• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因

    李响 王令占 涂兵 田洋 谢国刚 张楗钰 张宗言

    李响, 王令占, 涂兵, 田洋, 谢国刚, 张楗钰, 张宗言, 2021. 粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 46(4): 1199-1216. doi: 10.3799/dqkx.2020.193
    引用本文: 李响, 王令占, 涂兵, 田洋, 谢国刚, 张楗钰, 张宗言, 2021. 粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 46(4): 1199-1216. doi: 10.3799/dqkx.2020.193
    Li Xiang, Wang Lingzhan, Tu Bing, Tian Yang, Xie Guogang, Zhang Jianyu, Zhang Zongyan, 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(4): 1199-1216. doi: 10.3799/dqkx.2020.193
    Citation: Li Xiang, Wang Lingzhan, Tu Bing, Tian Yang, Xie Guogang, Zhang Jianyu, Zhang Zongyan, 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(4): 1199-1216. doi: 10.3799/dqkx.2020.193

    粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因

    doi: 10.3799/dqkx.2020.193
    基金项目: 

    中国地质调查局项目 12120113063200

    中国地质调查局项目 DD20201121

    详细信息
      作者简介:

      李响(1983-), 男, 副研究员, 从事成因矿物学、岩石地球化学研究.ORCID: 0000-0001-5874-2056.E-mail: lixiang_503@163.com

    • 中图分类号: P597

    Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province

    • 摘要: 华南早中生代构造-岩浆演化还存在不同的争议.以广东西北部连山地区晚三叠世含暗色微粒包体(MMEs)的太保岩体为研究对象,进行了岩石学、锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素组成研究.4个花岗岩样品的锆石206Pb/238U加权平均年龄分别为219.8±1.8 Ma、220.5±1.0 Ma、221.5±1.7 Ma和220.2±1.1 Ma,为印支晚期岩浆作用的产物.地球化学分析显示,寄主花岗岩为高钾钙碱性花岗岩,低硅、高碱,铝饱和指数A/CNK值为0.79~1.16.包体SiO2含量为55.13%~62.56%,铁、镁含量明显高于寄主花岗岩,MgO和FeOT含量分别为2.31%~4.60%和5.53%~6.63%.包体与寄主花岗岩均富集轻稀土,并表现出显著的Ba、Sr、Ti负异常.寄主花岗岩和包体均具有较高的εNd(t)值(-3.42~-2.60和-0.90~-0.52)和较小的二阶段Nd模式年龄(TDM2分别为1.30~1.35 Ga、1.10~1.13 Ga).寄主花岗岩具有较宽泛的εHf(t)值(-2.6~+4.3,平均值为+0.7)和两阶段Hf模式年龄(0.95~1.39 Ga)变化范围,指示太保岩体形成于中元古代下地壳变基性岩物质的熔融,并与亏损地幔物质发生岩浆混合作用.基于以上数据,笔者认为太保岩体是印支晚期伸展条件下亏损地幔和下地壳物质混合的产物.结合近年来报道的邻近区域的基性岩浆活动,认为华南古特提斯构造域向古太平洋构造域的转换可能开始于晚三叠世(233 Ma).

       

    • 图  1  华南早中生代花岗岩分布及太保岩体大地构造位置示意图

      图b中,①太保岩体花岗岩(220~222 Ma),②道县虎子岩基性包体(220~233 Ma),③宁远保安圩碱性玄武岩(206~212 Ma),④宜章长城岭辉绿岩(227 Ma),⑤富川鲁洞辉绿玢岩(208 Ma);a.华南早中生代花岗岩分布(修改自Xu et al., 2019);b.华南中生代花岗岩-火山岩Nd同位素模式年龄等值线图(修改自Zhou et al., 2006),字母ABCD分别代表 4条低Nd模式年龄带

      Fig.  1.  Sketch map showing the distribution of the Early Mesozoic granites and tectonic location of Taibao pluton in South China

      图  2  太保岩体地质简图

      Fig.  2.  Geological sketch of Taibao pluton

      图  3  太保岩体野外和显微镜下典型照片

      a.中细粒斑状二长花岗岩野外露头,似斑状结构,斑晶为钾长石;b.中粒斑状花岗闪长岩,偶见环斑;c,d.暗色微粒包体,寄主岩为花岗闪长岩,包体中见捕获的寄主岩的钾长石斑晶,钾长石斑晶定向排列方向与包体长轴方向一致;e.二长花岗岩镜下照片,斜长石绢云母化,黑云母绿泥石化(正交偏光);f.花岗闪长岩镜下照片,角闪石见垂直C轴的菱形切面(正交偏光).矿物缩写:Qz.石英;Kfs.钾长石;Pl.斜长石;Bt.黑云母;Amp.角闪石

