• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    济阳坳陷细粒混积岩类型与湖盆演化的耦合关系

    马义权 刘惠民 张守鹏 陆永潮 刘晓峰

    马义权, 刘惠民, 张守鹏, 陆永潮, 刘晓峰, 2020. 济阳坳陷细粒混积岩类型与湖盆演化的耦合关系. 地球科学, 45(10): 3633-3644. doi: 10.3799/dqkx.2020.192
    引用本文: 马义权, 刘惠民, 张守鹏, 陆永潮, 刘晓峰, 2020. 济阳坳陷细粒混积岩类型与湖盆演化的耦合关系. 地球科学, 45(10): 3633-3644. doi: 10.3799/dqkx.2020.192
    Ma Yiquan, Liu Huimin, Zhang Shoupeng, Lu Yongchao, Liu Xiaofeng, 2020. Types of Fine-Grained Mixed Sedimentary Rocks of Shahejie Formation and Evolution of Lake Basin in Jiyang Depression, Eastern China. Earth Science, 45(10): 3633-3644. doi: 10.3799/dqkx.2020.192
    Citation: Ma Yiquan, Liu Huimin, Zhang Shoupeng, Lu Yongchao, Liu Xiaofeng, 2020. Types of Fine-Grained Mixed Sedimentary Rocks of Shahejie Formation and Evolution of Lake Basin in Jiyang Depression, Eastern China. Earth Science, 45(10): 3633-3644. doi: 10.3799/dqkx.2020.192

    济阳坳陷细粒混积岩类型与湖盆演化的耦合关系

    doi: 10.3799/dqkx.2020.192
    基金项目: 

    国家自然科学基金青年科学基金项目 41802175

    中国博士后科学基金 2019M650184

    国家科技重大专项 2017ZX05049-004

    详细信息
      作者简介:

      马义权(1988-), 男, 讲师, 博士后, 主要从事非常规油气储层非均质性研究.ORCID:0000-0002-0937-9366.E-mail:yqma88@163.com

    • 中图分类号: P624

    Types of Fine-Grained Mixed Sedimentary Rocks of Shahejie Formation and Evolution of Lake Basin in Jiyang Depression, Eastern China

    • 摘要: 综合钻井、岩心、薄片和地球化学等资料,详细研究了济阳坳陷沾化凹陷沙三段下亚段细粒混积岩的混积类型、不同类型细粒混积岩的成因、垂向分布以及古湖泊水文演化规律.结果表明,沾化凹陷沙三段下亚段细粒混积岩包括层状-纹层状组构混积型和块状矿物组分混积型等2种混积类型;自下而上主要由层状-纹层状组构混积型夹块状矿物组分混积型发育段,过渡为块状矿物组分混积型夹层状-纹层状组构混积型发育段;表明了由潮湿且受季节性气候影响明显的深水湖泊,演化为水体较浅、盐度均一且受季节性气候影响不明显的湖泊环境,并建立了高水位早期-高水位中-晚期-低水位期的湖泊演化模式.在湖泊高水位早期阶段的早-中期和高水位中-晚期,有机质富集的主控因素主要是氧化还原条件和古生产力;在湖泊高水位早期阶段的晚期,古生产力是有机质富集的主控因素;在湖泊低水位时期,有机质富集的主控因素是氧化还原条件.总体上,适量的陆源供给(粘土矿物和石英含量均小于22%)会促进有机质富集,而过量的陆源碎屑输入以及碳酸盐的快速沉淀都会导致有机质被稀释.

       

    • 图  1  济阳坳陷构造地质简图(a);沾化凹陷南北向构造单元组成及主要沉积地层分布(b);沾化凹陷古近系-新近系地层分布简图(c)

      图a据Jiu et al. (2013)Wang et al. (2015)修改;图b据Jiu et al. (2013)Wang et al. (2015)修改;图c据Feng et al. (2016)修改

      Fig.  1.  Distribution of geological tectonic units in the Jiyang Depression with the locations of L69 well and the location of cross-section SN (a); N-S cross-section of the Zhanhua Depression showing tectonic-structural zones and stratigraphic intervals (b); General Paleogene-Neogen stratigraphy of the Zhanhua Depression (c)

      图  2  L69井沙三段下亚段细粒混积岩类型、TOC含量、主要矿物含量和地球化学参数垂向序列

      Fig.  2.  Types of fine-grained mixed sedimentary rocks, TOC, mineral composition and geological index variation of the lower submember of Es3 in the L69 well

