SHRIMP Zircon U-Pb Ages, Geochemistry, Nd-Hf-O Isotopic Compositions of the Huai'an Complex in the Northwest of Hebei Province and Its Geological Significance
-
摘要: 冀西北地区怀安杂岩由变质表壳岩和变质深成岩组成,其中变质表壳岩的形成时代、怀安杂岩的构造背景以及其与孔兹岩带间的关系一直存在较大争议.本文对怀安杂岩的几处代表性露头进行了详细野外考察,对4件样品进行了岩石学、锆石SHRIMP U-Pb定年、同位素和元素地球化学分析.所有样品都给出了1.86~1.81 Ga的变质锆石年龄,进一步支持怀安杂岩广泛遭受到古元古代晚期变质作用改造的认识.侵入/包裹含BIF表壳岩组合的变质辉长岩(HB1425)和片麻状英云闪长岩(HB1426)分别给出了~2.5 Ga和2.55 Ga的形成年龄,限制表壳岩形成时代老于2.55 Ga,推测为新太古代表壳岩.浅粒岩(HB1431)和紫苏石榴黑云斜长片麻岩(HB1435)中最老的碎屑锆石分别为2.46 Ga和2.51 Ga,可能还存在古元古代的碎屑锆石,表明它们都为古元古代表壳岩.上述结果进一步确定了怀安杂岩中发育两期表壳岩组合.变质辉长岩和片麻状英云闪长岩的全岩εNd(t)、TDM1和TDM2分别为+2.19~+3.06、2.67~2.75 Ga和2.67~2.69 Ga,表明其物源区不存在较大规模的古老陆壳物质,新太古代是怀安地区主要陆壳生长期.变质辉长岩中~1.82 Ga变质锆石中较多具有正的εHf(t)值,最高可达11.1,最可能的解释是古元古代变质过程存在地幔添加作用.锆石的O同位素分析显示区域上可能存在低δ18O的岩石,在古元古代变质过程中,可能存在低δ18O流体对锆石的改造.怀安杂岩和西部孔兹岩带中不同类型岩石的比例明显不同,但两者都同样发育新太古代和古元古代的双层地壳结构,怀安杂岩或许代表孔兹岩带剥蚀更深而出露的深部地壳部分.
-
关键词:
- 锆石SHRIMP U-Pb定年 /
- Nd-Hf-O同位素 /
- 怀安杂岩 /
- 表壳岩 /
- 华北克拉通 /
- 地球化学
Abstract: The Huai'an Complex in Northwest Hebei Province consists of meta-supracrustal rocks and metamorphic plutonic rocks. There are still some controversies about some issues such as the formation age of supracrustal rocks, the tectonic setting of Huai'an Complex and the relationship between Huai'an Complex and Khondalite belt. Some representative outcrops of the Huai'an Complex have been studied in detail by field investigation, petrology, zircon SHRIMP U-Pb dating, isotopic and elements geochemistry. All of the 4 samples yielded metamorphic ages of 1.86-1.81 Ga, which further supports the previous view that the Huai'an Complex suffered extensive late Paleoproterozoic metamorphism. The BIF-bearing supracrustal rock assemblage was intruded and enclaved by the meta-gabbro (HB1425) and gneissic tonalite (HB1426), which yielded the formation ages of ca. 2.5 Ga and 2.55 Ga, respectively. It suggests that the supracrustal rocks in this location are older than 2.55 Ga. Leptite (HB1431) and hypersthene garnet biotite plagioclase gneiss (Hy-Grt-Bt-Pl gneiss, HB1435) contain the oldest detrital zircons of 2.46 Ga and 2.51 Ga, respectively, probably together with some Paleoproterozoic zircons, indicating that the supracrustal rocks in the two localities are Paleoproterozoic. These results further confirm the development of two stage supracrustal rock assemblages in the Huai'an Complex. The whole rocks εNd(t), TDM1 and TDM2 of the meta-gabbro and gneissic tonalite are +2.19 to +3.06, 2.67 to 2.75 Ga and 2.67 to 2.69 Ga, respectively, indicating no widespread older continental crust material is involved in their source and the Neoarchean is the main period of continental crust growth in the Huai'an area. Some of the ~1.82 Ga metamorphic zircons in metagabbro yielded positive εHf(t) values up to +11.1. The most likely reason for the Hf isotope composition is the mantle addition during the Paleoproterozoic metamorphic event. The zircon O-isotope shows that there may be rocks with low δ18O in the area, and low δ18O fluid could modify the O-isotope of zircon during the Paleoproterozoic metamorphism. It is concluded that the Huai'an Complex has the similar double-layered crustal structure to the Khondalite Belt although it is different in the proportion of the late Noearchean and Paleoproterozoic rocks. The Huai'an Complex may represent the deeper crustal level of the Khondalite belt due to stronger exhumation.-
Key words:
- zircon U-Pb dating /
- Nd-Hf-O isotopes /