      Fig.  3.  Representative field photos and micrographs of Taibao pluton

      图  4  太保岩体代表性锆石CL图像和分析点位

      小的实线圈为原位U-Pb定年分析点,大的虚线圈为原位Hf同位素分析点,括号内数值为εHf(t)值

      Fig.  4.  CL images and analytical locations of representative zircons from the Taibao pluton

      图  5  太保岩体花岗岩锆石U-Pb年龄谐和图

      Fig.  5.  Zircon U-Pb concordia age plots of granitic samples from Taibao pluton

      图  6  太保岩体花岗岩A/CNK-A/NK图解(a)和SiO2-K2O图解(b)

      Fig.  6.  A/CNK-A/NK (a) and SiO2-K2O (b) diagrams for granitic samples of Taibao pluton

      图  7  太保岩体主量元素哈克图解和同分母氧化物比值协变图

      文献数据鲁学悟等(2008)

      Fig.  7.  Harker variation diagrams and K2O/CaO vs. SiO2/CaO, Al2O3/CaO vs. Na2O/CaO plots for samples from Taibao pluton

      图  8  太保岩体花岗岩的球粒陨石标准化稀土配分模式(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石和原始地幔标准化值据Sun and McDonough(1989)

      Fig.  8.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for the samples from Taibao pluton

      图  9  太保岩体中与岩浆混合作用相关的微量元素相关图及同分母比值图

      文献数据鲁学悟等(2008)

      Fig.  9.  Correlation diagram and ration diagram in the same denominator of trace elements for rocks related to magma mixing in Taibao pluton

      图  10  太保岩体花岗岩εNd(t)-t(a)和εHf(t)-t(b)关系图解

      Fig.  10.  εNd(t)-t (a) and εHf(t)-t (b) plots for samples from Taibao pluton

      图  11  太保岩体花岗岩Al2O3/TiO2-CaO/Na2O图解(a)(Sylvester, 1998)和C/FM-A/FM源区判别图解(b)(Altherr et al., 2000)

      图例同图 7

      Fig.  11.  Al2O3/TiO2-CaO/Na2O diagram (a, after Sylvester, 1998) and C/FM-A/FM diagram (b, after Altherr et al., 2000) for samples from Taibao pluton

      图  12  εNd(t)-87Sr/86Sri图解

      底图据Zhao et al.(2013),华夏印支期壳源S型花岗岩引自Hsieh et al. (2008),虎子岩印支期捕掳体数据引自Dai et al.(2008);桃江辉绿岩数据金鑫镖等(2017).亏损地幔和地壳端员成分据Xia and Xu(2020)

      Fig.  12.  εNd(t)-87Sr/86Sri diagram

      图  13  太保岩体构造环境判别图解(Pearce et al., 1996)

      VAG.火山弧花岗岩;WPG.板内花岗岩;syn-COLG.同碰撞花岗岩;post-COLG.后碰撞花岗岩;ORG.洋中脊花岗岩

      Fig.  13.  Discrimination diagram of tectonic environments for the samples from Taibao pluton(Pearce et al., 1996)

      表  1  太保岩体花岗岩样品的主量元素(%)和微量元素(10-6)分析结果

      Table  1.   Major element(%) and trace element(10-6) compositions of granitic samples from Taibao pluton

