性变化曲线的吻合程度.元素在自然体系分布上的元素周期性变化规律的发现及其量化描述的实现,为更科学地、精确地计算、校验和获取自然体系中化学元素的一些基础数据,提供了一个全新的思路.
-
关键词:
- 自然体系 /
- 化学元素的分布与分配 /
- 元素分布的周期性变化 /
- 周期律 /
- 地球化学
Abstract: The even number law (that is,"Oddo-Harkins" law) holds that a given element with even atomic number is more abundant than both the adjacent elements with odd atomic numbers,which is widely-used in geochemistry,astrochemistry and even cosmochemistry. The present study shows that the distribution/allocation of chemical elements (at least for non-atmophile elements) in various natural systems also exhibits cyclical changes in statistics,which is well consistent with the "Periodic Law". In fact,there exists certain intrinsic relationship between the even number law and the cyclical changes stated in present study,and they just signature a same geochemical phenomenon from different angles. For two random natural systems (the Earth and Venus,for instance),the more similar the processes,mechanisms,stages and conditions of their formation and evolution,their material sources and chemical compositions are,the more consistent their variation waveforms of elemental abundance ratios are with the "Periodic Law". The matching degree between the distribution/allocation curve of elements in various natural systems and the periodic variation curve of these elements has been further determined. Overall,the discovery of cyclical changes of elemental distribution and its quantitative characterization provide a new perspective for calculating,checking and acquiring basic data on chemical elements in a natural system. -
图 3 化学元素宇宙丰度球粒陨石标准化后的变化趋势和元素第一电离能变化趋势的对比
元素的第一电离能数据据李贵全(2001);宇宙元素丰度的数据据Anders and Ebihara(1982);球粒陨石数据据Brownlow(1979); H、He、C、N、O等亲气元素数据空缺,二者均以106Si原子数为标准
Fig. 3. Comparison of variation trend between the chondrite⁃normalized abundances of elements in the universe and their first ionization energies
图 1 月海玄武岩的两块样品A⁃11与A⁃12的29个元素的比值变化趋势与元素的电负性变化趋势对比
元素电负性数据据李贵全(2001);月海玄武岩数据据陈骏和王鹤年(2004)
Fig. 1. Comparison of variation trend between the abundance ratios of 29 elements from two samples in mare lunar basalt (A⁃11 and A⁃12) and their electro⁃negativities
图 2 地球上Li等35个元素与金星相应的35个元素丰度比值的变化趋势和其常见的氧化态离子半径变化趋势对比
元素常见的氧化态离子半径数据据李贵全(2001);地球与金星数据据Morgan and Anders(1980);这里只随意地选用了Sun and Mcdonough(1989)报道的球粒陨石的35个元素
Fig. 2. Comparison of variation trend between the abundance ratios of 35 elements in the Earth and Venus, and their common oxidized ionic radii
图 4 地球化学元素/球粒陨石平均-金星化学元素/球粒陨石平均值关系
金星与地球的74个元素丰度值据Morgan and Anders(1980);74个元素的CI型球粒陨石平均值据Anders and Grevesse(1989)
Fig. 4. Relationship of the abundances of 74 elements in the Earth and Venus normalized by CI⁃type chondrite average values, respectively
图 5 (a) 火星74个元素被球粒陨石平均值标准化后与元素第一电离能变化态势对比;(b)筛除掉一些丰度“异常”的元素后剩余的33个元素球粒陨石标准化后与其第一电离能变化态势对比
火星元素丰度据Morgan and Anders(1980);CI型球粒陨石平均值据Anders and Grevesse(1989)
Fig. 5. Comparison of variation trend between the chondrite⁃normalized abundances of (a) 74 elements and (b) 33 elements left after sieving those elements with "abnormal" abundances in Mars and their first ionization energies
表 1 水星等四大行星球用数学遍历法筛选后符合元素周期律的元素(保留下来的元素)