- Huai'an Complex /
- supracrustal rocks /
- North China Craton /
- geochemistry
-
图 1 怀安杂岩在华北克拉通的位置(a)及其周边地区早前寒武纪地质简图(b)
图a据Zhao et al.(2005)修改;图b据张家辉等(2019b)修改
Fig. 1. Huai'an Complex of the North China Craton (a) and Precambrain geological sketch of the border area of the Huai'an Complex (b)
图 3 怀安南大岔口沟和史家庄古元古代晚期孔兹岩系岩石野外照片及显微照片
a.黑云斜长片麻岩遭受深熔作用改造;b.浅粒岩(HB1431)野外特征;c.浅粒岩(HB1431);d.基性麻粒岩显示深熔作用改造;e.变质碎屑沉积岩;f.变质碎屑沉积岩似保留沉积层理;g.石榴石岩石;h.紫苏石榴黑云斜长片麻岩(HB1435);i.浅粒岩显微照片;j.紫苏石榴黑云斜长片麻岩显微照片. Bt.黑云母;Grt.石榴子石;Kfs.钾长石;Opx.斜方辉石;Pl.斜长石;Qtz.石英
Fig. 3. Field photos and micrographs of late Paleoproterozoic Khondalite series in Dachakougou and Shijiazhuang, southern of Huai'an
图 7 怀安南怀安杂岩中岩石样品的锆石O同位素组成
图中给出了未受后期影响的太古亩岩浆锆石δ18O值变化范围(点线长方形区域据Valley et al., 2005)
Fig. 7. O-in-zircon isotopic compositions for rocks from the Huai'an Complex in southern of Huai'an
图 8 怀安南怀安杂岩中变质辉长岩(HB1425)的锆石Hf同位素组成
图中红色实线为亏损地幔εHf(t)演化线,两条绿色虚线分别为2.5 Ga和3.0 Ga地壳的εHf(t)的演化线,平均地壳的176Lu/177Hf采用(Griffin et al., 2002)推荐的值(0.015)
Fig. 8. Hf-in-zircon isotopic composition for metagabbro (HB1425) from the Huai'an Complex in southern of Huai'an
图 9 怀安南怀安杂岩中岩石样品的球粒陨石标准化REE模式(a)和MORB标准化微量元素蛛网图(b)
标准化数据来自Sun and McDonough (1989)和Pearce (1983)
Fig. 9. Chondrite-normalized REE patterns (a) and MORB-normalized trace element spider diagrams (b) of samples from the Huai'an Complex
-
[1] Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1-2):115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003 [2] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/S0012-821X(97)00040-X [3] Cai, J., Liu, F. L., Liu, P. H., et al., 2015. Geochronology of the Paleoproterozoic Khondalite Rocks from the Wulashan-Daqingshan Area, the Khondalite Belt. Acta Petrologica Sinica, 31(10):3081-3106 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510012 [4] Cai, J., Liu, F. L., Liu, P. H., et al., 2016. Geochemistry and Its Tectonic Implications of the Wulashan-Daqingshan Metapelites in Inner Mongolia. Acta Petrologica Sinica, 32(7):1980-1996 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201607004 [5] Cai, J., Liu, P. H., Ji, L., et al., 2017. Zircon Geochronology of the Paleoproterozoic High-Grade Supracrustal Rocks from the Huai'an Terrane, Northwestern Hebei. Acta Petrologica Sinica, 33(9):2811-2826 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201709011 [6] Dong, C. Y., Liu, D. Y., Wan, Y. S., et al., 2009. Crustally Derived Carbonatite from the Daqinshan Area:Zircon Features and SHRIMP Dating. Acta Geologica Sinica, 83(3):388-398 (in Chinese with English abstract). http://www.researchgate.net/publication/285028023_Crustally_derived_carbonatite_from_the_daqinshan_area_Zircon_features_and_SHRIMP_dating [7] Dong, C. Y., Wan, Y. S., Long, T., et al., 2016. Oxygen Isotopic Compositions of Zircons from Paleoproterozoic Metasedimentary Rocks in the Daqingshan-Jining Area, North China Craton:In Situ SHRIMP Analysis. Acta Petrologica Sinica, 32(3):659-681(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252014273.html [8] Dong, C. Y., Wan, Y. S., Wilde, S. A., et al., 2014. Earliest Paleoproterozoic Supracrustal Rocks in the North China Craton Recognized from the Daqingshan Area of the Khondalite Belt:Constraints on Craton Evolution. Gondwana Research, 25(4):1535-1553. https://doi.org/10.1016/j.gr.2013.05.021 [9] Dong, C. Y., Wan, Y. S., Xu, Z. Y., et al., 2013. SHRIMP Zircon U-Pb Dating of Late Paleoproterozoic Kondalites in the Daqing Mountains Area on