Exploration Discovery of Shale Gas and Its Indicative Significance to Mineralization of MVT Lead-Zinc Deposit in Yichang Area, West Hubei
-
摘要: 油气成藏和有机质参与金属成矿的内在联系是近年来国内外地学界关注的热点问题.根据流体包裹体岩相学观察和激光拉曼光谱分析,在鄂西宜昌地区震旦系陡山沱组和下寒武统牛蹄塘组页岩储层及震旦系灯影组MVT(Mississippi Valley type)铅锌矿床中发现了高密度甲烷包裹体,并利用甲烷包裹体的甲烷拉曼散射峰v1计算了甲烷包裹体的密度;同时采用Rb-Sr、Sm-Nd同位素定年确定了MVT铅锌矿成矿年代.鄂阳页1井陡山沱组页岩石英脉和何家坪MVT铅锌矿方解石样品中甲烷包裹体密度分别为0.237~0.278 g/cm3和0.213~0.271 g/cm3,属于高密度甲烷包裹体.何家坪铅锌矿共生矿物闪锌矿和方铅矿的Rb-Sr等时线年龄为189.1±1.8 Ma,方解石的Sm-Nd等时线年龄为189.9±2.0 Ma,指示铅锌矿形成于燕山早期的构造挤压运动;共生矿物的初始87Sr/86Sr值(0.711 92)和方解石的初始87Sr/86Sr值(0.712 03~0.712 27)指示何家坪铅锌矿成矿流体的Sr同位素主要来源于页岩层.何家坪铅锌矿中捕获的以流体包裹体形式存在的高密度甲烷流体最有可能来源于陡山沱组页岩和/或牛蹄塘组页岩内高密度超压甲烷流体.页岩气层和MVT铅锌矿中高密度甲烷包裹体的发现及MVT铅锌矿成矿时间的确定为探讨有机质参与MVT铅锌矿成矿提供了新证据.
-
关键词:
- 页岩气 /
- MVT铅锌矿 /
- 高密度甲烷包裹体 /
- Rb-Sr等时线定年 /
- Sm-Nd等时线定年 /
- 成矿-成藏耦合 /
- 石油地质
Abstract: The coupling relationship between hydrocarbon accumulation and the involvement of organic matter in metal mineralization has been a frontier scientific question in recent years. On the basis of the petrography and Raman spectral analysis of fluid inclusions, high-density methane inclusions were discovered in the samples of quartz and calcite veins from Sinian Doushantuo shales, Lower Cambrian Niutitang shales, and MVT (Mississippi Valley type) lead-zinc deposit of Sinian Dengying Formation in Yichang area. The Raman scatter peak v1 of methane inclusions was applied to calculate the density of pure methane inclusions, and the ore-forming ages of MVT lead-zinc deposit were determined by using Rb-Sr and Sm-Nd isochron dating. The density of methane inclusions trapped in the quartz veins within the Doushantuo shales of well EYY 1 mainly ranges from 0.237 to 0.278 g/cm3, and the density of methane inclusions trapped in the calcite veins within the Hejiaping MVT lead-zinc deposit mainly ranges from 0.213 to 0.271 g/cm3, which signifies methane inclusions of high density. Paragenetic mineral association sphalerite and galena within the Hejiaping lead-zinc deposit have a Rb-Sr isochron age of 189.1±1.8 Ma, and calcite within the Hejiaping lead-zinc deposit yields a Sm-Nd isochron age of 189.9±2.0 Ma, which indicates is the mineralization of Hejiaping lead-zinc deposit was closely related to the Yanshanian tectonic compressions. The 87Sr/86Sr values of the paragenetic mineral association (0.711 92) and calcite (0.712 03-0.712 27) indicate that the ore-forming fluids of the Hejiaping lead-zinc deposit were derived largely from shale sources. The high-density methane trapped in fluid inclusions within the Hejiaping lead-zinc deposit was most likely derived from the high-density overpressure methane generated by the Doushantuo shales and/or Niutitang shales. The discovery of high-density methane inclusion in the shale gas layer and MVT lead-zinc deposit, and the determination of ore-forming ages of MVT lead-zinc deposit provide new evidence for the study of organic matter participation in the mineralization of MVT lead-zinc deposit. -
图 1 中扬子宜昌地区区域地质概况及采样位置图(修改自罗胜元等,2019b)
Fig. 1. Geological map and sampling location of the Yichang area, Middle Yangtze region(modified from Luo et al., 2019b)