Table 1. The elements of four planets fitting the Periodic Law well (preserved elements) and their percentages (%)
保留下来的元素 even and 4q type element 4q+3 4q+2 4q+1 even⁃even odd⁃even even⁃odd odd⁃odd 水星 Mg, Al, Si, S, Ca, Sc, V, Zn, Se, Cd, I, Te, Ba, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Ta, Pt, Hg, Th 66.66 16.66 16.66 36.66 33.33 26.67 3.33 金星 Al, S, Ca, Sc, V, Cr, Zn, Se, Sr, Cd, Sb, Te, I, Ba, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ta, Hg 60.71 17.86 3.50 17.86 39.28 35.71 17.86 7.14 地球 Al, Ca, Sc, V, Cr, Zn, Se, Sr, Te, I, Ba, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ta, Hg 60 20 20 36 40 20 4 火星 Mg, Al, Si, Ca, Sc, V, Fe, Co, Ni, Cu, Zn, Se, Sr, Pd, Cd, Sb, Te, I, Ba, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ta, Hg 60.6 24.24 3.03 12.12 39.39 33.33 18.18 9.00 表 2 水星等四大行星用数学遍历法筛选后偏离元素周期律的元素(被剔除的元素)
Table 2. The elements of four planets deviating from the Periodic Law (sieved elements) and their percentages (%)
被剔除的元素 odd element 4q 4q+3 4q+2 4q+1 even⁃even odd⁃even even⁃odd odd⁃odd 水星 Li, Be, B, F, Na, P, Cl, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Sb, Cs, Ce, Lu, W, Re, Os, Ir, Au, Tl, Pb, Bi, U 61.36 22.73 45.45 11.36 20.45 22.73 40.91 15.91 20.45 金星 Li, Be, B, F, Na, Mg, Si, P, Cl, K, Ti, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Br, Rb, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Cs, Ce, Lu, Hf, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Th, U 56.52 16.67 43.48 13.04 19.57 26.86 39.13 17.39 17.39 地球 Li, Be, B, F, Na, Mg, Si, P, S, Cl, K, Ti, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Br, Rb, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, sb, Cs, Ce, Lu, Hf, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Th, U 55.10 26.53 40.82 14.29 18.37 28.57 36.73 16.33 18.37 火星 Li, Be, B, F, Na, Mg, P, S, Cl, K, Ti, Mn, Ga, Ge, As, Br, Rb, Y, Zr, Nb, Mo, Ru, Rh, Ag, In, Sn, Cs, Ce, Pr, Hf, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Th, U 58.53 24.39 39.02 12.15 24.39 24.39 41.46 17.01 14.63 -
[1] Anders, E., Ebihara, M., 1982. Solar⁃System Abundances of the Elements. Geochimica et Cosmochimica Acta, 46(11): 2363-2380. https://doi.org/10.1016/0016⁃7037(82)90208⁃3 [2] Anderson, D. L., 1983. Chemical Composition of the Mantle. Journal of Geophysical Research, 88(S01): B41. https://doi.org/10.1029/jb088is01p00b41 [3] Anders, E., Grevesse, N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53(1): 197-214. https://doi.org/10.1016/0016⁃7037(89)90286⁃x [4] Brownlow, A. H., 1979. Geochemistry. Prentice⁃Hall, New Jersey, 1-580. [5] Che, Y. X., Shen, P. W., 1999. Chemical Elemental Periodic System. Nankai University Press, Tianjin, 1-322 (in Chinese). [6] Chen, J., Wang, H. N., 2004. Geochemistry. Science Press, Beijing, 1-418 (in Chinese). [7] Gao, S., Luo, T. C., Zhang, B. R., et al., 1998a. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/s0016⁃7037(98)00121⁃5 [8] Gao, S., Zhang, B. R., Jin, Z. M., et al., 1998b. How Mafic is the Lower Continental Crust? Earth and Planetary Science Letters, 161(1/2/3/4): 101-117. https://doi.org/10.1016/s0012⁃821x(98)00140⁃x [9] Gaschnig, R. M., Rudnick, R. L., McDonough, W. F., et al., 2016. Compositional Evolution of the Upper Continental Crust through Time, as Constrained by Ancient Glacial Diamictites. Geochimica et Cosmochimica Acta, 186: 316-343. https://doi.org/10.1016/j.gca.2016.03.020 [10] Harkins, W. D., 1917. The Evolution of Elements and the Stability of Complex Atoms. Journal of the American Chemical Society, 39(5): 856-879. https://doi.org/10.1021/ja02250a002 [11] Henderson, P., 1982. Inorganic Geochemistry. Pergamon Press, New York, 1-353 [12] Hu, Z. C., Gao, S., 2008. Upper Crustal Abundances of Trace Elements: A Revision and Update. Chemical Geology, 253(3/4): 205-221. https://doi.org/10.1016/j.chemgeo.2008.05.010 [13] Institute of Geochemistry, Chinese Academy of Science, 2000. Advanced Geochemistry. Science Press, Beijing, 1-491 (in Chinese). [14] Krauskopf, K. B., Bird, D. K., 1995. Introduction to Geochemistry. McGraw⁃Hill, New York, 1-647 [15] Li, T., 1976. Chemical Element Abundances in the Earth and It's Major Shells. Geochimica, (3): 167-174 (in Chinese with English abstract). http://www.researchgate.net/publication/285181510_Chemical_element_abundances_in_the_earth_and_it's_major_shells [16] Li, T., Ni, S., 1990. The Abundance of Chemical Elements in Earth and Its Crust. Geological Publishing House, Beijing, 1-136 (in Chinese). [17] Li, G., 2001. Periodic Table of Element (New Century Edition). Qinghai People Press, Xining, 1 (in Chinese). [18] Morgan, J. W., Anders, E., 1980. Chemical Composition of Earth, Venus, and Mercury. Proceedings of the National Academy of Sciences, 77(12): 6973-6977. https://doi.org/10.1073/pnas.77.12.6973 [19] Oyang, Z. Y., 1988. Astrochemistry. Science Press, Beijing, 1-361 (in Chinese). [20] Ojha, L., Wilhelm, M. B., Murchie, S. L., et al., 2015. Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars. Nature Geoscience, 8(11): 829-832. https://doi.org/10.1038/ngeo2546 [21] Palme, H., Suess, H. E., Zeh, H. D., 1981. Landolt⁃Börnstein : Group Ⅵ Astronomy and Astrophysics, Vol. 2a Abundances of the Elements in the Solar System. Springer, Berlin Heidelberg, 257-272. [22] Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle. McGraw⁃Hill, New York, 1-618. [23] Ross, J. E., Aller, L. H., 1976. The Chemical Composition of the Sun. Science, 191(4233): 1223-1229. https://doi.org/10.1126/science.191.4233.1223 [24] Rudnick, R. L., Gao, S., 2003. 3.01⁃Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. http://www.researchgate.net/publication/320752604_301_-_Composition_of_the_Continental_Crust [25] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [26] Sautter, V., Toplis, M. J., Wiens, R. C., et al., 2015. In Situ Evidence for Continental Crust on Early Mars. Nature Geoscience, 8(8): 605-609. https://doi.org/10.1038/ngeo2474 [27] Tu, G. Z., 1984. Geochemistry. Shanghai Science and Technology Press, Shanghai, 1-447 (in Chinese). [28] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxfrod, 1-312. [29] Wedepohl, K., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016⁃7037(95)00038⁃2 [30] Yang, J. Y., 2010. Acid Removal Rate of Trace Elements and Its Organic⁃Inorganic Affinity in Coal: in a Case of the Late Paleozoic Coal Seam 5 from Weibei. Journal of Fuel Chemistry and Technology, 38(5): 522-527 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX201005003.htm [31] Yang, J. Y., 2011. The Periodic Law of Trace Elements in Coal: A Case Study of the 5# Coal from the Weibei Coalfield. Science China Earth Sciences, 54(10): 1542-1550. https://doi.org/10.1007/s11430⁃011⁃4256⁃4 [32] Yang, J. Y., 2013. Re⁃Exploration on the Law of Trace Elements Migration During the Pyrolysis of Coal. Journal of China Coal Society, 38(12): 2227-2233 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000012/art00022 [33] Yang, J. Y., Zhang, W. G., Zhao, Z., Wang, G. H., 2014. Preliminary Study About Combination Between Trace Elements and Organic Matter in Coal: an Example of 8# Coal Seam from Taiyuan Xishan. Journal of Fuel Chemistry and Technology, 42(6): 662-670 (in Chinese with English abstract). http://www.researchgate.net/publication/287574725_Preliminary_study_about_combination_between_trace_elements_and_organic_matter_in_coal_-_An_example_of_8_coal_seam_from_Taiyuan_Xishan [34] Yang, J. Y., Wang, G. H., Zhang, W. G., 2016. The Trace Elements are Bounded by Organic Functional Groups in Coal: A Studying Result Based on FTIR Analysis. Acta Geologica Sinica⁃English Edition, 90(1): 154-165. https://doi.org/10.1111/1755⁃6724.12648 [35] Yang, J. Y., Zhang, W. G., Qu, L. Y., 2018. Preliminary Study on Acid Removal Rate of Element in the Different Rank of Coal. Journal of China Coal Society, 43(2): 519-528 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201802027.htm [36] Yang, J. Y., Zhang, W. G, Zou, J. H., 2020. Distribution and Migration Regulations of Associated Elements in Coal. Chinese Journal of Rare Metals, 44(4): 440-448 (in Chinese with English abstract). [37] Zhang, D. H., Zhao, L. S., 2013. Geochemistry. Geological Publishing House, Beijing, 1-534 (in Chinese). [38] 车云霞, 申泮文, 1999. 化学元素周期系. 天津: 南开大学出版社, 1-322. [39] 陈骏, 王鹤年, 2004. 地球化学. 北京: 科学出版社, 1-418. [40] 黎彤, 1976. 化学元素的地球丰度. 地球化学, (3): 167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004 [41] 黎彤, 倪守斌, 1990. 地球和地壳的化学元素丰度. 北京: 地质出版社, 1-136. [42] 李贵全, 2001. 新世纪版元素周期表. 西宁: 青海人民出版社, 1 [43] 欧阳自远, 1988. 天体化学. 北京: 科学出版社, 1-361 [44] 涂光帜, 1984. 地球化学. 上海: 上海科学技术出版社, 1-447 [45] 杨建业, 2010. 煤中微量元素的酸脱除率与元素周期律——以渭北晚古生代5号煤层为例. 燃料化学学报, 38(5): 522-527. doi: 10.3969/j.issn.0253-2409.2010.05.003 [46] 杨建业, 2013. 煤热解中微量元素迁移规律的再探索. 煤炭学报, 38(12): 2227-2233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312026.htm [47] 杨建业, 张卫国, 赵洲, 等, 2014. 微量元素与煤有机质的结合关系初探——以太原西山矿区8号煤层为例. 燃料化学学报, 42(6): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX201406004.htm [48] 杨建业, 张卫国, 屈联莹, 2018. 不同煤级的微量元素酸脱除率初探. 煤炭学报, 43(2): 519-528. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802027.htm [49] 杨建业, 张卫国, 邹建华, 2020. 煤中伴生稀有元素及其分布、迁移的几个规律. 稀有金属, 44(4): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202004013.htm [50] 中国科学院地球化学研究所, 2000. 高等地球化学. 北京: 科学出版社, 1-491 [51] 张德会, 赵伦山, 2013. 地球化学. 北京: 地质出版社, 1-534.