      岩性 主体 包体
      样号 13-24 # 13-25 # TB-1H TB-2H TB-3H TB-4H TB-5H TB-B1 TB-B5 TB-B6
      SiO2 63.10 64.28 65.88 65.11 65.00 64.20 66.42 56.01 55.13 62.56
      TiO2 0.58 0.66 0.59 0.66 0.62 0.63 0.46 1.11 1.14 0.86
      Al2O3 13.66 15.59 15.50 15.19 15.32 16.18 16.15 16.02 16.93 16.11
      Fe2O3 0.61 1.40 1.46 1.38 1.64 1.96 0.69 1.79 2.02 2.45
      FeO 3.99 3.41 2.51 3.14 2.74 2.47 1.96 5.02 4.82 3.32
      MnO 0.09 0.10 0.09 0.10 0.09 0.09 0.06 0.21 0.12 0.11
      MgO 1.53 1.94 1.68 2.01 1.96 1.76 1.17 4.60 3.03 2.31
      CaO 3.99 3.48 2.51 3.54 3.49 2.33 2.41 5.77 4.43 4.41
      Na2O 3.61 3.53 3.49 3.39 3.51 3.30 3.82 4.13 5.30 4.98
      K2O 3.81 3.80 4.01 3.96 3.79 3.90 5.76 3.53 1.69 1.44
      P2O5 0.22 0.27 0.27 0.27 0.26 0.25 0.18 0.52 0.50 0.29
      LOI 4.35 1.13 1.71 0.89 1.24 2.60 0.70 0.72 4.28 0.77
      总量 99.53 99.60 99.69 99.63 99.66 99.67 99.78 99.43 99.39 99.61
      K2O/Na2O 1.06 1.08 1.15 1.17 1.08 1.18 1.51 0.85 0.32 0.29
      AKI 0.74 0.64 0.65 0.65 0.65 0.60 0.78 0.66 0.62 0.61
      A/CNK 0.79 0.96 1.06 0.93 0.94 1.16 0.95 0.76 0.91 0.91
      A/NK 1.36 1.57 1.54 1.54 1.55 1.68 1.29 1.51 1.61 1.65
      Li 19.2 29.7 36.7 36.4 45.1 43.5 32.4 60.6 102.0 48.6
      Be 2.90 2.91 3.31 3.32 3.75 3.78 3.35 4.77 5.80 4.85
      Sc 6.4 9.3 9.5 11.3 12.8 8.8 5.4 20.7 21.8 13.3
      V 58.2 94.9 79.9 105.0 107.0 89.9 52.3 162.0 150.0 124.0
      Cr 19.3 20.7 17.2 23.5 26.1 21.1 15.0 133.0 87.7 13.3
      Co 10.5 13.9 12.1 14.3 15.7 13.7 7.2 27.4 23.8 16.6
      Ni 11.9 13.1 12.1 16.0 17.1 13.5 9.1 56.6 38.8 10.6
      Cu 13.8 21.9 14.7 5.7 10.5 14.1 1.3 10.9 7.1 9.3
      Zn 49.8 58.1 50.6 61.2 56.1 56.9 35.8 94.2 89.2 68.3
      Ga 13.9 17.4 16.9 17.7 18.6 18.3 16.6 20.7 25.7 19.5
      Rb 223 168 181 165 180 180 212 217 123 133
      Sr 208 340 333 313 353 305 395 273 366 325
      Y 19.4 17.7 16.2 18.4 19.0 15.9 14.0 26.6 29.0 22.9
      Nb 24.8 16.2 17.4 20.0 19.1 18.5 18.5 27.0 40.2 26.3
      Cs 16.7 5.6 7.0 6.7 8.7 8.3 5.8 11.7 11.2 9.3
      Ba 568 745 597 568 707 730 1370 405 126 132
      La 41.6 42.4 36.7 37.6 49.7 37.5 28.7 52.8 62.3 38.6
      Ce 72.5 66.9 58.2 61.7 74.3 66.0 55.2 102.0 126.0 70.8
      Pr 7.10 6.89 6.33 6.89 7.61 7.00 6.26 11.00 13.70 8.64
      Nd 26.5 24.6 23.7 27.8 28.5 24.8 23.6 46.0 59.9 35.9
      Sm 5.06 4.66 3.87 4.49 4.70 4.39 3.84 7.61 8.80 5.71
      Eu 0.99 1.18 1.03 1.08 1.17 1.06 0.86 2.11 2.15 1.47
      Gd 4.03 4.20 3.37 3.66 4.27 4.04 3.19 6.93 7.49 4.59
      Tb 0.67 0.63 0.54 0.63 0.66 0.60 0.49 1.06 1.14 0.79
      Dy 3.41 3.34 3.01 3.56 3.54 3.09 2.49 5.24 5.75 4.61
      Ho 0.66 0.63 0.54 0.60 0.66 0.57 0.45 0.95 0.98 0.80
      Er 2.22 1.83 1.47 1.68 1.88 1.66 1.27 2.72 2.82 2.14
      Tm 0.36 0.29 0.25 0.29 0.30 0.26 0.20 0.41 0.45 0.37
      Yb 2.21 1.91 1.68 2.01 2.01 1.65 1.34 2.66 3.05 2.70
      Lu 0.35 0.28 0.24 0.26 0.30 0.26 0.19 0.39 0.42 0.36
      Ta 2.36 1.09 1.28 1.65 1.37 1.34 1.35 1.59 2.89 2.10
      Tl 0.83 0.64 0.72 0.70 0.67 0.73 0.72 0.74 0.47 0.51
      Pb 20.4 20.5 22.3 20.7 20.3 21.5 27.4 20.3 39.7 15.5
      Th 25.9 19.4 20.4 19.0 22.8 19.4 15.4 13.2 20.5 17.1
      U 9.19 5.07 4.72 7.43 4.71 4.33 6.53 4.05 9.33 8.10
      Zr 72.7 67.9 42.1 54.4 43.7 61.2 55.0 98.9 98.1 94.9
      Hf 2.35 2.14 1.43 1.67 1.48 2.14 1.61 3.03 3.21 2.65
      ΣREE 167.7 159.7 140.9 152.3 179.6 152.9 128.1 241.9 295.0 177.5
      LREE 153.8 146.6 129.8 139.6 166.0 140.8 118.5 221.5 272.9 161.1
      HREE 13.9 13.1 11.1 12.7 13.6 12.1 9.6 20.4 22.1 16.4
      LREE/HREE 11.1 11.2 11.7 11.0 12.2 11.6 12.3 10.9 12.3 9.9
      (La/Yb)N 13.5 15.9 15.7 13.4 17.7 16.3 15.4 14.2 14.7 10.3
      δEu 0.65 0.80 0.85 0.79 0.78 0.76 0.73 0.87 0.79 0.85
      δCe 0.95 0.87 0.86 0.87 0.84 0.93 0.96 0.98 1.01 0.91
      下载: 导出CSV