      图  3  沾化凹陷沙三下亚段细粒混积岩沉积特征

      a~e.层状-纹层状组构混积型;a.纹层结构;b.植物叶片化石(箭头);c.平行且连续的纹层;d.韵律变化的隐晶方解石透镜体(白色箭头)和富粘土质纹层(黄色箭头);e.鱼骨化石的横截面;f~j.块状组分混积型;f~g.块状组分混积型与层状-纹层状组构混积型明显分界;h.介形虫化石略具定向性,可见次棱角-次圆状石英粉砂;i.介形虫碎片无序分布,石英粉砂主要呈次棱角状;j.隐晶质方解石与粘土矿物较均匀混合

      Fig.  3.  Characteristic of sedimentary observations of the fine-grained mixed sedimentary rocks of the lower submember of Es3 in Zhanhua Depression

      图  4  沾化凹陷沙三段下亚段湖泊演化模式

      Fig.  4.  Lake evolution model for the lower submember of Es3 in Zhanhua Depression

      图  5  石英和粘土矿物含量分别与TOC含量的相关性

      Fig.  5.  Correlations quartz and clay contents vs. TOC content of the lower submember of Es3 in the L69 well

    • [1] Algeo, T.J., Maynard, J.B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
      [2] Anderson, R.Y., Dean, W.E., 1988. Lacustrine Varve Formation through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 62: 215-235. https://doi.org/10.1016/0031-0182(88)90055-7
      [3] Bomou, B., Adatte, T., Tantawy, A.A., et al., 2013. The Expression of the Cenomanian-Turonian Oceanic Anoxic Event in Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 466-481. https://doi.org/10.1016/j.palaeo.2012.11.011
      [4] Bruhn, C.H.L., 1999. Reservoir Architecture of Deep-Lacustrine Sandstones from the Early Cretaceous Recôncavo Rift Basin, Brazil. AAPG Bulletin, 83(9): 1502-1525. https://doi.org/10.1306/E4FD41F7-1732-11D7-8645000102C1865D
      [5] Bruner, K.R., Walker-Milani, M., Smosna, R., 2015. Lithofacies of the Devonian Marcellus Shale in the Eastern Appalachian Basin, USA. Journal of Sedimentary Research, 85(8): 937-954. https://doi.org/10.2110/jsr.2015.62
      [6] Caplan, M. L., Bustin, R. M., 1999. Palaeoceanographic Controls on Geochemical Characteristics of Organic-Rich Exshaw Mudrocks: Role of Enhanced Primary Production. Organic Geochemistry, 30(2/3): 161-188. https://doi.org/10.1016/s0146-6380(98)00202-2
      [7] Carroll, A.R., Bohacs, K.M., 2001. Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins. AAPG Bulletin, 85(6): 1033-1053. https://doi.org/10.1306/8626CA5F-173B-11D7-8645000102C1865D
      [8] Chamberlain, C.P., Wan, X.Q., Graham, S.A., et al., 2013. Stable Isotopic Evidence for Climate and Basin Evolution of the Late Cretaceous Songliao Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 106-124. https://doi.org/10.1016/j.palaeo.2012.03.020
      [9] Deng, Y., Pu, X.G., Chen, S.Y., et al., 2019. Characteristics and Controlling Factors of Fine-Grained Mixed Sedimentary Rocks Reservoir: A Case Study of the 2nd Member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin. Journal of China University of Mining & Technology, 48(6): 1301-1316(in Chinese with English abstract).
      [10] Doebbert, A.C., Carroll, A.R., Mulch, A., et al., 2010. Geomorphic Controls on Lacustrine Isotopic Compositions: Evidence from the Laney Member, Green River Formation, Wyoming. Geological Society of America Bulletin, 122: 236-252. https://doi.org/10.1130/B26522.1
      [11] Feng, Y.L., Jiang, S., Hu, S.Y., et al., 2016. Sequence Stratigraphy and Importance of Syndepositional Structural Slope-Break for Architecture of Paleogene Syn-Rift Lacustrine Strata, Bohai Bay Basin, E. China. Marine and Petroleum Geology, 69: 183-204. https://doi.org/10.1016/j.marpetgeo.2015.10.013
      [12] Fischer, A.G., Roberts, L.T., 1991. Cyclicity in the Green River Formation (Lacustrine Eocene) of Wyoming. SEPM Journal of Sedimentary Research, 61(7): 1146-1154.. https://doi.org/10.1306/d4267852-2b26-11d7-8648000102c1865d
      [13] Freytet, P., Verrecchia, E.P., 2002. Lacustrine and Palustrine Carbonate Petrography: An Overview. Journal of Paleolimnology, 27(2): 221-237. https://doi.org/10.1023/A:1014263722766
      [14] Hay, B.J., Honjo, S., Kempe, S., et al., 1990. Interannual Variability in Particle Flux in the Southwestern Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 37(6): 911-928. https://doi.org/10.1016/0198-0149(90)90103-3