图 3 鄂西宜昌地区鄂阳页1井页岩裂缝脉体样品和何家坪铅锌矿样品照片
a.鄂阳页1井寒武系牛蹄塘组页岩高角度裂缝充填的方解石脉,EYY-1,2 942.56 m;b.鄂阳页1井震旦系陡山陀组页岩高角度裂缝充填的石英脉,EYY-2,3 392.42 m;c.震旦系灯影组何家坪铅锌矿床含方铅矿闪锌矿型样品,HJP1,Ⅰ号矿体;d.震旦系灯影组何家坪铅锌矿床闪锌矿型样品,HJP3,Ⅰ号矿体
Fig. 3. Photos of calcite and quartz veins hosted in well EYY-1 and samples from Hejiaping lead-zinc deposit in Yichang area, West Hubei
图 4 宜昌地区鄂阳页1井页岩裂缝脉体和何家坪铅锌矿方解石捕获甲烷包裹体特征
a.为方解石脉中散布的甲烷包裹体和气-液两相盐水包裹体,牛蹄塘组,EYY-1井,2 942.56 m;b~d为石英脉中共生分布的甲烷包裹体、气-液两相盐水包裹体和沥青包裹体,陡山陀组,EYY-1井,3 392.42 m;e、f.方解石中散布的甲烷包裹体和气-液两相盐水包裹体,灯影组,何家坪铅锌矿,Ⅰ号矿体
Fig. 4. Methane inclusions and their coexisting aqueous inclusions trapped in quartz and calcite veins from well EYY-1 and Hejiaping lead-zinc deposit in Yichang area
表 1 宜昌地区鄂阳页1井页岩裂缝脉体和何家坪铅锌矿样品信息
Table 1. Details of samples selected from veins in well EYY1 and from Hejiaping lead-zinc deposit, Yichang area
表 2 宜昌地区鄂阳页1井页岩裂缝脉体和何家坪铅锌矿方解石中甲烷包裹体甲烷拉曼散射峰v1、密度、捕获温度和压力分布
Table 2. Measured peak positions (v1), calculated densities (ρ), and the trapping temperatures and pressures of methane inclusions in quartz and calcite veins from well EYY-1 and Hejiaping lead-zinc deposit in Yichang area
样品 甲烷拉曼散射峰v1范围
(cm-1)测点数
(个)甲烷包裹体密度
ρ(g/cm3)共生气-液两相盐水包裹体均一温度
Th(℃)甲烷包裹体捕获压力
P(MPa)鄂阳页1井页岩石英脉样品 2 910.937 5~2 911.121 0 2 0.261~0.271 179.8~182.9 96.6~106.2 2 910.779 3~2 911.121 0 4 0.261~0.278 185.1~186.3 98.9~113.1 2 910.779 3~2 911.467 9 4 0.244~0.278 189 86.9~114.2 2 911.106 0~2 911.613 5 3 0.237~0.261 195.4~197.1 84.4~102.4 2 910.779 3~2 910.937 5 2 0.271~0.278 210.2 115.5~122.2 何家坪铅锌矿方解石样品 2 910.918 7 1 0.271 193.3 109.8 2 911.105 5~2 911.613 5 3 0.238~0.262 206.9~215.8 87.3~109.1 2 911.266 0~2 911.613 5 3 0.238~0.254 223.5 91.7~104.8 2 911.266 0 1 0.254 227.3 105.9 2 912.134 7 1 0.213 232.2 77.5 表 3 宜昌地区何家坪铅锌矿共生矿物闪锌矿和方铅矿的Rb-Sr同位素组成和方解石Sm-Nd同位素组成
Table 3. Results of Rb-Sr isotopic compositions of paragenetic mineral association sphalerite and galena, and Sm-Nd isotopic compositions of calcites from the Hejianping lead-zinc deposit in Yichang area
样品号 矿物 Rb
(10-6)Sr
(10-6)87Rb/86Sr 87Sr/86Sr±2σ εSr
(189 Ma)Sm
(10-6)Nd
(10-6)147Sm/144Nd 143Nd/144Nd±2σ 共生矿物闪锌矿和方铅矿,图 7a HJP1-1 方铅矿 0.115 8 4.716 0 0.072 9 0.712 052±7 0.711 86 HJP1-2 闪锌矿 0.380 7 0.349 5 3.218 0 0.720 678±8 0.712 20 HJP2 闪锌矿 0.421 9 0.627 8 1.983 0 0.717 292±9 0.712 06 HJP3-1 闪锌矿 0.873 6 0.445 3 5.782 0 0.727 411±9 0.712 13 HJP4-1 闪锌矿 0.673 1 0.495 1 4.015 0 0.722 698±9 0.712 11 与铅锌矿矿石密伴生的方解石,图 7b HJP1-3 方解石 7.903 0 98.47 0.237 8 0.712 799±8 0.712 17 0.120 5 0.213 8 0.342 9 0.512 482±9 HJP3-2 方解石 3.692 0 95.61 0.114 6 0.712 329±8 0.712 03 0.152 6 0.311 4 0.295 2 0.512 421±7 HJP4-2 方解石 0.271 8 87.24 0.092 7 0.712 293±7 0.712 27 0.311 2 0.236 5 0.794 3 0.513 042±7 -