      表  2  太保岩体Sr-Nd同位素组成

      Table  2.   Sr and Nd isotopic compositions of samples from Taibao pluton

      样品号 花岗岩 包体
      13-24# 13-25# TB-1H TB-3H TB-5H TB-B1 TB-B6
      Rb(10-6) 223 168 181 180 212 217 133
      Sr(10-6) 208 340 333 353 395 273 325
      87Rb/86Sr 3.10 1.43 1.57 1.48 1.55 2.30 1.18
      87Sr/86Sr 0.715 85 0.711 55 0.712 56 0.711 85 0.711 15 0.712 58 0.710 26
      ISr 0.706 14 0.707 08 0.707 64 0.707 23 0.706 29 0.705 38 0.706 55
      Sm(10-6) 5.06 4.66 3.87 4.70 3.84 7.61 5.71
      Nd(10-6) 26.5 24.6 23.7 28.5 23.6 46.0 35.9
      147Sm/144Nd 0.116 2 0.115 3 0.099 4 0.100 4 0.099 0 0.100 7 0.096 8
      143Nd/144Nd 0.512 347 0.512 360 0.512 356 0.512 349 0.512 364 0.512 473 0.512 448
      εNd(t) -3.4 -3.1 -2.7 -2.9 -2.6 -0.5 -0.9
      TDM2(Ga) 1.38 1.35 1.29 1.31 1.28 1.10 1.13
      下载: 导出CSV
    • [1] Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
      [2] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do Not Report 204Pb. Chemical Geology, 192 (1): 59-79.
      [3] Black, L.P., Gulson, B.L., 1978. The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3(3): 227-232. http://www.researchgate.net/publication/301347326_The_age_of_the_Mud_Tank_carbonatite_Strangways_Range_Northern_Territory
      [4] Chen, C.H., Liu, Y.H., Lee, C.Y., et al., 2017. The Triassic Reworking of the Yunkai Massif (South China): EMP Monazite and U-Pb Zircon Geochronologic Evidence. Tectonophysics, 694: 1-22. https://doi.org/10.1016/j.tecto.2016.11.022
      [5] Chen, J.F., Guo, X.S., Tang, J.F., et al., 1999. Nd Isotopic Model Ages: Implications of the Growth of the Continental Crustal of Southeastern China. Journal of Nanjing University (Natural Science), 35: 649-685 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ199906000.htm
      [6] Chen, J.F., Jahn, B.M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284 (1): 101-133. http://www.sciencedirect.com/science/article/pii/S0040195197001868
      [7] Chen, P.R., Hua, R.M., Zhang, B.T., et al., 2002. Early Yanshanian Post-Orogenic Granitoids in the Nanjing Region: Petrological Conslraints and Geodynamic Setting. Science in China (Series D), 32 (4): 279-289 (in Chinese). doi: 10.1007/BF02878432
      [8] Chen, W.F., Chen, P.R., Huang, H.Y., et al., 2007, Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China. Science in China (Series D), 50(11): 1606-1627. https://doi.org/10.1007/s11430-007-0073-1
      [9] Cheng, S.B., Fu, J.M., Cui, S., et al., 2018. Zircon U-Pb Chronology, Geochemistry of the Indonesian Granitic Rocks from Northern Yuechengling Batholith in Guangxi-Hunan Junction. Earth Science, 43(7): 2330-2349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807010.htm
      [10] Dai, B.Z., Jiang, S.Y., Jiang, Y.H., et al., 2008. Geochronology, Geochemistry and Hf-Sr-Nd Isotopic Compositions of Huziyan Mafic Xenoliths, Southern Hunan Province, South China: Petrogenesis and Implications for Lower Crust Evolution. Lithos, 102(1): 65-87.
      [11] Feng, Z.H., Wang, C.Z., Liang, J.C., et al., 2011. The Emplacement Mechanisms and Growth Styles of the Guposhan-Huashan Batholith in Western Nanling Range, South China. Science China Earth Sciences, 54(1): 45-60. https://doi.org/10.1007/s11430-010-4143-4
      [12] Gao, P., Zheng, Y.F., Zhao, Z.F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi.org/10.1016/j.earscirev.2017.07.016
      [13] Gilder, S.A., Gill, J., Coe, R.S., et al. , 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research, 101: 16137-16154. doi: 10.1029/96JB00662