      [15] Jiang, Z.X., Chen, D.Z., Qiu, L.W., et al., 2007. Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China. Sedimentology, 54(2): 265-292. https://doi.org/10.1111/j.1365-3091.2006.00834.x
      [16] Jiu, K., Ding, W.L., Huang, W.H., et al., 2013. Fractures of Lacustrine Shale Reservoirs, the Zhanhua Depression in the Bohai Bay Basin, Eastern China. Marine and Petroleum Geology, 48: 113-123. https://doi.org/10.1016/j.marpetgeo.2013.08.009
      [17] Koinig, K.A., Shotyk, W., Lotter, A. F., et al., 2003. 9 000 Years of Geochemical Evolution of Lithogenic Major and Trace Elements in the Sediment of an Alpine Lake—The Role of Climate, Vegetation, and Land-Use History. Journal of Paleolimnology, 30(3): 307-320. https://doi.org/10.1023/A:1026080712312
      [18] Lazar, O.R., Bohacs, K.M., MacQuaker, J.H.S., et al., 2015. Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. Journal of Sedimentary Research, 85(3): 230-246. https://doi.org/10.2110/jsr.2015.11
      [19] Li, D.L., Shi, Q. M., Mi, N. Z., et al., 2020. The Type, Origin and Preservation of Organic Matter of the Fine-Grain Sediments in Triassic Yanhe Profile, Ordos Basin, and Their Relation to Paleoenvironment Condition. Journal of Petroleum Science and Engineering, 188: 106875. https://doi.org/10.1016/j.petrol.2019.106875
      [20] Li, G.S., Wang, Y.B., Lu, Z.S., et al., 2014. Geobiological Processes of the Formation of Lacustrine Source Rock in Paleogene. Science China Earth Sciences, 57(5): 976-987(in Chinese). doi: 10.1007/s11430-013-4753-8
      [21] Li, L., Wang, Z.X., Zheng, Y.H., et al., 2019. Mechanism of Shale Oil Enrichment from the Salt Cyclotherm in Qian3 Member of Qianjiang Sag, Jianghan Basin. Earth Science, 44(3): 1012-1023(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201903027
      [22] Lindqvist, J.K., Lee, D. E, 2009. High-Frequency Paleoclimate Signals from Foulden Maar, Waipiata Volcanic Field, Southern New Zealand: An Early Miocene Varved Lacustrine Diatomite Deposit. Sedimentary Geology, 222(1): 98-110. https://doi.org/10.1016/j.sedgeo.2009.07.009
      [23] Liu, C., Liu, K., Wang, X., 2019. Chemo-Sedimentary Facies Analysis of Fine-Grained Sediment Formations: An Example from the Lucaogou Fm. in the Jimusaer Sag, Junggar Basin, NW China. Marine and Petroleum Geology, 110: 388-402. https://www.sciencedirect.com/science/article/abs/pii/S0264817219302958
      [24] Liu, Z., Algeo, T.J., Guo, X., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control? Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 59-76. https://doi.org/10.1016/j.palaeo.2016.11.007
      [25] Liu, Z., Huang, C.J., Algeo, T.J., et al., 2018. High-Resolution Astrochronological Record for the Paleocene-Oligocene (66-23 Ma) from the Rapidly Subsiding Bohai Bay Basin, Northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 78-92. https://doi.org/10.1016/j.palaeo.2017.10.030
      [26] Ma, Y.Q., Fan, M. J., Lu, Y. C., et al., 2019. Stable Isotope Record of Middle Eocene Summer Monsoon and Its Instability in Eastern China. Global and Planetary Change, 175: 103-112. https://doi.org/10.1016/j.gloplacha.2019.02.007
      [27] Montero-Serrano, J., Föllmi, K. B., Adatte, T., et al., 2015. Continental Weathering and Redox Conditions during the Early Toarcian Oceanic Anoxic Event in the Northwestern Tethys: Insight from the Posidonia Shale Section in the Swiss Jura Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 429: 83-99. https://doi.org/10.1016/j.palaeo.2015.03.043
      [28] Mort, H. P., Jacquat, O., Adatte, T., et al., 2007. The Cenomanian/Turonian Anoxic Event at the Bonarelli Level in Italy and Spain: Enhanced Productivity and/or Better Preservation? Cretaceous Research, 28(4): 597-612. https://doi.org/10.1016/j.cretres.2006.09.003