the North China Craton. Science China Earth Sciences, 56(1):115-125. https://doi.org/10.1007/s11430-012-4459-3 [10] Dong, X. J., Xu, Z. Y., Liu, Z. H., et al., 2012.2.7 Ga Granitic Gneiss in the Northern Foot of Daqingshan Mountain, Central Inner Mongolia, and Its Geological Implications. Earth Science, 37(S1):20-27 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2012z1003 [11] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/S0024-4937(02)00082-8 [12] Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton:Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8):741-756. https://doi.org/10.1046/j.1525-1314.2002.00401.x [13] Guo, J. H., Zhai, M. G., Li, J. H., et al., 1996. Nature of the Early Precambrian Sanggan Structure Zone in North China Craton Evidence from Rock Association. Acta Petrologica Sinica, 12(2):193-207 (in Chinese with English abstract). [14] Guo, J. H., Zhai, M. G., Zhang, Y. G., et al., 1993. Early Precambrian Manjinggou High-Pressure Granulites Melange Belt on the Southern Edge of the Huai'an Complex, North China Craton:Geological Features, Petrology and Isotopic Geochronology. Acta Petrologica Sinica, 9(4):329-341 (in Chinese with English abstract). [15] Ickert, R. B., Hiess, J., Williams, I. S., et al., 2008. Determining High Precision, in Situ, Oxygen Isotope Ratios with a SHRIMP Ⅱ:Analyses of MPI-DING Silicate-Glass Reference Materials and Zircon from Contrasting Granites. Chemical Geology, 257(1):114-128. https://doi.org/10.1016/j.chemgeo.2008.08.024 [16] Jacobsen, S. B., Wasserburg, G. J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1):139-155. https://doi.org/10.1016/0012-821x(80)90125-9 [17] Li, C. J., Bao, Z. W., Zhao, Z. H., et al., 2012. Zircon U-Pb Age and Hf Isotopic Compositions of the Granitic Gneisses from the Sanggan Complex in the Zhangjiakouk Area:Constraints on the Early Evolution of North China Craton. Acta Petrologica Sinica, 28(4):1057-1072 (in Chinese with English abstract). [18] Li, J. H., Kusky, T. M., Huang, X. N, 2002. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton:A Record of Early Oceanic Mantle Processes. GSA Today, 12(7):4. https://doi.org/10.1130/1052-5173(2002)0120004:APCAMT>2.0.CO; 2 doi: 10.1130/1052-5173(2002)0120004:APCAMT>2.0.CO;2 [19] Liu, F., Guo, J. H., Lu, X. P., et al., 2009. Crustal Growth at ∼2.5 Ga in the North China Craton:Evidence from Whole-Rock Nd and Zircon Hf Isotopes in the Huai'an Gneiss Terrane. Chinese Science Bulletin, 54(24):4704-4713. https://doi.org/10.1007/s11434-009-0288-y [20] Liu, F., Guo, J. H., Peng, P., et al., 2012. Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane:Petrogenesis and Implications for ∼2.5 Ga Crustal Growth in the North China Craton. Precambrian Research, 212-213:225-244. https://doi.org/10.1016/j.precamres.2012.06.006 [21] Liu, P. H., Liu, F. L., Cai, J., et al., 2013. Geochronological and Geochemical Study of the Lijiazi Mafie Granulites from the Daqingshan-Wulashan Metamorphic Complex, the Central Khondalite Belt in the North China Craton. Acla Petrologica Sinica, 29(2):462-484 (in Chinese with English abstract). http://www.oalib.com/paper/1473880 [22] Liu, Y. G., 1989. Origin and Crustal Evolution of Early Precambrian Metamorphic Complex from Northwestern Hebei Province and the Adjacent Area, China: A Study of Petrology, Geochemistry and Isotopic Geochronology (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [23] Ludwig, K. R., 2001. Squid 1.02: A User's