      [14] Griffin, W.L., Belousova, E.A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011
      [15] Guo, F., Fan, W.M., Lin, G., et al., 1997. Geochronology and Petrogenesis of Gabbroic Xenoliths from Daoxian, Southern Hunan Province, China. Chinese Science Bulletin, 42 (15): 1661-1664 (in Chinese). doi: 10.1360/csb1997-42-15-1661
      [16] Hong, D.W., Duo, W.Q., Li, G.J., et al., 1987. Petrology and Genesis Evolution of Miarolitic Granite Belt in Fujian Coast. Science and Technology Publishing Co., Ltd., Beijing (in Chinese).
      [17] Hsieh, P.S., Chen, C.H., Yang, H.J., et al., 2008. Petrogenesis of the Nanling Mountains Granites from South China: Constraints from Systematic Apatite Geochemistry and Whole-Rock Geochemical and Sr-Nd Isotope Compositions. Journal of Asian Earth Sciences, 33(5): 428-451. http://www.sciencedirect.com/science/article/pii/S1367912008000199
      [18] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1): 47-69. http://www.sciencedirect.com/science/article/pii/S0009254104002074
      [19] Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14 (4): 496-509 (in Chinese with English abstract). http://www.researchgate.net/publication/284880075_Characteristics_and_genesis_of_Mesozoic_A-type_granites_and_associated_mineral_deposits_in_the_southern_Hunan_and_northern_Guangxi_provinces_along_the_Shi-Hang_belt_South_China
      [20] Jin, X.B., Wang, L., Xiang, H., et al., 2017. Petrogenesis of Diabase from Jiangshiqiao in Taojiang City, Hu'nan Province: Constrains from Geochemistry, Geochronology and Sr-Nd-Pb Isotopes. Geological Bulletin of China, 36(5): 750-760(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252278293.html
      [21] Langmuir, C.H., Vocke, R.D., Hanson, G.N., et al., 1978. A General Mixing Equation with Applications to Icelandic Basalts. Earth and Planetary Science Letters, 37(3): 380-392. doi: 10.1016/0012-821X(78)90053-5
      [22] Li, J.F., Fu, J.M., Ma, C.Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U-Pb Geochronology, Petrogeochemistry, and Sr-Nd-Hf Isotopes. Earth Science, 45(2): 374-388 (in Chinese with English abstract). doi: 10.1002/gj.3841
      [23] Li, J.H., Zhao, G., Johnston, S.T., et al., 2017. Permo-Triassic Structural Evolution of the Shiwandashan and Youjiang Structural Belts, South China. Journal of Structural Geology, 100: 24-44. doi: 10.1016/j.jsg.2017.05.004
      [24] Li, X.H., Li, W.X., Li, Z.X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 62 (9): 981-991(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JXTW200714000
      [25] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [26] Liu, Y., Li, T.D., Xiao, Q.H., et al., 2010. New Chronology of the Ningyuan Alkali Basalt in Southern Hunan, China: Evidence from LA-ICP-MS Zircon U-Pb Dating. Geological Bulletin of China, 29(6): 833-841 (in Chinese with English abstract). http://www.researchgate.net/publication/282766817_New_chronology_of_the_Ningyuan_alkali_basalt_in_southern_Hunan_China_Evidence_from_LA-ICP-MS_zircon_U-Pb_dating
      [27] Liu, Y., Li, T.D., Xiao, Q.H., et al., 2012. Formation Epoch and Origin of the Yizhang Andesite, Diabase and Granite-Porphyry in Yizhang County, Southern Hunan Province: Zircon U-Pb Age and Hf Isotopes. Geological Bulletin of China, 31(9): 1363-1378 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201209001.htm
      [28] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology: Isotope Geoscience Section, 257(1-2): 34-43. http://www.sciencedirect.com/science/article/pii/S0009254108003501