      [29] Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      [30] Neugebauer, I., Brauer, A., Schwab, M. J., et al., 2014. Lithology of the Long Sediment Record Recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews, 102: 149-165. https://doi.org/10.1016/j.quascirev.2014.08.013
      [31] Price, J. R., Velbel, M. A., 2003. Chemical Weathering Indices Applied to Weathering Profiles Developed on Heterogeneous Felsic Metamorphic Parent Rocks. Chemical Geology, 202(3): 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001
      [32] Sageman, B. B., Murphy, A. E., Werne, J. P., et al., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 195(1): 229-273. https://doi.org/10.1016/S0009-2541(02)00397-2
      [33] Shi, J. Y., Jin, Z. J., Liu, Q. Y., et al., 2019. Cyclostratigraphy and Astronomical Tuning of the Middle Eocene Terrestrial Successions in the Bohai Bay Basin, Eastern China. Global and Planetary Change, 174: 115-126. https://doi.org/10.1016/j.gloplacha.2019.01.001
      [34] Smith, M. E., Carroll, A. R., Scott, J. J., et al., 2014. Early Eocene Carbon Isotope Excursions and Landscape Destabilization at Eccentricity Minima: Green River Formation of Wyoming. Earth and Planetary Science Letters, 403: 393-406. https://doi.org/10.1016/j.epsl.2014.06.024
      [35] Wang, M., Wilkins, R. W. T., Song, G., et al., 2015. Geochemical and Geological Characteristics of the Es3L Lacustrine Shale in the Bonan Sag, Bohai Bay Basin, China. International Journal of Coal Geology, 138: 16-29. https://doi.org/10.1016/j.coal.2014.12.007
      [36] Yan, J.H., Deng, Y., Pu, X.G., et al., 2017. Characteristics and Controlling Factors of Fine-Grained Mixed Sedimentary Rocks from the 2nd Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin. Oil & Gas Geology, 38(1): 98-109(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201701012
      [37] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686-693. https://doi.org/10.1126/science.1059412
      [38] Zhang, S.M., Cao, Y.C., Zhu, R.K., et al., 2018. Lithofacies Classification of Fine-Grained Mixed Sedimentary Rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin. Earth Science Frontiers, 25(4): 198-209(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201804017
      [39] Zhou, L.H., Chen, C.W., Han, G.M., et al., 2019. Geological Characteristics and Shale Oil Exploration Potential of Lower First Member of Shahejie Formation in Qikou Sag, Bohai Bay Basin. Earth Science, 44(8): 2736-2750(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908018
      [40] Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803008
      [41] Zolitschka, B., Francus, P., Ojala, A. E. K., et al., 2015. Varves in Lake Sediments—A Review. Quaternary Science Reviews, 117: 1-41. https://doi.org/10.1016/j.quascirev.2015.03.019
      [42] 邓远, 蒲秀刚, 陈世悦, 等, 2019.细粒混积岩储层特征与主控因素分析:以渤海湾盆地沧东凹陷孔二段为例.中国矿业大学学报, 48(6): 1301-1316.
      [43] 李国山, 王永标, 卢宗盛, 等, 2014.古近纪湖相烃源岩形成的地球生物学过程.中国科学(地球科学), 44(6): 1206-1217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201406012
      [44] 李乐, 王自翔, 郑有恒, 等, 2019.江汉盆地潜江凹陷潜三段盐韵律层页岩油富集机理.地球科学, 44(3): 1012-1023. doi: 10.3799/dqkx.2018.389
      [45] 鄢继华, 邓远, 蒲秀刚, 等, 2017.渤海湾盆地沧东凹陷孔二段细粒混合沉积岩特征及控制因素.石油与天然气地质, 38(1): 98-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201701012
      [46] 张少敏, 操应长, 朱如凯, 等, 2018.湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例.地学前缘, 25(4): 198-209.
      [47] 周立宏, 陈长伟, 韩国猛, 等, 2019.渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力.地球科学, 44(8): 2736-2750. doi: 10.3799/dqkx.2019.112
      [48] 朱红涛, 刘可禹, 朱筱敏, 等, 2018.陆相盆地层序构型多元化体系.地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906
    • 加载中
    图(5)
    计量
    • 文章访问数:  776
    • HTML全文浏览量:  156
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-20
    • 刊出日期:  2020-11-17

    目录

      /

      返回文章
      返回