Manual. Berkeley Geochronology Centre Special Publication, Berkeley. [24] Luo, Z. B., Zhang, H. F., Diwu, C. R., et al., 2012. Zircon U-Pb, Lu-Hf Isotope and Trace Element Compositions of Intermediat Pyroxene Granulite in the Huai'an Area, Northwest Hebei Province:Constraints on the Timing of Retrograde Metamorphism. Acta Petrologica Sinica, 28(11):3721-3738 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211024.htm [25] Ma, M. Z., Dong, C. Y., Xu, Z. Y., et al., 2015. Anatexis of Early Paleoproterozoic Garnet-Biotite Gneisses (Daqingshan Supracrustal Rocks) in Daqingshan, Inner Mongolia:Geology, Zircon Geochronology and Geochemistry. Acta Petrologica Sinica, 31(6):1535-1548 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201506004.htm [26] Ma, M. Z., Wan, Y. S., Santosh, M., et al., 2012. Decoding Multiple Tectonothermal Events in Zircons from Single Rock Samples:SHRIMP Zircon U-Pb Data from the Late Neoarchean Rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4):810-827. https://doi.org/10.1016/j.gr.2012.02.020 [27] Ma, M. Z., Wan, Y. S., Xu, Z. Y., et al., 2012. Late Paleoproterozoic K-Feldspar Pegmatite Veins in Daqingshan Area, North China Craton:SHRIMP Age and Hf Composition of Zircons. Geological Bulletin of China, 31(6):825-833 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201206001.htm [28] Nowell, G. M., Kempton, P. D., Noble, S. R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry:Insights into the Depleted Mantle. Chemical Geology, 149(3-4):211-233. https://doi.org/10.1016/S0009-2541(98)00036-9 [29] Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva, Nantwich. [30] Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton:Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3):635-659. https://doi.org/10.1016/j.precamres.2010.08.015 [31] Peng, P., Wang, X. P., Windley, B. F., et al., 2014. Spatial Distribution of~1 950-1 800 Ma Metamorphic Events in the North China Craton:Implications for Tectonic Subdivision of the Craton. Lithos, 202-203:250-266. https://doi.org/10.1016/j.lithos.2014.05.033 [32] Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530):683-687. https://doi.org/10.1126/science.1061372 [33] Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2):207-221. https://doi.org/10.1016/0012-821X(75)90088-6 [34] Su, Y. P., Zheng, J. P., Griffin, W. L., et al., 2014. Zircon U-Pb Ages and Hf Isotope of Gneissic Rocks from the Huai'an Complex:Implications for Crustal Accretion and Tectonic Evolution in the Northern Margin of the North China Craton. Precambrian Research, 255:335-354. https://doi.org/10.1016/j.precamres.2014.10.007 [35] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [36] Tian, H., Zhang, J. H., Wang, H. C., et al., 2019. Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton, Earth Science, 44(1):37-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901004 [37] Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005.4.4 Billion Years of Crustal Maturation:Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6):561-580. https://doi.org/10.1007/s00410-005-0025-8 [38] Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2009. The Precambrian Khondalite Belt in the Daqingshan Area, North China Craton:Evidence for Multiple Metamorphic Events in the Palaeoproterozoic Era. Geological Society, London, Special Publications, 323(1):73-97. https://doi.org/10.1144/sp323.4 [39] Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2015. Formation