      [29] Liu, Z., Jiang, Y.H., Wang, G.C., et al., 2015. Side of the Jiangshan-Shaoxing Suture, South China: Geochronology, Geochemistry, Petrogenesis and Tectonic Implications. Precambrian Research, 268: 212-226. doi: 10.1016/j.precamres.2015.07.013
      [30] Ludwig, K.R., 2001. Isoplot/Ex (Version 2.49): The Geochronological Toolkit for Excel. University of California Berkeley, Berkeley Geochronology Center, Special Publication, Berkeley.
      [31] Mao, J.W., Cheng, Y.B., Chen, M.H., et al., 2013a. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z
      [32] Mao, J.R., Ye, H.M., Liu, K., et al., 2013b. The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate: Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China. Lithos, 172-173: 81-97. https://doi.org/10.1016/j.lithos.2013.04.004
      [33] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173682
      [34] Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      [35] Qing, L., Jiang, Y.H., Du, F.G., 2020. Petrogenesis and Tectonic Significance of Early Indosinian A-Type Granites in the Xinxing Pluton, Southern South China. Mineralogy and Petrology, https://doi.Org/10.1007/S00710-020-00701-3 doi: 10.1007/s00710-020-00701-3
      [36] Shen, L.W., Yu, J.H., O'Reilly, S.Y., et al., 2018. Tectonic Switching of Southeast China in the Late Paleozoic. Journal of Geophysical Research: Solid Earth, 123(10): 8508-8526. https://doi.org/10.1029/2018jb015520
      [37] Shi, Y., San, Y.H., Guo, Z.C., et al., 2019. LA-ICP-MS Zircon U-Pb Dating and Hf Isotope Compositions of the Sillite from Ludong in Fuchuan, Northeastern Guangxi. Journal of Guilin University of Technology, 39(2): 291-300(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX201902005.htm
      [38] Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geologcal Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.researchgate.net/publication/279561053_An_analysis_of_principal_features_of_tectonic_evolution_in_South_China_Block
      [39] Shu, L.S., Faure, M., Wang, B., et al., 2008. Late Palaeozoic-Early Mesozoic Geological Features of South China: Response to the Indosinian Collision Events in Southeast Asia. Comptes Rendus Geoscience, 340(2-3): 151-165. https://doi.org/10.1016/j.crte.2007.10.010
      [40] Shu, L.S., Zhou, X.M., Deng, P., et al., 2006. Principal Geological Features of Nanling Tectonic Belt, South China. Geological Review, 52(2): 251-265(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200602017.htm
      [41] Shu, L.S., Zhou, X.M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376-391. https://doi.org/10.1016/j.jseaes.2008.06.004
      [42] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [43] Sylvester, P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
      [44] Tang, L.M., Chen, H.L., Dong, C.W., et al., 2013. Middle Triassic Post-Orogenic Extension on Hainan Island: Chronology and Geochemistry Constraints of Bimodal Intrusive Rocks. Science China Earth Sciences, 56(5): 783-793(in Chinese). doi: 10.1007/s11430-012-4562-5
      [45] Wang, D.Z., Zhou, X.M., 2002. Origin of the Late Mesozoic Granitic Volcano Intrusive Complex Rocks and Crust Evolution in the Southeastern China. Science Press, Beijing(in Chinese).
      [46] Wang, J.Q., Shu, L.S., Santosh, M., 2018a. Petrogenesis and Tectonic Significance of Late Mesozoic Granitic and Adakitic Rocks from Inland South China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Journal of the Geological Society, 175(4): 679-693. https://doi.org/10.1144/jgs2017-081