[1] Anderson, G.M., 1975. Precipitation of Mississippi Valley-Type Ores. Economic Geology, 70(5): 937-942. https://doi.org/10.2113/gsecongeo.70.5.937 [2] Chen, Y., Zhou, Y.Q., Zhang, L.P., et al., 2007. Discovery of CH4-Rich High-Pressure Fluid Inclusions Hosted in Analcime from Dongying Depression, China. Journal of Petroleum Science and Engineering, 56(4): 311-314. https://doi.org/10.1016/j.petrol.2006.10.005 [3] Deng, M.Z., 2018. Structural Modeling of the Huangling Anticline and Its Peripheral Structural Belt (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [4] Deng, M.Z., He, D.F., 2018. The Geological Structure in the Dangyang Area and Its Significance to the Shale Gas Exploration in Yichang Area, China. Journal of Chengdu University of Technology (Science & Technology Edition), 45(4): 487-500(in Chinese with English abstract). http://www.researchgate.net/publication/328698890_The_geological_structure_in_the_Dangyang_area_and_its_significance_to_the_shale_gas_exploration_in_Yichang_area_China [5] Duan, Q.F., 2014. The Research of the Metallogenic Regularity of Stratabound Zinc-Lead Deposits from Sinian-Cambrian in the Western Hunan and Eestern Hubei (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [6] Gao, J., 2018. Paleo-Temperature and Pressure and Origin of Paleo-Fluid of Fracture Veins in the Wufeng-Longmaxi Shales of Yudong Area (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [7] Gao, J., He, S., Yi, J.Z., 2015. Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance. Oil & Gas Geology, 36(3): 472-480(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201503018.htm [8] Gao, J., He, S., Zhao, J.X., et al., 2017. Geothermometry and Geobarometry of Overpressured Lower Paleozoic Gas Shales in the Jiaoshiba Field, Central China: Insight from Fluid Inclusions in Fracture Cements. Marine and Petroleum Geology, 83: 124-139. https://doi.org/10.1016/j.marpetgeo.2017.02.018 [9] Gao, J., He, S., Zhao, J.X., et al., 2020. Sm-Nd Isochron Dating and Geochemical (Rare Earth Elements, 87Sr/86Sr, δ18O, δ13C) Characterization of Calcite Veins in the Jiaoshiba Shale Gas Field, China: Implications for the Mechanisms of Vein Formation in Shale Gas Systems. Geological Society of America Bulletin, 132: 1722-1740. https://doi.org/10.1130/b32015.1 [10] Gao, J., Zhang, J.K., He, S., et al., 2019. Overpressure Generation and Evolution in Lower Paleozoic Gas Shales of the Jiaoshiba Region, China: Implications for Shale Gas Accumulation. Marine and Petroleum Geology, 102: 844-859. https://doi.org/10.1016/j.marpetgeo.2019.01.032 [11] Ghazban, F., Schwarcz, H.P., Ford, D.C., 1990. Carbon and Sulfur Isotope Evidence for In Situ Reduction of Sulfate, Nanisivik Lead-Zinc Deposits, Northwest Territories, Baffin Island, Canada. Economic Geology, 85(2): 360-375. https://doi.org/10.2113/gsecongeo.85.2.360 [12] Gize, A.P., Barnes, H.L., 1987. The Organic Geochemistry of Two Mississippi Valley-Type Lead-Zinc Deposits. Economic Geology, 82(2): 457-470. https://doi.org/10.2113/gsecongeo.82.2.457 [13] Goldstein, R.H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1-4): 159-193. https://doi.org/10.1016/s0024-4937(00)00044-x [14] Hu, R., Wang, W., Li, S.Q., et al., 2016. Sedimentary Environment of Ediacaran Sequences of South China: Trace Element and Sr-Nd Isotope Constraints. The Journal of Geology, 124(6): 769-789. http//doi. org/10.1086/688668 doi: 10.1086/688668 [15] Hurai, V., Marko, F., Tokarski, A.K., et al., 2006. Fluid Inclusion Evidence for Deep Burial of the Tertiary Accretionary