and Evolution of Archean Continental Crust of the North China Craton. Precambrian Geology of China, Springer, New York. [40] Wan, Y. S., Song, B., Liu, D. Y., et al., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149(3-4):249-271. https://doi.org/10.1016/j.precamres.2006.06.006 [41] Wan, Y. S., Zhang, Y. H., Williams, I. S., et al., 2013. Extreme Zircon O Isotopic Compositions from 3.8 to 2.5 Ga Magmatic Rocks from the Anshan Area, North China Craton. Chemical Geology, 352:108-124. http://doi.org/10.1016/j.chemgeo.2013.06.009 [42] Wang, H. Z., Zhang, H. F., Zhai, M. G., 2015.~1.95 Ga Direct Evidence of High Pressure Granulite Facies Events in the Huai'an Terrane. Acta Mineralogica Sinica, 35(S1):552 (in Chinese). [43] Wang, J., Wu, Y. B., Gao, S., et al., 2010. Zircon U-Pb and Trace Element Data from Rocks of the Huai'an Complex:New Insights into the Late Paleoproterozoic Collision between the Eastern and Western Blocks of the North China Craton. Precambrian Research, 178(1):59-71. https://doi.org/10.1016/j.precamres.2010.01.007 [44] Wang, L., Guo, J. H., Peng, P., et al., 2015. Lithological Units at the Boundary Zone between the Jining and Huai'an Complexes (Central-Northern Margin of the North China Craton):A Paleoproterozoic Tectonic Mélange?. Lithos, 227:205-224. https://doi.org/10.1016/j.lithos.2015.04.006 [45] Wei, Y., Zheng, J. P., Su, Y. P., et al., 2013. Zircon U-Pb Ages and Hf Isotopes of Granulites from the Huai'an Complex:Implications for the Accretion and Reworking of the Lower Crust beneath the North Margin of the North China Craton. Acta Petrologica Sinica, 29(7):2281-2294 (in Chinese with English abstract). [46] Wiedenbeck, M., Hanchar, J. M., Peck, W. H., et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1):9-39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x [47] Willimas, I. S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: Mckibben, M. A., Shanks, W. C., Ridley, W. I., eds., Application of Microanalytical Technique to Understanding Mineralizing Processes. Review of Economic Geology, 7: 1-35. https://doi.org/10.5382/rev.07.01 [48] Wu, C. H., Li, H. M., Zhong, C. D., et al., 1998. The Ages of Zircon and Rutile (Cooling) from Khondalite in Huangtuyao, Inner Mongolia. Geological Review, 44(6):618-626 (in Chinese with English abstract). http://www.researchgate.net/publication/285014555_The_ages_of_zircon_and_rutile_cooling_from_khondalite_in_Huangtuyao_Inner_Mongolia [49] Wu, J. L., Zhai, M. G., Zhang, H. F., et al., 2018. An Analysis of Mineralogical Characteristies and Metamorphism of Paleoproterozoic Pelitie Granulites from Datong-Huai'an Area, the North China Craton. Acta Petrologica Sinica, 34(11):3266-3286 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201270234069.html [50] Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton:Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278:323-336. https://doi.org/10.1016/j.precamres.2016.03.001 [51] Wu, J. S., Geng, Y. S, Shen, Q. H., et al., 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Geological Publishing House, Beijing (in Chinese). [52] Xu, Z. Y., Wan, Y. S., Dong, C. Y., et al., 2015. Late Neoarchean Magmatism Identiied in Daqingshan, Inner Mongolia:SHRIMP Zircon U-Pb Dating. Acta Petrologica Sinica, 31(6):1509-1517 (in Chinese with English abstract). http://www.researchgate.net/publication/282240404_Late_Neoarchean_magmatism_identified_in_Daqingshan_Inner_Mongolia_SHRIMP_zircon_U-Pb_dating [53] Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science China Earth Sciences, 43(S1):219-232. https://doi.org/10.1007/bf02911947 [54] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005 [55] Zhang, H. F., Luo, Z. B., Zhou, Z. G., et al., 2009. Palaeoproterowoie Collisional Time in the Sanggan Area of the North China Craton:Constraints from Age of Regional Ductile Shearing and Post-Collisional Super Peraluminous Granites. Joumal of Mineralogy and Petrology, 29(1):60-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200901010.htm [56] Zhang, H. F., Wang, H. Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC):Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272:244-263. https://doi.org/10.1016/j.precamres.2015.11.004 [57] Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2011. Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huai'an Complex:Implications for the Evolution of the North China Craton. Gondwana Research, 20(1):82-105. https://doi.org/10.1016/j.gr.2011.01.009 [58] Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2014. Paleoproterozoic Granulites from the Xinghe Graphite Mine, North China Craton:Geology, Zircon U-Pb Geochronology and Implications for the Timing of Deformation, Mineralization and Metamorphism. Ore Geology Reviews, 63:478-497. https://doi.org/10.1016/j.oregeorev.2014.03.014 [59] Zhang, J. H., Tian, H., Wang, H. C., et al., 2019a. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1):1-22 (in Chinese with English abstract). [60] Zhang, J. H., Wang, H. C., Tian, H., et al., 2019b. Geochemistry of the Neoarchean and Paleoproterozoic Al-Rich Metamorphic Supracrustal Rocks in the Huai'an Complex, North China Craton and Its Tectonic Significances. Acta Geologica Sinica, 93(7):1618-1638(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006 [61] Zhang, J. H., Wang, H. C., Tian, H., et al., 2019c. Petrogenesis of the MORB Type High-Pressure Mafic Granulite from the Huai'an Complex in North China Craton and Its Tectonic Implications. Acta Petrologica Sinica, 35(11):3506-3528 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.16 [62] Zhao, G. C., Sun, M., Wilde, S. A., 2003. Correlations between the Eastern Block of the North China Craton and the South Indian Block of the Indian Shield:an Archaean to Palaeoproterozoic Link. Precambrian Research, 122(1-4):201-233. https://doi.org/10.1016/S0301-9268(02)00212-7 [63] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [64] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1999. Thermal Evolution of Two Textural Types of Mafic Granulites in the North China Craton:Evidence for both Mantle Plume and Collisional Tectonics. Geological Magazine, 136(3):223-240. https://doi.org/10.1017/s001675689900254x [65] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00154-6 [66] Zhao, G. C., Wilde, S. A., Guo, J. H., et al., 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton. Precambrian Research, 177(3-4):266-276. https://doi.org/10.1016/j.precamres.2009.12.007 [67] Zhao, G. C., Wilde, S. A., Sun, M., et al., 2006. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic Crustal Accretion and Collision of the Trans-North China Orogen. Geochimica et Cosmochimica Acta, 70(18):A740. https://doi.org/10.1016/j.gca.2006.06.1332 [68] Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen. American Journal of Science, 308(3):270-303. https://doi.org/10.2475/03.2008.04 [69] 蔡佳, 刘福来, 刘平华, 等, 2015.