      [47] Wang, K.X., Sun, T., Chen, P.R., et al., 2013a. The Geochronological and Geochemical Constraints on the Petrogenesis of the Early Mesozoic A-Type Granite and Diabase in Northwestern Fujian Province. Lithos, 179: 364-381. doi: 10.1016/j.lithos.2013.07.016
      [48] Wang, Q., Li, J.W., Jian, P., et al., 2005. Alkaline Syenites in Eastern Cathaysia (South China): Link to Permian-Triassic Transtension. Earth and Planetary Science Letters, 230(3-4): 339-354. https://doi.org/10.1016/j.epsl.2004.11.023
      [49] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013b. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      [50] Wang, Y.J., Qian, X., Cawood, P.A., et al., 2018b. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013
      [51] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      [52] Xia, Y., Xu, X.S., 2020. The Epilogue of Paleo-Tethyan Tectonics in the South China Block: Insights from the Triassic Aluminous A-Type Granitic and Bimodal Magmatism. Journal of Asian Earth Sciences, 190: 104129. https://doi.org/10.1016/j.jseaes.2019.104129
      [53] Xie, C.F., Zhu, J.C., Zhao, Z.J., et al., 2005. Zircon SHRIMP U-Pb Age Dating of Garnet-Acmite Syenite: Constraints on the Hercynian-Indosinian Tectonic Evolution of Hainan Island. Geological Journal of China Universities, 11 (1): 47-57 (in Chinese with English abstract). http://www.researchgate.net/publication/285277663_Zircon_SHRIMP_U-Pb_age_of_the_Sanya_garnet-acmite_syenite_Constraints_on_the_Hercynian-Indosinian_tectonic_evolution_of_Hainan_Island
      [54] Xu, H.J., Ma, C.Q., Zhao, J.H., et al., 2014. Magma Mixing Generated Triassic I-Type Granites in South China. The Journal of Geology, 122(3): 329-351. https://doi.org/10.1086/675667
      [55] Xu, X.B., Li, Q.M., Gui, L., et al., 2019. Early Mesozoic Tectonic Transition of the Eastern South China Block: Constraints from Late Triassic Dashuang Complex in Eastern Zhejiang Province. International Geology Review, 61(8): 997-1015. https://doi.org/10.1080/00206814.2018.1490931
      [56] Xu, X.B., Tang, S., Lin, S.F., 2016. Paleostress Inversion of Fault-Slip Data from the Jurassic to Cretaceous Huangshan Basin and Implications for the Tectonic Evolution of Southeastern China. Journal of Geodynamics, 98: 31-52. https://doi.org/10.1016/j.jog.2016.03.013
      [57] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36(3): 573-593 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgdizhi200903007
      [58] Yang, F., Feng, Z.H., Wang, Y.L., et al., 2016. LA-ICP-MS U-Pb Zircon Geochronology of Taibao Granite in Northwestern Guangdong. Journal of Guilin University of Technology, 36(1): 160-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX201601022.htm
      [59] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118 doi: 10.1016/j.chemgeo.2007.10.003
      [60] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm
      [61] Zhao, K.D., Jiang, S.Y., Chen, W.F., et al., 2013. Zircon U-Pb Chronology and Elemental and Sr-Nd-Hf Isotope Geochemistry of Two Triassic A-Type Granites in South China: Implication for Petrogenesis and Indosinian Transtensional Tectonism. Lithos, 160-161: 292-306. doi: 10.1016/j.lithos.2012.11.001
      [62] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29 (1): 26-33. https://doi. org/10.18814/epiiugs/2006/v29i1/004 doi: 10.18814/epiiugs/2006/v29i1/004
      [63] Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