Wedge of the Carpathians. Terra Nova, 18(6): 440-446. https://doi.org/10.1111/j.1365-3121.2006.00710.x [16] Jochum, J., 2000. Variscan and Post-Variscan Lead-Zinc Mineralization, Rhenish Massif, Germany: Evidence for Sulfide Precipitation via Thermochemical Sulfate Reduction. Mineralium Deposita, 35(5): 451-464. https://doi.org/10.1007/s001260050255 [17] Kesler, S.E., Jones, H.D., Furman, F.C., et al., 1994. Role of Crude Oil in the Genesis of Mississippi Valley-Type Deposits: Evidence from the Cincinnati Arch. Geology, 22(7): 609-612. doi: 10.1130/0091-7613(1994)022<0609:ROCOIT>2.3.CO;2 [18] Langmuir, C.H., Vocke, J.R.D., Hanson, G.N., et al., 1978. A General Mixing Equation with Applications to Icelandic Basalts. Earth and Planetary Science Letters, 37(3): 380-392. https://doi.org/10.1016/0012-821x(78)90053-5 [19] Leach, D.L., Sangster, D.F., Kelley, K.D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 100(3): 561-607. https://doi.org/10.5382/av100.18 [20] Li, W., He, S., Zhang, B.Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415(in Chinese with English abstract). http://www.researchgate.net/publication/327766622_Characteristics_of_paleo-temperature_and_paleo-pressure_of_fluid_inclusions_in_shale_composite_veins_of_Longmaxi_Formation_at_the_western_margin_of_Jiaoshiba_anticline [21] Liu, A., Ou, W.J., Huang, H.L., et al., 2018. Significance of Paleo-Fluid in the Ordovician-Silurian Detachment Zone to the Preservation of Shale Gas in Western Hunan-Hubei Area. Natural Gas Industry, 38(5): 34-43(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854018301177?utm_source=TrendMD&utm_medium=cpc [22] Liu, B., 2005. The Thermodynamic Simulation of Hydrocarbon Inclusions. Science Press, Beijing(in Chinese). [23] Liu, D.H., Dai, J.X., Xiao, X.M., et al., 2010. High Density Methane Inclusions in Puguang Gasfield: Discovery and a T-P Genetic Study. Chinese Science Bulletin, 55(4): 359-366(in Chinese). [24] Liu, D.H., Xiao, X.M., Tian, H., et al., 2013. Multiple Types of High Density Methane Inclusions and Their Relationships with Exploration and Assessment of Oil-Cracked Gas and Shale Gas Discovered in NE Sichuan. Earth Science Frontiers, 20(1): 64-71(in Chinese with English abstract). [25] Liu, L., He, S., Zhai, G.Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm [26] Luo, S.Y., Chen, X.H., Li, H., et al., 2019a. Shale Gas Accumulation Conditions and Target Optimization of Lower Cambrian Shuijingtuo Formation in Yichang Area, West Hubei. Earth Science, 44(11): 3598-3615(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911002.htm [27] Luo, S.Y., Chen, X.H., Liu, A., et al., 2019b. Characteristics and Geological Significance of Canister Desorption Gas from the Lower Cambrian Shuijingtuo Formation Shale in Yichang Area, Middle Yangtze Region. Acta Petrolei Sinica, 40(8): 941-955(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201908005.htm [28] Luo, S.Y., Chen, X.H., Liu, A., et al., 2019c. Geochemical Features and Genesis of Shale Gas from the Lower Cambrian Shuijingtuo Formation Shale in Yichang Block, Middle Yangtze Region. Oil & Gas Geology, 