内蒙古孔兹岩带乌拉山-大青山地区古元古代孔兹岩系年代学研究.岩石学报, 31(10):3081-3106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510012 [70] 蔡佳, 刘福来, 刘平华, 等, 2016.内蒙古乌拉山-大青山地区变泥质岩的地球化学特征及构造意义.岩石学报, 32(7):1980-1996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201607004 [71] 蔡佳, 刘平华, 冀磊, 等, 2017.冀西北怀安地体高级变质表壳岩的锆石年代学研究.岩石学报, 33(9):2811-2826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201709011 [72] 董春艳, 刘敦一, 万渝生, 等, 2009.大青山地区古元古代壳源碳酸岩:锆石特征及SHRIMP定年.地质学报, 83(3):388-398. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200903009.htm [73] 董春艳, 万渝生, 龙涛, 等, 2016.华北克拉通大青山-集宁地区古元古代变质沉积岩的锆石氧同位素组成:SHRIMP微区原位分析.岩石学报, 32(3):659-681. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201603003.htm [74] 董晓杰, 徐仲元, 刘正宏, 等, 2012.内蒙古大青山北麓2.7 Ga花岗质片麻岩的发现及其地质意义.地球科学, 37(S1):20-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2012z1003 [75] 郭敬辉, 翟明国, 李江海, 等, 1996.华北克拉通早前寒武纪桑干构造带的岩石组合特征和构造性质.岩石学报, 12(2):193-207. http://www.cnki.com.cn/Article/CJFDTotal-YSXB602.002.htm [76] 郭敬辉, 翟明国, 张毅刚, 等, 1993.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学.岩石学报, 9(4):329-341. http://www.cnki.com.cn/Article/CJFDTotal-YSXB199304001.htm [77] 李创举, 包志伟, 赵振华, 等, 2012.张家口地区桑干杂岩中花岗片麻岩的锆石U-Pb年龄与Hf同位素特征及其对华北克拉通早期演化的制约.岩石学报, 28(4):1057-1072. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201204004 [78] 刘平华, 刘福来, 蔡佳, 等, 2013.华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究.岩石学报, 29(2):462-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009 [79] 刘宇光, 1989.中国冀西北及邻区早前寒武纪变质杂岩的成因和地壳演化: 岩石学、地球化学、同位素地质年代学研究(博士学位论文).北京: 中国地质科学院. [80] 罗志波, 张华锋, 第五春荣, 等, 2012.冀西北怀安地区中性辉石麻粒岩的锆石U-Pb、Lu-Hf及微量元素组成对区域退变质时代的制约.岩石学报, 28(11):3721-3738. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201211022 [81] 马铭株, 董春艳, 徐仲元, 等, 2015.内蒙古大青山地区古元古代早期榴云片麻岩(大青山表壳岩)深熔作用:地质、锆石年代学和地球化学研究.岩石学报, 31(6):1535-1548. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201506004.htm [82] 马铭株, 万渝生, 徐仲元, 等, 2012.华北克拉通大青山地区古元古代晚期钾长伟晶岩脉SHRIMP锆石U-Pb定年和Hf同位素组成.地质通报, 31(6):825-833. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201206001 [83] 田辉, 张家辉, 王惠初, 等, 2019.怀安杂岩中含BIF岩石组合的形成时代及产出构造背景.地球科学, 44(1):37-51. doi: 10.3799/dqkx.2018.301 [84] 王浩铮, 张华锋, 翟明国, 2015.怀安地体~1.95 Ga的高压麻粒岩相事件的直接证据.矿物学报, 35(S1):552. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2015S1395.htm [85] 魏颖, 郑建平, 苏玉平, 等, 2013.怀安麻粒岩锆石U-Pb年代学及Hf同位素:华北北缘下地壳增生再造过程研究.岩石学报, (29)7:2281-2294. http://d.wanfangdata.com.cn/periodical/ysxb98201307002 [86] 吴昌华, 李惠民, 钟长汀, 等, 1998.内蒙古黄土窑孔兹岩系的锆石与金红石年龄研究.地质论评, 44(6):618-626. http://www.cnki.com.cn/Article/CJFDTotal-DZLP199806010.htm [87] 吴佳林, 翟明国, 张华锋, 等, 2018.华北克拉通大同-怀安地区古元古代泥质麻粒岩的矿物学特征及变质作用剖析.岩石学报, 34(11):3266-3286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201811012 [88] 伍家善, 耿元生, 沈其韩, 1998.中朝古大陆太古宙地质特征及构造演化.北京:地质出版社. [89] 徐仲元, 万渝生, 董春艳, 等, 2015.内蒙古大青山地区新太古代晚期岩浆作用:来自锆石SHRIMP U-Pb定年的证据.岩石学报, 31(6):1509-1517. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201506002.htm [90] 张华锋, 罗志波, 周志广, 等, 2009.华北克拉通中北部古元古代碰撞造山时限:来自强过铝花岗岩和韧性剪切时代的制约.矿物岩石, 29(1):60-67. http://www.cnki.com.cn/Article/CJFDTotal-KWYS200901010.htm [91] 张家辉, 田辉, 王惠初, 等, 2019a.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. doi: 10.3799/dqkx.2018.259 [92] 张家辉, 王惠初, 田辉, 等, 2019b.华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义.地质学报, 93(7):1618-1638. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006 [93] 张家辉, 王惠初, 田辉, 等, 2019c.华北克拉通怀安杂岩中"MORB"型高压基性麻粒岩的成因及其构造意义.岩石学报, 35(11):3506-3528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201911016 -
dqkxzx-45-9-3353-附表.doc