      [64] Zhou, X.R., 1994. Hybridization in the Genesis of Granitoids. Earth Science Frontiers, 1(1-2): 87-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY4Z1.016.htm
      [65] Zhu, J.C., Chen, J., Wang, R.C., et al., 2008. Early Yanshanian NE Trending Sn/W-Bearing A-Type Granites in the Western-Middle Part of the Nanling Mts Region. Geological Journal of China Universities, 14(4): 474-484(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200804004.htm
      [66] 陈江峰, 郭新生, 汤加富, 等, 1999. 中国东南地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学版), 35(6): 649-658. doi: 10.3321/j.issn:0469-5097.1999.06.001
      [67] 陈培荣, 华仁民, 章邦桐, 等, 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景. 中国科学(D辑), 32(4): 279-289. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm
      [68] 程顺波, 付建明, 崔森, 等, 2018. 湘桂边界越城岭岩基北部印支期花岗岩锆石U-Pb年代学和地球化学特征. 地球科学, 43(7): 2330-2349. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201807010.htm
      [69] 郭锋, 范蔚茗, 林舸, 等, 1997. 湖南道县辉长岩包体的年代学研究及成因探讨. 科学通报, 42(15): 1661-1664. doi: 10.3321/j.issn:0023-074X.1997.15.022
      [70] 洪大卫, 郭文歧, 李戈晶, 等, 1987. 福建沿海晶洞花岗岩带的岩石学和成因演化. 北京: 北京科学技术出版社.
      [71] 蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14 (4): 496-509. doi: 10.3969/j.issn.1006-7493.2008.04.004
      [72] 金鑫镖, 王磊, 向华, 等, 2017. 湖南桃江地区印支期辉绿岩成因: 地球化学、年代学和Sr-Nd-Pb同位素约束. 地质通报, 36(5): 750-760. doi: 10.3969/j.issn.1671-2552.2017.05.007
      [73] 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013
      [74] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 62 (9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001
      [75] 刘勇, 李廷栋, 肖庆辉, 等, 2010. 湘南宁远地区碱性玄武岩形成时代的新证据: 锆石LA-ICP-MS U-Pb定年. 地质通报29(6): 833-841. doi: 10.3969/j.issn.1671-2552.2010.06.005
      [76] 刘勇, 李廷栋, 肖庆辉, 等, 2012. 湘南宜章地区辉绿岩、花岗斑岩、安山岩的形成时代和成因: 锆石U-Pb年龄和Hf同位素组成. 地质通报, 31(9): 1363-1378. doi: 10.3969/j.issn.1671-2552.2012.09.001
      [77] 鲁学悟, 冯佐海, 郭俊刚, 等, 2008. 南岭西段永和-太保花岗岩体的地球化学特征及其大地构造环境. 世界地质, 27(2): 156-163. doi: 10.3969/j.issn.1004-5589.2008.02.007
      [78] 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005
      [79] 时毓, 三元合, 郭智超, 等, 2019. 桂东北富川鲁洞辉绿玢岩LA-ICP-MS锆石U-Pb年龄及Hf同位素组成. 桂林理工大学学报, 39(2): 291-300. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201902005.htm
      [80] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      [81] 舒良树, 周新民, 邓平, 等, 2006. 南岭构造带的基本地质特征. 地质论评, 52(2): 251-265. doi: 10.3321/j.issn:0371-5736.2006.02.016
      [82] 唐立梅, 陈汉林, 董传万, 等, 2013. 海南岛中三叠世造山后伸展作用: 双峰式侵入岩的年代学及地球化学制约. 中国科学(地球科学), 43(3): 433-445. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201303013.htm
      [83] 王德滋, 周新民, 2002. 中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化. 北京: 科学出版社.
      [84] 谢才富, 朱金初, 赵子杰, 等, 2005. 三亚石榴霓辉石正长岩的锆石SHRIMP U-Pb年龄: 对海南岛海西-印支期构造演化的制约. 高校地质学报, 11 (1): 47-57. doi: 10.3969/j.issn.1006-7493.2005.01.003
      [85] 徐先兵, 张岳桥, 贾东, 等, 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573-593. doi: 10.3969/j.issn.1000-3657.2009.03.007
      [86] 杨锋, 冯佐海, 汪钥龙, 等, 2016. 粤西北太保花岗岩体LA-ICP-MS锆石U-Pb年代学研究. 桂林理工大学学报, 36(1): 160-169. doi: 10.3969/j.issn.1674-9057.2016.01.022
      [87] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
      [88] 周珣若, 1994. 花岗岩混合作用. 地学前缘, 1(1-2): 87-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505014.htm
      [89] 朱金初, 陈骏, 王汝成, 等, 2008. 南岭中西段燕山早期北东向含锡钨A型花岗岩带. 高校地质学报, 14 (4): 474-484. doi: 10.3969/j.issn.1006-7493.2008.04.002
    • dqkxzx-46-4-1199-附表1-2.docx
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  683
    • HTML全文浏览量:  196
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-13
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回