40(5): 999-1010(in Chinese with English abstract). [29] Rui, Z.Y., Ye, J.H., Zhang, L.S., et al., 2004. Pb-Zn Deposits on the Perimeter of the Yangtze Craton and on the Margins of Its Uplifts. Geology in China, 31(4): 337-346(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200404000.htm [30] Sawaki, Y., Ohno, T., Tahata, M., et al., 2010. The Ediacaran Radiogenic Sr Isotope Excursion in the Doushantuo Formation in the Three Gorges Area, South China. Precambrian Research, 176(1-4): 46-64. https://doi.org/10.1016/j.precamres.2009.10.006 [31] Schneider, J., Boni, M., Lapponi, F., et al., 2002. Carbonate-Hosted Zinc-Lead Deposits in the Lower Cambrian of Hunan, South China: A Radiogenic (Pb, Sr) Isotope Study. Economic Geology, 97(8): 1815-1827. https://doi.org/10.2113/gsecongeo.97.8.1815 [32] Shang, C.J., Qiu, L.F., Li, Q., et al., 2016. Characteristic of Fluid Inclusions in the Middle Jurassic Shale Gas Reservoir of Well Chaiye-1. Journal of East China University of Technology (Natural Science), 39(2): 178-183(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201602012.htm [33] Shen, C.B., Mei, L.F., Liu, Z.Q., et al., 2009. Apatite and Zircon Fission Track Data, Evidences for the Mesozoic-Cenozoic Uplift of Huangling Dome, Central China. Journal of Mineralogy and Petrology, 29(2): 54-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200902010.htm [34] Wan, X.B., Xiang, M., Zhang, Q.X., et al., 2017. Lead-Zinc Deposit Fluid Inclusions Characteristics and C and O Isotope Analysis in Changyang Anticlinorium. Resources Environment & Engineering, 31(3): 266-271(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK201703006.htm [35] Wang, G.Z., Liu, S.G., Chen, C.H., et al., 2013. The Genetic Relationship between MVT Pb-Zn Deposits and Paleo-Oil/Gas Reservoirs at Heba, Southeastern Sichuan Basin. Earth Science Frontiers, 20(1): 107-116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201301012.htm [36] Wang, T.G., Ni, P., Wang, G.G., et al., 2008. Identification and Significance of Methane-Rich Fluid Inclusions in Changba Pb-Zn Deposit, Gansu Province. Acta Petrologica Sinica, 24(9): 2105-2112(in Chinese with English abstract). [37] Wang, Y.F., Zhai, G.Y., Bao, S.J., et al., 2017. Evaluation of Sinian Doushantuo Formation Shale Gas Content and Fracturing Property of Eyangye1-Well in Hubei Province. China Mining Magazine, 26(6): 166-172(in Chinese with English abstract). [38] Wei, S.L., He, S., Pan, Z.J., et al., 2019. Models of Shale Gas Storage Capacity during Burial and Uplift: Application to Wufeng-Longmaxi Shales in the Fuling Shale Gas Field. Marine and Petroleum Geology, 109: 233-244. https://doi.org/10.1016/j.marpetgeo.2019.06.012 [39] Wu, Y., 2013. The Age and Ore-Forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China (Dissertation). China University of Geosciences, Beijing, 64-143(in Chinese with English abstract). [40] Xi, B.B., Tenger, Yu, L.J., et al., 2016. Trapping Pressure of Fluid Inclusions and Its Significance in Shale Gas Reservoirs, Southeastern Sichuan Basin. Petroleum Geology & Experiment, 38(4): 473-479(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201604009.htm [41] Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2016. Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China. Earth Science, 41(1): 105-120(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201601009.htm [42] Xu, C.H., Zhou, Z.Y., Chang, Y., et al., 2010. Genesis of Daba Arcuate Structural Belt Related to Adjacent Basement Upheavals: Constraints from Fission-Track and (U-Th)/He Thermochronology. Science in China: Earth Sciences, 53(11): 1634-1646. https://doi.org/10.1007/s11430-010-4112-y [43] Xu, D.L., Peng, L.H., Liu, H., et al., 2013. Meso-Cenozoic Tectono-Sedimentary Response of Multi-Phased Uplifts of Huangling Anticline, Central China. Geology and Mineral Resources of South China, 29(2): 90-99(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201302002.htm [44] York, D., 1968. Least Squares Fitting of a Straight Line with Correlated Errors. Earth and Planetary Science Letters, 5: 320-324. https://doi.org/10.1016/s0012-821x(68)80059-7 [45] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7): 1057-1068(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707002.htm [46] Zhang, C.Q., Mao, J.W., Wu, S.P., et al., 2005. Distribution, Characteristics and Genesis of Mississippi Valley-Type Lead-Zinc Deposits in Sichuan-Yunnan-Guizhou Area. Mineral Deposits, 24(3): 336-348(in Chinese with English abstract). http://www.researchgate.net/publication/284490546_Distribution_characteristics_and_genesis_of_Mississippi_Valley-Type_lead-zinc_deposits_in_Sichuan-Yunnan-Guizhou_area [47] Zhang, J.F., Xu, H., Zhou, Z., et al., 2019. Geological Characteristics of Shale Gas Reservoir in Yichang Area, Western Hubei. Acta Petrolei Sinica, 40(8): 887-899(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201908001.htm [48] Zhang, J.Z., Zhu, D., Ci, X.H., et al., 2019. Characteristics of Carbon Isotope while Drilling and Exploration Significance of Shale Gas in Niutitang and Doushantuo Formations in Well Eyangye-2, Yichang, Hubei, China. Acta Petrolei Sinica, 40(11): 1346-1357(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201911005.htm [49] Zhang, M., Ou, G.X., Zhang, Z.H., et al., 2017. Geochemical Characteristics of Fluid in Carboniferous Shale Gas Reservoir of the Eastern Qaidam Basin. Acta Petrolei Sinica, 38(11): 1244-1252(in Chinese with English abstract). http://www.researchgate.net/publication/325429608_Geochemical_characteristics_of_fluid_in_Carboniferous_shale_gas_reservoir_of_the_eastern_Qaidam_Basin [50] Zhang, Q.X., Luo, H., Tian, D.C., et al., 2011. Preliminary Study of Geological Characteristics and Genesis of Hejiaping Lead-Zinc Deposit in Changyang County. Resources Environment & Engineering, 25(6): 593-597(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_resources-environment-engineering_thesis/0201253646354.html [51] 邓铭哲, 2018. 黄陵背斜及邻区构造建模(博士学位论文). 北京: 中国地质大学. [52] 邓铭哲, 何登发, 2018. 当阳地区地质结构及其对宜昌地区志留系页岩气勘探的意义. 成都理工大学学报(自然科学版), 45(4): 487-500. doi: 10.3969/j.issn.1671-9727.2018.04.09 [53] 段其发, 2014. 湘西-鄂西地区震旦系-寒武系层控铅锌矿成矿规律研究(博士学位论文). 武汉: 中国地质大学. [54] 高键, 2018. 渝东地区五峰-龙马溪组页岩裂缝脉体古温压及古流体成因(博士学位论文). 武汉: 中国地质大学. [55] 高键, 何生, 易积正, 2015. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义. 石油与天然气地质, 36(3): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm [56] 李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm [57] 刘安, 欧文佳, 黄惠兰, 等, 2018. 湘鄂西地区奥陶系-志留系滑脱层古流体对页岩气保存的意义. 天然气工业, 38(5): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201805006.htm [58] 刘斌, 2005. 烃类包裹体热动力学. 北京: 科学出版社. [59] 刘德汉, 戴金星, 肖贤明, 等, 2010. 普光气田中高密度甲烷包裹体的发现及形成的温度和压力条件. 科学通报, 55(4): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z1010.htm [60] 刘德汉, 肖贤明, 田辉, 等, 2013. 论川东北地区发现的高密度甲烷包裹体类型与油裂解气和页岩气勘探评价. 地学前缘, 20(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301008.htm [61] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142 [62] 罗胜元, 陈孝红, 李海, 等, 2019a. 鄂西宜昌下寒武统水井沱组页岩气聚集条件与含气特征. 地球科学, 44(11): 3598-3615. doi: 10.3799/dqkx.2019.179 [63] 罗胜元, 陈孝红, 刘安, 等, 2019b. 中扬子宜昌地区下寒武统水井沱组页岩现场解吸气特征及地质意义. 石油学报, 40(8): 941-955. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908005.htm [64] 罗胜元, 陈孝红, 刘安, 等, 2019c. 中扬子宜昌地区下寒武统水井沱组页岩气地球化学特征及其成因. 石油与天然气地质, 40(5): 999-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905005.htm [65] 芮宗瑶, 叶锦华, 张立生, 等, 2004. 扬子克拉通周边及其隆起边缘的铅锌矿床. 中国地质, 31(4): 337-346. doi: 10.3969/j.issn.1000-3657.2004.04.001 [66] 尚长健, 邱林飞, 黎琼, 等, 2016. 柴页1井中侏罗统页岩气储层的流体包裹体特征研究. 东华理工大学学报(自然科学版), 39(2): 178-183. doi: 10.3969/j.issn.1674-3504.2016.02.012 [67] 沈传波, 梅廉夫, 刘昭茜, 等, 2009. 黄陵隆起中-新生代隆升作用的裂变径迹证据. 矿物岩石, 29(2): 54-60. doi: 10.3969/j.issn.1001-6872.2009.02.009 [68] 万学斌, 向萌, 张权绪, 等, 2017. 长阳复背斜铅锌矿流体包裹体特征与C、O同位素分析. 资源环境与工程, 31(3): 266-271. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201703006.htm [69] 王国芝, 刘树根, 陈翠华, 等, 2013. 四川盆地东南缘河坝MVT铅锌矿与古油气藏的生成关系. 地学前缘, 20(1): 107-116. [70] 王天刚, 倪培, 王国光, 等, 2008. 甘肃厂坝铅锌矿富甲烷流体包裹体的发现及其意义. 岩石学报, 24(9): 2105-2112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809019.htm [71] 王玉芳, 翟刚毅, 包书景, 等, 2017. 鄂阳页1井陡山沱组页岩储层含气性及可压性评价. 中国矿业, 26(6): 166-172. doi: 10.3969/j.issn.1004-4051.2017.06.032 [72] 吴越, 2013. 川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制. 北京: 中国地质大学. [73] 席斌斌, 腾格尔, 俞凌杰, 等, 2016. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义. 石油实验地质, 38(4): 473-479. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604009.htm [74] 熊索菲, 姚书振, 宫勇军, 等, 2016. 四川乌斯河铅锌矿床成矿流体特征及TSR作用初探. 地球科学, 41(1): 105-120. doi: 10.3799/dqkx.2016.008 [75] 徐大良, 彭练红, 刘浩, 等, 2013. 黄陵背斜中新生代多期次隆升的构造-沉积响应. 华南地质与矿产, 29(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm [76] 翟刚毅, 王玉芳, 包书景, 等, 2017. 我国南方海相页岩气富集高产主控因素及前景预测. 地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085 [77] 张长青, 毛景文, 吴锁平, 等, 2005. 川滇黔地区MVT铅锌矿床分布、特征及成因. 矿床地质, 24(3): 336-348. doi: 10.3969/j.issn.0258-7106.2005.03.013 [78] 张家政, 朱地, 慈兴华, 等, 2019. 湖北宜昌地区鄂阳页2井牛蹄塘组和陡山沱组页岩气随钻碳同位素特征及勘探意义. 石油学报, 40(11): 1346-1357. doi: 10.7623/syxb201911005 [79] 张君峰, 许浩, 周志, 等, 2019. 鄂西宜昌地区页岩气成藏地质特征. 石油学报, 40(8): 887-899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908001.htm [80] 张敏, 欧光习, 张枝焕, 等, 2017. 柴达木盆地东部石炭系页岩气储层流体地球化学特征. 石油学报, 38(11): 1244-1252. doi: 10.7623/syxb201711003 [81] 张权绪, 罗洪, 田德昌, 等, 2011. 长阳县何家坪铅锌矿床地质特征及成因初探. 资源环境与工程, 25(6): 593-597. doi: 10.3969/j.issn.1671-1211.2011.06.005